
A Parallel Memetic Algorithm Applied to the Total Tardiness
Machine Scheduling Problem

Vinicius Jacques Garcial, Paulo Morelato Franga1, Alexandre de Sousa Mendes2, Pablo Moscato2

'Faculdade de Engenharia Eletrica 2School of Electrical Engineering
e de Computacao and Computer Science

Universidade Estadual de Campinas The University of Newcastle
C.P. 6101, 13083-852, Campinas, SP, Brazil Callaghan, 2308, NSW, Australia

{j acques,franca} 4densis.fee.unicamp.br {mendes,moscato} cs.newcastle.edu.au

Abstract local search operators, the adoption of such operators
leads to better results when compared to those cre-

This work proposes a parallel memetic algorithm ap- ated by an ordinary GA [1], [7], [13], [6]. The good
plied to the total tardiness single machine scheduling performances obtained in all these works is due to a
problem. Classical models of parallel evolutionary algo- well-tailored local search procedure for the problem be-
rithms and the general structure of memetic algorithms ing solved, an adequate representation for the chromo-
are discussed. The classical model of global parallel ge- some, and the "synergy" of the local search with the
netic algorithm was used to model the global parallel recombination operator.
memetic analogue where the parallelization is only ap-
plied to the individual optimization phase of the algo-
rithm. Computational tests show the efficiency of the A major challenge found in such algorithms is the
parallel approach when compared to the sequential ver- design of good local search operators for large in-
sion. A set of eight instances, with sizes ranging from stances, since the associated neighbourhood might be-
56 up to 323 jobs and with known optimal solutions, is come extremely large. One of the ways to avoid this
used for the comparisons. problem is to adopt neighbourhood reduction tech-

niques. Nevertheless, in some cases, even with a good
reduction, the exploration of the neighbourhood is still

1. Introduction very time-consuming. Then, the development of par-
allel approaches, using parallel execution techniques,

In the past decades the Genetic Algorithms (GAs) becomes a suitable alternative.
approach has dramatically improved and became a
popular methodology to deal with a wide variety of
problems. A very important contribution comes from In this work is presented a new implementation for
Hybrid GAs, which apply some form of problem do- master-slave memetic algorithms with hierarchically-
main knowledge, generally in the form of good local structured population, emphasizing on design issues
search operators, in order to improve the search pro- related to load balance and synchronism. This model
cess. Recognizing that the addition of problem-domain is applied to solve a set of eight instances of the well-
knowledge results in important differences and in new known single machine scheduling problem. Next is pre-
practical algorithmic design issues to face, a generaliza- sented how this paper is structured: in section 2 we
tion of hybrid GAs was pointed out by Moscato in [14] present a description of the problem being addressed;
as a new methodology, and the creation of the new de- in section 3, the concepts of Parallel GAs are described;
nomination of Memetic Algorithm (MA) was justified the sequential and the parallel MAs are presented in
for them. sections 4 and 5, respectively; computational results

Several applications of MAs have shown that, al- are presented in section 6, followed by the conclusions
though a larger computational effort is required by the in section 7.

1-4244-0054-6/06/$20.OO ©2006 IEEE

2. Problem statement c2-d2 c5-d5

X * || ~Sl4 t4 S43 || S32 t| S25 tg
The single machine scheduling problem (SMS) is one

of the most studied problems in the combinatorial opti-
mization field. The interest derives from the frequency
it is found in real industry environments. The works di d2 d3 d4 d5
of [9] and [10] were among the first articles to address
this type of scheduling problem. Figure 1. Gantt diagram of a solution for

There are several variants of the SMS problem, de- the total tardiness single machine scheduling
pending on the input data and the objective function. problem.
A very common one found in the literature is the task
of scheduling n jobs, each one with a specific process-
ing time and due date. The objective function is to 3. Parallel population-based algorithms
minimize the total tardiness, characterized by the sum
of each individual tardiness in turn related to the jobs'
due dates. This problem can become more "complex" Many classical forms of parallel genetic algorithms
if it adds sequence-dependent setup-times for the jobs, are found in the literature, as shown in [3] and, more
precedence constraints, etc. recently, in [4]. In [14], a pioneer work in the MA field,

The simplest total tardiness SMS problem, without the importance of such methods was already outlined.
setup times, is already NP-hard as shown in [5]. Many Of special importance is Ref. [8], where an MA with a
solution techniques that focus on this problem have matrix-layout population is proposed. Each individual
been proposed. The references [15] and [11] use dis- is assigned to a processing unit, occupying a position in
patch rules together with a priority index to build an this bi-dimensional space. Selection and recombination
approximate sequence, which later will be optimized by are done independently after a limited neighbourhood
a local search procedure. In reference [16], a new re- is set.
combination operator is created to be used in a GA. In The parallel model used in this work is called Global
[17] a method based on Simulated Annealing is devel- Parallel Memetic Algorithm (GPMA) (see also [3]).
oped and in [7] a MA with a hierarchically-structured The name derives from the fact that the selection, re-
population was presented. combination and mutation operators are applied over

The problem addressed in this paper can be defined the entire population, in contrast with other parallel
as: MA approaches where the population is broken into

subpopulations. The implementation is generally car-
1. Input: A set of n jobs to be processed in one ma- ried out using master-slave programs; a master unit

chine, a list {t,,. . ., t,} of processing times for assigns some functions of the algorithm to other slave
each of the jobs and another list {d,... , d,} of units, which execute them and return the result.
due dates for each one of them. A matrix {s}ij of The function that is usually distributed to the slaves
setup times, where sij is the setup time of job j is the evaluation of individuals, given its independent
after the machine has processed the job i. character. Following this scheme, fractions of the pop-

ulation are assigned to each slave and communication
2. Output: A permutation of the jobs that mini- occurs only when they are sent or received. When the

mizes the total tardiness of the schedule. Tardi- master waits for the answer of all slave units, the al-
ness is given by equation 1, where Ck represents gorithm is called synchronous, preserving all the char-
the time when job k was finally processed, or in acteristics of the evolutionary behavior of a sequential
other words, it is the job's completion time, and method, but with better performance. Another possi-
dk is the due date of the respective job. bility is that the master unit does not need to wait for

all the answers, thus characterizing an asynchronous
method. We note that the MAs proposed by Norman

nrrlasc[O,ck dlc] (1) and Moscato [14] and ASPARAGOS [8] were of this
Tnmax[0, Ck - dk] (1) type. In this case, there is a clear difference with the
k 1 ~~~~~~~~sequential algorithm: individuals from the same gen-

Fig. 1 shows a possible schedule for an instance with eration can jump to another generation, as if they had
five jobs (1-4-3-2-5), as well as a graphical representa- migrated, modifying the evolutionary behavior of the
tion of the total tardiness. algorithm.

Procedure Sequential_Memetic_Algorithm(P)

aste
. Inicialize(P);master ~~~~~~~2.Evaluate(P);

3. For i=1 to maxGenerations do
4. For j=1 to maxNewInd do

5. parents=selectIndividuals(P);
6. newInd=recombine(parents);
7. optimize(newInd);
8. mutate(newInd);

aveave ave ae
\9. optimize(newInd);

slave , slave 2 slave 3. slave , 10. AddToPopulation(newInd);
11. End.

Figure 2. Basic structure of a Global Paral- Figure 3. Procedure of a sequential memetic
lel Memetic Algorithm, each slave would run algorithm.
some individual optimization step on its as-
sociated solutions.

optimization procedure (the local search in this case)
in step 7 and 9 is executed independently for each in-

The GPMAs do not require a specific computational dividual.
architecture. They can be efficiently implemented in
computers with shared or distributed memory. In the 5. Parallel Memetic Algorithm (PMA)
first case, the population is stored in the shared mem-
ory and each unit of the multi-processor system access The main motivation for this work comes from the
parts of it. When distributed memory is used, the pop- MA presented in [7], which has been relatively success-
ulation is stored in the processing unit responsible for ful in dealing with the SMS problem. Nevertheless,
sending the individuals to the others and for collecting the method has shown some limitations mainly due
the answers. In both cases there is a cost associated

to te cmmuncaton rsuling n atrad-of beteen to the CPU time required to solve larger instances. A
study on the time spent by each step of the algorithmnumber of slave units and efficiency. This compromise confirmed that the individual optimization step is re-

is analyzed in detail in [2]. Fig. 2 outlines a GPMA. sponsible for over 90% of the total computational effort
spent by the algorithm, making it the obvious choice

4. Sequential Memetic Algorithm for parallelization. Moscato and Norman like to say
that MAs constitute a clear example of agent-driven

The MAs were categorized and described as a new parallelism.
class of evolutionary algorithms in [14]. As the GAs, Therefore, the individual optimization steps will be
the MAs are based on the benefits of selection, repro- performed in parallel and all the other steps of the al-
duction of characteristics of previously discovered good gorithm (Fig. 3) are sequential. The most adequate
solutions (i.e. forms of generalized recombination) and model in this case is the GPMA that, as described in
mutation. What differentiates them is the adoption of section 3, uses a master unit. The master will then dis-
a cultural evolution analogy. The most common way tribute the optimization task to the slave units. More
that cultural information is transmitted to individuals specifically, the optimization of each individual consti-
of the population is to individually evolve them to be- tutes a job to be distributed to the slave units. Each
came fitter individuals by means of a local search pro- slave receives the job, makes the processing and returns
cedure. Therefore new individuals are then optimized, the result (the optimized individual) to the master unit.
leading to a better population. The search in the space As mentioned before, our available parallel hardware
of solutions is done with several solutions (individu- is a computer network, with several processing units,
als/agents) like in other population-based algorithm, each one with an independent memory. In order to
making it a concurrent search process. The terminol- make an algorithm that centralizes all the jobs and
ogy "sequential" is adopted when the algorithm does only distributes the individuals' optimization, we need
not use any explicit parallel mechanism and runs on a to simulate a shared memory (Fig. 4). That is, all
single processing unit. individuals to be optimized must be kept in a memory

The MA implementation presented in this work is that is shared by all processing units.
described in detail in [7]. A simplified pseudo-code is This simulation is accomplished with sockets and,
shown in Fig. 3. given the communication structure, each socket can

In the pseudo-code of Fig. 3, we emphasize that the only be used by two points, or two processing units.

ComputerShared memory Master network
oryShared

.........Requests queue Responses queue S o cSe 1
Server Socket I Clent

Job 6 Job 1 program

Job 7 Job 2
Slave 2

Job 8 Job3 Server Socket 2 C

Job 9 Job 4 prga rogra

Job10t Job 5

a).\ ~~~~~~~~~~~Slaven
Server Socketnn Clent

ry ~~~~~~~program progra

..

Figure 4. Shared Memory for the parallel Figure 5. A simplified diagram of the parallel
memetic algorithm. memetic algorithm architecture.

PMA architecture is shown in Fig. 5.
Thus, it is necessary as many sockets as the number of In the initialization of the master unit, a server pro-
slave units being used. The use of such communication gram is initialized for each slave unit available. On the
channels does not solve the problem. There is still an- slave unit side a client program is started which makes
other one to be considered: how to distribute these jobs a socket connection and waits for a job to be processed.
to the slave socket units. An important characteristic As soon as the job is received, it is processed and re-
is that the jobs are built one after the other, due to turned to the respective server program. Each one of
the concentration of such activities in the master unit. the server programs permanently verifies the shared
Since the nature of the units might be heterogeneous, memory for jobs to be processed. Such memory ac-
with different processor speeds and memory configura- cesses are exclusive, that is, only one server program
tions, the goal is to distribute the jobs as to minimize can access it at a given time.
the time required to solve all of them. This problem is The process of creating the jobs to be processed by
very similar to the multiprocessor scheduling problem the slaves repeats itself every generation. In the indi-
with makespan minimization (PHCmax) [9] As the viduals' optimization step, each job will be formed by
PHCmax is NP-hard, it is very difficult to be solved an individual plus the specification of the local search
to optimality. Moreover, this problem repeats itself algorithm to be used. Therefore, it is important to
in each generation of the algorithm and any computa- keep the synchronism, that is, after all the jobs were
tional effort reduction becomes precious. built and put in the shared memory, it is necessary to

The proposed solution is to take advantage of the se- wait for the result (the optimized individuals). In this
quential way that the jobs are created, assigning them way, when the master finishes building all the jobs, it
by demand, that is, the faster a slave unit is, the more must wait (or not) for all the results in order to advance
jobs it will process. This distribution function is not to the next MA step. In the algorithm implemented,
controlled by the algorithm: the use of threads makes we created a parameter k, which determines the per-
it possible to have concurrent programs in the master centage of results that must be received by the master
unit, with shared memory. Therefore, the decision of before the algorithm skips to the next step. For in-
which program will be executed at a given moment be- stance, suppose that the population is composed of 13
longs to the operating system. The only compromise is individuals and 20 new individuals are created every
to manage the shared memory in order to avoid data generation. In such case, 20 jobs must be executed by
inconsistency, to prevent that a given program be in- the slave units. If we set k = 0.4 (40%), this means
terrupted when any operation in the shared memory that the algorithm will wait for at least 8 jobs (opti-
is being executed. In order to preserve the sequence mized individuals) to be returned before the next phase
of job-sending and job-receiving, this memory is com- of the algorithm starts. As a consequence, value k = 0
posed of two FIFO queues: the first is used by the corresponds to a master-slave asynchronous algorithm
jobs to be processed (requests queue) and the second by and k =1 to a master-slave synchronous one.
the jobs that were already processed (responses queue), The complete pseudo-code is shown in Fig. 6. When
as show Fig. 4. A simplified diagram of the proposed compared to the sequential MA (Fig. 3), it can be no-

Procedure Parallel_Memetic_Algorithm(P, k)
1. Inicialize(P);
2. Evaluate(P); Tgs = Nt.Tp (3)
3. For i=1 to maxGenerations do

4. For j=1 to maxNewInd do In order to guarantee that the performance of the
5. parents=selectIndividuals(P); PMA is better than its sequential version, it is needed
6. newInd=recombine (parents); that Tgs > 1. After a few mathematical operations in
7. mutate(newInd);* Tgp
8. createJobForSlaves(newInd); equations 2 and 3, we obtain equation 4. It shows that

9. newIndividuals=waitProcessedJobs(k); the job processing time Tp must be always larger than
10. For j=1 to maxNewInd do Tc and that the greater is the relation TP, the better

11. AddToPopulation(newIndividuals[jl); bc
12. End. wll be the performance.

Figure 6. Procedure of a parallel memetic al- Ne + 1
gorithm. Tp>TNeT (4)

Equation 4 also shows that the attempt to parallelize
1 generation other steps of the MA is not promising. For instance,

making the recombination step become parallel is not
Tc Tc Tc To_m Tc Tc Tc Tc Tc Tc To_m Tc Tc Tc viable because the time necessary to make the recom-

bination is almost negligible, but the communication
time is not.

Tp To_e 1 Tp

Tp To_e2 Tp 6. Computational Experiments
Tp To_e 3 Tp

In order to show how efficient is the parallel ap-
Figure 7. Master-slave parallel memetic algo- proach, computational tests were carried out using a
rithm illustration. set of instances with known optimal solutions.

The speedup, defined as the quotient between the
time Ts to run the sequential algorithm and the time

ticed that there are just a few modifications. Only Tp for the parallel version, is used as the performance
steps 8, 9 and 10 were introduced to transform it into criterion.
a parallel algorithm. The SMS instances were created from solved Asym-

For a betr umetric Traveling Salesman Problem (ATSP) instances,
Fortimizabetion-phser undrs zadiong of indid ualFig. s. available at TSPLIBl. The letter after the name of the

optimzatio-phas para n c. instance classify its difficulty and refers to the way theSuppose that there are 6 jobs (individuals) in the re-
quess qeuend slae uits.Fig 7 sowsthe ime processing times are created; L represents a harder in-quess qeuend slae uits.Fig 7 sowsthe ime stance than H. For the L instances, the setup-times be-events that occur in the master unit during an entire s - be-come more critical in the scheduling, emphasizing thegeneration of the PMA. Note that the time to process AS seto h rbe.FrteHisacs h

ATSP aspect of the problem. For the H instances, the
a job (Tp) is the same in all slave units. The time processing times become more relevant in the schedul-Tom indicates the master unit's idle time and Toe...represendiatesthe e unit's ide ime. tife adisegr ing, being such instances much easier to be solved byrepresents the slave unit's idle time. If we disregard thaloimbenusdMrenfmtonnhwthe algorithm being used. More information on howthe amount of time spent in other steps of the algo- g gthe instances were generated can be found in [12].rithm during a generation, and take into account only The local search used to optimize the individuals
the optimization step, the duration of a parallel algo- is based on the well known all-pairs neighbourhood.
rithm's generation (Tgp) is given by equation 2 and the Given a solution this neighbourhood is constructed by
sequential algorithm's duration (Tg,) by the equation interchanging all pairs of jobs. As mentioned in the3. For both algorithms, Nt corresponds to the number introduction the excessive size of this neighbourhood
of jobs (or individuals) to be distributed to the slaves,
Ne is the number of slave units and Tc represents the d s re pemed, bt of tem makes of a

timeneeed otansmt ajobfro themaser o a
ductions are performed, both of them make use of a
function which approximates the total tardiness con-slave orvice-versa. ~~~~sidering setup and processing times without perform-
ing the movement. With this approximated value it is

Nt.Tp Nt.Tc__

Tg~ N + Ne(1 + Ne) (2) 1http://www.crpc.rice.edu/softlib/tsplib/

6 6

ftv55LH ° ftv55LH °-
ftv70LH+ ftv70LH+

5 krol243LH [3- 5 krol24pLH --3-.
rbg32 LH -X- E rbg32 LHxx-

4 x 4

3 3~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-

v ~ 0 ~ = I 1t'------ ----''''+'''''''+''''''''+''''''''+ -----X

0 0
2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9

Number of processors Number of processors

Figure 8. Speedups for the 50%-reduction. Figure 9. Speedups for the 90%-reduction.

possible to choose for evaluation only movements that ftv55L, ftv7WH and ftv7WL on Table 1 and ftv55L and
yield lower values than the incumbent solution. ftv7WL on Table 2 there is a marginal benefit in using

The first test was carried out with a 50%-reduction the master-slave algorithm.
in the local search neighbourhood. A complete descrip- Considering the influence of the all-pairs neighbor-
tion of the neighbourhood reductions are available in hood reduction on Tp, we could check that the more re-
[7]. Table 1 illustrates the speedup values obtained, as stricted are the movements, the lower is the local search
well as the number of jobs (n) present in each instance, time and, thus, the lower will be the speedup. Only for
the average time to perform a local search in an indi- instances ftv55H and ftv7WH there was an increase in

vidual2 (Tp) and the communication time (Tc). In the Tp when comparing 50%-reduction to 90%-reduction,
second test we used the same neighbourhood but with what leads to higher speedups as pointed out on Ta-
a reduction of approximately 90% of the search space. bles 1 and 2. For the other instances, in general, we
The results are shown in Table 2. Fig. 8 and Fig. 9 obtained lower speedup values for the most restricted
illustrate the evolution of the speedup for a subset of reduction (90%) compared to the less restricted one

instances, and for the first and second test configura- (50%-reduction). Only do give an idea about the time
tions, respectively, required to solve an instance, the worst case for thethonsresimplemtivent instance rbg323H takes 7212 seconds, considering a se-

JavTM (Spn 'microste) JDK verk son1 For quential execution (1 processor). For 9 processors, thisJavaTA (Sun Microsystems), JDK version 1.4.1. For
tm srdcdt 19scnstime is reduced to 1119 seconds.the computational tests, we used a 10-Mbits Ethernet

network, with nine PC-Compatible Intel Celeron 330
MHz computers, each one with 64 MB of RAM. The 7. Conclusions
operating system was Linux, kernel version 2.4. All
the executions of the sequential and parallel MA spent This paper proposes a new implementation for
20 generations and each one was repeated 10 times. master-slave memetic algorithms with hierarchically-
The memetic parameters are as follow: population size structured population. It is emphasized on design is-
equal to 13; offspring size equal to 20; and mutation sues related to load balance and synchronism in order
rate equal to 50%. An important detail is that the to deal efficiently with time-consuming local search op-
master-slave algorithm used in our experiments is the erators. Theoretical results provide a trade-off between
synchronous one (i.e. the parameter k is set to 1). processing and communication time which is associated

The results show that the greater is the relation TP with the speedup value.Tc'~
the larger is the speedup, as shown by equation 4. This The application of parallel computation techniques
fact can be proved when comparing 56 and 100-job in memetic algorithms is very promising when the CPU
instances: the former class has lower speedups than time is the performance criterion or a critical limita-
the latter one. In addition, speedups less than 1 for tion. The associated complexity is acceptable consid-
2 processors indicate that it is not promise to apply ering the resulting performance improvement.
the parallel structure proposed: for instances ftv55H, The results also validate the efficiency of the parallel

_____________________ ~~~~model for the set of instances tested. It became evident
2When the sequential algorithm is used. that the larger is the instance, the greater will be the

Table 1. Parallel memetic algorithm performance for the 50%-reduction.
Speedup

Instances n Tp Tc Number of processors10-3s 10-3s 2 3 4 5 6 7 8 9
ftv55H 56 27 10 0.00 0.00 0.18 0.26 0.28 0.29 0.30 0.31
ftv55L 56 76 10 0.00 0.00 0.00 0.40 0.56 0.74 0.81 0.76
ftv7OH 71 82 12 0.00 0.00 0.73 0.71 0.71 0.75 0.74 0.79
ftv7OL 71 175 12 0.00 0.00 0.64 1.25 1.47 1.10 1.06 1.08

krol24pH 100 356 13 1.43 1.95 2.56 2.69 2.88 3.32 3.33 3.43
krol24pL 100 641 13 1.60 2.22 2.66 3.04 3.49 3.78 4.22 4.63
rbg323H 323 28866 20 1.62 2.65 3.28 3.80 4.55 5.21 5.69 6.44
rbg323L 323 23440 20 1.79 2.63 3.26 3.83 4.43 4.85 5.38 5.93

Table 2. Parallel memetic algorithm performance for the 90%-reduction.
Speedup

Instances Tp Tc Number of processors10-3s 10-3s 2 3 4 5 6 7 8 9

ftv55H 56 62 10 1.04 1.32 1.48 1.64 1.73 1.77 1.80 1.83
ftv55L 56 22 10 0.58 0.69 0.78 0.80 0.83 0.80 0.83 0.84
ftv7OH 71 145 12 1.30 1.81 2.05 2.39 2.58 2.79 2.73 3.04
ftv7OL 71 45 12 0.81 1.02 1.17 1.22 1.28 1.33 1.28 1.32

krol24pH 100 355 13 1.59 2.19 2.84 3.30 3.45 3.80 4.12 4.47
krol24pL 100 118 13 1.11 1.59 1.89 2.09 2.22 2.47 2.53 2.66
rbg323H 323 26052 20 1.91 2.68 3.38 3.84 4.23 4.84 5.39 5.97
rbg323L 323 5184 20 1.72 2.49 3.18 3.64 4.14 4.75 5.34 5.91

time spent doing local search and, consequently, the [3] E. Cantu'-Paz. A survey of parallel genetic algo-
greater will be the speedup. In this work, the instances rithms. Technical Report 97003, Illinois Genetic Al-
with 323 jobs had the best speedup values. gorithms Laboratory, University of Illinois at Urbana-

As future works we shall extend this approach to Champaign, 1997.
other problems in order to check if such results hold [4] E. Cantu'-Paz and D. Goldberg. Efficient paral-

lel genetic algorithms: theory and practice. Com-A detailed investigation on the behavior of the asyn-puemthdinaled ecacsadeigiieri,
chron'ct'y totheropoed aloritm isalsoreleant.puter methods t'n applt'ed mechant'cs and engt'nneert'ng,chronicity to the proposed algorithm is also relevant. 186:221-238, 2000.

[5] J. Du and J. Leung. Minimizing total tardiness on

Acknowledgements one machine is NP-hard. Mathematics of Operations
Research, 15:483-495, 1990.

[6] P. Franca, J. Gupta, A. Mendes, P. Moscato, and
This work was supported by the Coordenacao de K. Veltink. Metaheuristic approaches for the pure

Aperfeicoamento de Pessoal de Nivel Superior (CAPES flowshop manufacturing cell problem. Computers F
- Brazil), Fundacao de Amparo a Pesquisa do Estado de Industrial Engineering, 48(3):491-506, 2005.
Sao Paulo (FAPESP - Brazil), and CNPq. The authors [7] P. Franca, A. Mendes, and P. Moscato. A memetic al-
also wish to thank Eder Nicoletti Mathias and Celso gorithm for the total tardiness single machine schedul-
Maciel da Costa by providing us with all the compu- ing problem. European Journal of Operational Re-

tational resources necessary for this work. P.M.'s work search, 132-1:224-242, 2000.[8] M. Gorges-Schleuter. Asparagos: An asynchronous
is supported by CNPq, Proc. 52.1100/01-1. parallel genetic optimization strategy. In Third Inter-

national Conference of Genetic Algorithms, page 422,
References 1989.

[9] R. Graham, E. Lawler, J. Lenstra, and A. Rinooy Kan.
Optimization and approximation in deterministic se-

[1] L. Buriol, P. Franca, and P. Moscato. A new memetic quencing and scheduling: A survey. Annals of Discrete
algorithm for the asymmetric traveling salesman prob- Mathematics, 5:287-326, 1979.
lem. Journal of Heuristics, 10(5):483-506, 2004. [10] S. Graves. A review of production scheduling. Opera-

[2] E. Cantui-Paz. Designing efficient master-slave parallel tions Research, 29:646-675, 1981.
genetic algorithms. Technical Report 97004, Illinois [11] Y. Lee, K. Bhaskaran, and M. Pinedo. A heuristic to
Genetic Algorithms Laboratory, University of Illinois minimize the total weighted tardiness with sequence-
at Urbana-Champaign, 1997. dependent setups. IIE Transactions, 29:45-52, 1997.

[12] A. Mendes, P. Franca, and P. Moscato. Fitness land-
scape for the total tardiness single machine scheduling
problem. Neural Network World, 2(2):165-180, 2002.

[13] A. Mendes, F. Muller, P. Franca, and P. Moscato.
Comparing meta-heuristic approaches for parallel ma-
chine scheduling problems with sequence-dependent
setup times. Production Planning L Control,
13(2):143-154, 2002.

[14] P. Moscato. On evolution, search, optimization, ge-
netic algorithms and martial arts: towards memetic
algorithms. Technical Report C3P 826, Caltech Con-
current Computation Program, 1989.

[15] N. Raman, R. Rachamadugu, and F. Talbot. Real
time scheduling of an automated manufacturing cen-
ter. European Journal of Operations Research, 40:222-
242, 1989.

[16] P. Rubin and G. Ragatz. Scheduling in sequence de-
pendent setup enviroment with genetic search. Com-
puters and Operations Research, 22-1:85-99, 1995.

[17] K. Tan and R. Narasimhan. Minimizing tardiness on
a single processor with a sequence-dependent setup
times: a simulated annealing approach. OMEGA
- International Journal of Management Science, 25-
6:619-634, 1997.

