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Microarray technologies allow the measurement of thousands of gene expression levels
simultaneously. With them biologists can have a powerful new tool to analyse the complex
dynamical process of living organisms. These technologies are challenging traditional scientific
disciplines, including Computer Science and Statistics. The reason of this challenge is based on
the novel type of large-scale data mining applications. A typical microarray experiment is very
costly and, due to budget limitations, the ratio of experiments to genes is generally on the order of
1/100. As a consequence, we rely on combinatorial optimization formalisms to develop robust
feature selection methods. In this paper we demonstrate their usefulness in selecting genes that
allow a molecular classification of cancer samples when we are given as labels their assumed
origin (Colon, Melanoma, etc.). We present some results on five types of cancer presented on a
public domain dataset which will allow for the reproducibility of our results.
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1. INTRODUCTION
This paper focuses on the extraction of relevant information from a set of microarray experiments
by selecting specific genes with the particular purpose to help understand the genetic mechanisms
behind five common types of cancer. The models and algorithms presented may have important
uses in other applications in the wider field of the Feature Selection problem (Dash and Liu, 1997,
2003; Xing, 2003; Akutsu and Miyano, 2002; Moscato et al, 2005c). 

Microarray technologies were introduced in the past decade and their use is now permeating
scientific disciplines boundaries. More recent advances, in the beginning on this decade, allowed
researchers to perform whole-genome experiments, in which they simultaneously measure the
expression level of thousands of genes allowing their collective changes under controlled conditions
to be measured. An unprecedented number of possibilities arise, but this technology is also
challenging the area of knowledge extraction from databases (Tamayo and Ramaswamy, 2003;
Quackenbush, 2001). Analysis of these data can be done using unsupervised learning techniques as
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clustering/ordering algorithms (Moscato et al, 2005a; Eisen et al, 1998) and supervised techniques.
In the latter case, we know some additional information that defines a class of experiments as a
separate group (Brown et al, 2000; Furey et al, 2000).

Several combinatorial optimization problems associated to the interpretation of this wealth of
information are NP-hard, thus it is unlikely that polynomial-time algorithms exist for them. As a
consequence, one of the practical difficulties faced is the amount of data coming from microarray
experiments can be very large. In addition, it is generally the case that the number of genes in a
microarray dataset is two orders of magnitude larger than the samples. In such scenario, it becomes
easy to find low cardinality explanations for the process of interest but many of these genes may be
totally unrelated to the research question. These “false positives” can just be explained due to the
low samples-to-features ratio. This means that mathematical models for clustering and/or
classification methods should take this into account.

In this paper, we used variations of the (α,β)-k-Feature Set Problem introduced by Cotta et al
(2004), to perform the selection of genes. We present two integer programming models for these
variants. These models have been also applied to an Alzheimer dataset (Moscato et al, 2005b) and
different types of cancer (Berretta et al, 2005). Our group has also presented a pedagogical and
illustrative example of their application to political science (Moscato et al, 2005c).

We have used CPLEX (a mathematical programming software package) to guarantee the
optimality of our solutions. Our results show that our method has been able to select relevant groups
of discriminatory genes, each one containing between 6% and 17% of the total number of genes for
which a measure has been provided. The final number depends on the type of cancer. In addition,
the solutions present in this paper guarantee a maximal number of same-class similarities as well as
an optimal (maximum) dissimilarity for samples in different classes (to be explained in Section 4). 

In this paper, we also describe the use of reductions rules (also known as pre-processing rules)
that can considerably reduce the size of the instances. The application of those pre-processing rules
creates an instance which in many circumstances turns to be much smaller than the original
instance. These reductions are safe since at least one optimal solution exists in the reduced instance. 

We applied our approach using a dataset known as NCI60, which is available online and helps
for comparison purposes (Ross et al, 2000). This dataset contains the gene expression profile of
almost seven thousands genes on 60 different types of cancer cell lines and helps to illustrate the
advantage of using our mathematical programming approach. 

The same instance (NCI60) was used in Berretta et al (2005). However, in this contribution the
discretization of the expression values was done in a different way. In this paper we use an entropy
based method proposed by Fayyad and Irani (1993), which makes an independent analysis for each
gene. We note that Cotta et al (2004) proved that an associated thresholding problem is NP-hard and
in the same paper addressed it with an Evolutionary Algorithm. We have found that the application
of Fayyad and Irani’s method also provides good results and is a useful alternative. We report our
results using it in the identification of differentially expressed genes in Leukaemia, Melanoma, as
well as CNS, Colon and Renal cancer. 

2. MATHEMATICAL MODELS
2.1. Min FEATURE SET Problem
The Min FEATURE SET problem we consider in this paper is the following. Consider an integer
matrix G = gij, 1 ≤ i ≤ e, 1 ≤ j ≤ n, where e is the number of experiments/samples, n is the number
of features (genes) and gij represents the measured level of activity of gene j in experiment i.
Consider also a vector T = ti, where 1 ≤ i ≤ e and ti represents the class label that corresponds to
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experiment i. The objective is to find the minimum cardinality set of features (genes in our
application), denoted as S, such that for all pairs of experiments that belong to different classes,
there exists at least one feature (gene) that belongs to S, and such that the feature is in different
states. In other words, for all pairs of experiments (p,q), with tp ≠ tq, ∃j ∈S, such that gpj ≠ gqj. It is
then clear that we need that each feature can only be in a few repertoire of possible states, otherwise
any feature can easily become discriminative by the definition above (as it is in the case of multi-
digit integers accepted as input, which would render the model not very useful in practice).

We will first discuss the Boolean case, assume that the instance of our interest is the following
Boolean matrix G and the Boolean vector T below. In this case, the minimum feature set for this
instance is S = {F4, F5}.

F1 F2 F3 F4 F5

E1 1 0 0 0 1

E2 0 1 1 0 1

E3 1 0 0 0 0

E4 1 1 1 1 1

E5 0 1 0 1 1

G5x5

Class

0

0

1

1

1

T5

The k-FEATURE SET problem is NP-complete (Davies and Russel, 1994). In addition, Cotta
and Moscato (2003) showed that the parameterized version of the k-FEATURE SET problem (with
parameter k) is W[2]-Complete. In the optimization version, we are interested in finding a feature
set of minimum cardinality.

With the purpose of writing an integer programming model, first we define a matrix A = aij, 1 ≤
i ≤ m, 1 ≤ j ≤ n, where m is the number of pairs of examples that belong to different classes, n is the
number of features, and aij is 1 if gpj ≠ gqj or 0 if gpj = gqj, where tp ≠ tq. In other words, aij represents
whether the features types in the pair of examples that belong to different classes (p,q) are different
or not. Using the previous illustrative instance of the problem, the matrix A would be:

F1 F2 F3 F4 F5

E1,E3 0 0 0 0 1

E1,E4 0 1 1 1 0

E1,E5 1 1 0 1 0

E2,E3 1 1 1 0 1

E2,E4 1 0 0 1 0

E2,E5 0 0 1 1 0

The objective is to choose a minimum subset S of features (columns) which have at least one ‘1’
value in each line. That is, a minimum set of features corresponds to the minimum subset of
columns having ones that cover all pair of examples. Notice that the minimum feature set in the
example is S = {F4,F5}. An integer programming model for the Min FEATURE SET can be as
shown below, where the variable xj = 1 if the feature j is chosen; and 0, otherwise. 
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(1)

(2)

Note that the model (1-2) represents also the Min SET COVERING, a classical problem in
combinatorial optimization for which many techniques have been developed (Caprara, Toth and
Fischetti, 2000).

2.2. Reductions for Min FEATURE SET Problem
Reductions for Min FEATURE SET are rules that can be applied to an instance to try to eliminate,
a priori, some rows and columns from matrix A and, consequently, reduce the instance size. We
describe four reduction rules for the Min FEATURE SET problem below. These reductions rules are
the same for the Set Covering Problem and it is possible to find them in references about classical
Integer Programming texts such as Garfinkel and Nemhauser (1972).

2.2.1. Reduction R0
If aij = 0 for all j, then, the instance is infeasible, since the constraint (2) cannot be satisfied. In other
words, if no feature can distinguish a pair of examples that belong to different classes, then the
instance is infeasible.

2.2.2. Reduction R1
If aij = 0 for all j ≠ k and aik = 1, then xk = 1. In other words, if just one feature distinguishes a pair
of examples that belong to different classes, then this feature must be in any feasible cardinality
solution. In addition, all rows i such that aik = 1, can be deleted, since the feature k will cover these
rows. Finally, column k can be deleted.

In the example given, the feature F5 should be in the solution, since it is the only one that covers
the pair of examples (E1,E3). We can delete rows 1 and 4, since the pair of examples (E1,E3) and
(E2,E3) are covered by the inclusion of feature F5 in our solution. 

2.2.3. Reduction R2
A feature j covers a subset W if aij = 1 for all i ∈ W. If a feature j1 covers a subset W1 and j2 covers
a subset W2 and W2 ⊆ W1, then feature j2 is dominated by feature j1 and consequently, can be
deleted, i.e., xj2 = 0.

In the example above, after being updated with the result of reduction R1, the feature F4 covers
the set W4 = {(E1,E4), (E1,E5), (E2,E4), (E2,E5)}. The feature F3 covers the set W3 = {(E1,E4),
(E2,E5)}. Since, W3 ⊆ W4, F3 is redundant and can be deleted. Notice that, with the same rule we
can delete F1 and F2. Now, using the reduction rule R1, feature F4 is chosen and the instance is
solved to optimality (as the reduction rules are safe procedures that do not miss at least one optimal
solution of the original instance after they reduce it).

2.2.4. Reduction R3
Let  Q1 = { j / ai1j = 1 } and Q2 = { j / ai2j = 1}. If Q1 ⊆ Q2 then row i2 can be deleted. In other words,
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if a pair of examples i1 is covered by the set of features Q1 and a pair of examples i2 is covered by
the set of features Q2 and Q1 ⊆ Q2, we can delete the pair i2, since it will be covered by any of the
features chosen to cover the pair i1.

In the example, the pair of examples (E1,E3) is covered by Q1 = {F5} and the pair of examples
(E2,E3) is covered by Q2 = {F1,F2,F3,F5}. Since Q1 ⊆ Q2, the pair of examples (E2,E3) can be
deleted from matrix A. Notice that when we choose a feature to cover the pair (E1,E3) we inevitably
will cover the pair (E2,E3).

Although the Min FEATURE SET is an NP-hard optimization problem, the reduction rules can
be very useful in practice to reduce the instance size before we apply a method (either a polynomial-
time heuristic or an exact exponential time algorithm) to find one of the optimal solutions.

2.3. Min αα-ββ FEATURE SET Problem
A generalization of the Min FEATURE SET is the Min α−β FEATURE SET problem introduced
by Cotta et al (2004). This generalization could be very useful when the dataset is noisy and a larger
number of different discriminative features need to be considered for a more reliable classification. 

The problem is defined as follows. We have the same input as for Min Feature Set, i.e., matrix
G = gij, 1 ≤ i ≤ e, 1 ≤ j ≤ n, where e is the number of samples (experiments)  and n is the number of
features (genes) and a vector T = ti, where 1 ≤ i ≤ e and ti represents the class (outcome, type of
cancer) of the sample (experiment) i. In addition, the input also includes two integer values α ≥1
and ββ ≥ 0. The objective is again to find the minimum set of genes (features) S, but the two
conditions below also need to be satisfied. 

Condition 1: For all pairs of samples that belong to different classes, at least α features that belong
to S have different feature types. In other words, 

For all pairs (p,q) with tp ≠ tq,  

define S1(p,q) = {j ∈ S | gpj ≠ gqj}

So, |S1| ≥ α.

Condition 2: For all pairs of samples that belong to the same class, at least β features that belong
to S have identical feature types. In other words, 

For all pairs (p,q) with tp = tq,

define S2(p,q) = {j ∈ S | gpj = gqj}

So, |S2| ≥ β. 

To illustrate, consider the same matrix G defined previously. Observe that, if we have as input
the values α=1 and β=1, the Min α−β Feature Set cannot be S = {F4,F5}, since the examples E3
and E4, which belong to the same class are completely different for the features F4 and F5. For α=1
and β=1 the minimum cardinality (α=1, β=1)-feature set is S = {F1,F3,F5}.

For an integer programming formulation for this problem, we will define two matrices, A and
B. Matrix A will be the same defined before, that is, A = aij, 1 ≤ i ≤ m, 1 ≤ j ≤ n, where n is the
number of features, m is the number of pairs of examples that belong to different classes and aij is
1 if gpj ≠ gqj or 0 otherwise, where tp ≠ tq. Matrix B will be B = bij, 1 ≤ i ≤ m’, 1 ≤ j ≤ n, where n is
the number of features, m’ is the number of pairs of examples that belong to the same classes and
bij is 1 if gpj = gqj or 0 otherwise, where tp = tq. Using the previous example, the matrix B would be:
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The mathematical model can be written as:

F1 F2 F3 F4 F5

E1,E2 0 0 0 1 1

E3,E4 1 0 0 0 0

E3,E5 0 0 1 0 0

E4,E5 0 1 0 1 1

(3)

(4)

(5)

2.4. Reductions for Min αα−−ββ FEATURE SET
We define below reduction rules for Min α−β FEATURE as described before for Min FEATURE
SET Problem. Consider the following definitions:

The sets Qi
a and  Ql

b represent the features that can cover a pair of samples i and l, respectively,
from matrix A and B. Let  r i

a be an integer that represents the number of features that remain to cover
the pair the samples i from matrix A by α. Equivalently, rl

b represents the number of features that
remain to cover the pair the samples l from matrix B by β. At the beginning of the application of
the reduction rules  ri

a =α and rl
b =β.

2.4.1. Reduction R0
If | Qi

a | < ri
a , for at least one row i from matrix A, then the instance is infeasible, since the constraint

(4) cannot be satisfied. Analogously, if | Ql
b | <  rl

b , for at least one row l from matrix B, the instance
is infeasible, since constraint (5) cannot be satisfied. In other words, if at least there is one pair of
examples that belong to different classes that does not have at least ri

a features that have different
values for them, then the instance is infeasible (analogously for the within class similarity constraint).

2.4.2. Reduction R1
If | Qi

a | = ri
a for any pair of examples i, then xj = 1 for all j ∈ Qi

a. In other words, if a pair of examples
i is covered by exactly ri

a features, then all these features should be in any optimal solution. Next,
for all j ∈ Qi

a, it is necessary to update all ri
a /aij =1 and  rl

b /bij =1. Finally, we can delete all rows i
from A such that ri

a ≤ 0, all rows l from B such that  rl
b ≤ 0 and all columns j ∈ Qi

a .
Analogously, if | Ql

b | = rl
b, for any l, then  xj = 1 for all j ∈ Ql

b. In other words, if a pair of
examples is covered by exactly rl

b features, then all these features should be in the solution. Next,
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for all j ∈ Ql
b, it is necessary to update all  ri

a /aij =1 and  rl
b /bij =1. Finally, again, we can delete all

rows i from A such that  ri
a ≤ 0, all rows l from B such that  rl

b ≤ 0 and all columns j ∈ Ql
b.

Consider α=β=1 in the example. The feature F5 should be in the solution, since it is the only
one that covers the pair of examples (E1,E3) when we examine the matrix A. Also we can delete
rows 1 and 4 from matrix A, since the pair of examples (E1,E3) and (E2,E3) are covered by feature
F5 with α=1. 

In the matrix B we can delete the rows 1 and 4, since the feature F5 will cover the pair of
examples (E1,E2) and (E4,E5). We conclude that features F1 and F3 should be in the solution, since
only F1 covers the pair of examples (E3,E4) and only F3 covers the pair of examples (E3,E5). We
also can delete the rows 2, 3 and 6 from matrix A, since features F1 and F3 cover all pair of
examples that remain in the matrix A. Notice that we could reduce the entire instance and finish
with the solution {F1,F3,F5}.

2.4.3. Reduction R2
A feature j covers a subset Wα if aij = 1 for all i ∈ Wα. Respectively, a feature j covers a subset Wβ
if bij = 1 for all i ∈ Wβ. If a feature j1 covers a subset W1

α and  W1
β;  j2 covers a subset  W2

α and W2
β ;

W2
α ⊆ W1

α and  W2
β ⊆ W1

β; and for all i ∈ W2
α we have | Qi

a | >  ri
a and for all i ∈ W2

β we have 
| Qi

b | > rl
b ; then j2 is redundant and can be deleted. 

2.4.4. Reduction R3
If Qi

a
1 ⊆ Qi

a
2  and r i

a
1 ≥ r i

a
2 or Ql

b
1 ⊆ Qi

a
2 and r l

b
1 ≥ r i

a
2, then row i2 from matrix A can be deleted. In other

words, if a pair of examples i1 is covered by the set of features Qi
a

1; a pair of examples i2 is covered
by the set of features Qi

a
2  and Qi

a
1 ⊆ Qi

a
2 ; then the pair of samples i2 can be deleted, if the number of

features that remain to cover the pair the samples i1 is greater than the number of features that
remain to cover the pair the samples i2 ( r i

a
1 ≥ r i

a
2 ). Equivalent interpretation can be done if Ql

b
1 ⊆

Qi
a

2 and r l
b

1 ≥ r i
a

2 . Analogously, if Ql
b

1 ⊆ Ql
b

2 and r l
b

1 ≥ r l
b

2  or  Qi
a

1 ⊆ Ql
b

2 and r i
a

1 ≥ r l
b

2  then row l2
from matrix B can be deleted. 

2.5. Max Cover αα−−ββ k-FEATURE SET
We will introduce another mathematical model by fixing the number of features in a value k and the
objective is to find a set of k features that maximize the coverage. The coverage represents the
number of pair of examples that belong to different classes (matrix A) plus the number of pair of
examples that belong to the same class (matrix B) that the set of features cover, including
repetitions. The coverage of a feature j is:

The mathematical model is described below.

(6)

(7)
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(8)

(9)

This model can be useful, for example, when an instance has more than one optimal solution for
the model (3-5). In this case we may be interested to select, among all such solutions, the one that
covers the largest number of pairs of examples. 

3. COMPUTATIONAL EXPERIMENTS AND RESULTS 
We now discuss the application of the models presented before in a well known instance described
in Section 3.1. Sections 3.2 and 3.3 describe the experiments and results obtained, respectively. 

3.1. The instance NCI60
Ross et al (2000) introduced an important dataset for the molecular classification of different types
of cancer (available on the authors’ website supplement) containing the expression level in 64 cell
lines of 6,831 of 60 different types of cancer. Using a hierarchical clustering algorithm, Ross et al
(2000) have identified several groups of genes that correspond to the labels of the cell lines. Two
groups, namely “Leukaemia Cluster” and “Melanoma Cluster”, for example, have been visually
identified as a highly-expressed group of genes in the leukaemia-derived and in most of the
melanoma-derived cell lines. However, it is very difficult to identify from their results, an analogous
group of genes that is highly under-expressed within the same type of cancer samples and also
discriminates from the other types of cell lines. 

Waddell and Kishino (2000) argued that such a dataset, even if excellent in technical terms, may
be of low information content. They noted that Ross et al (2000) did not emphasise on the impact
of mutation on cell lines upon their analysis; it is then possible that the expression profiles,
conditioned to the mutation status of a group of “key player” genes, would be an important missing
part of the study. It is then necessary to identify which are the subsets of genes that can “explain”
commonalities and differences between any given group and the rest. In addition, there are two
other reasons motivating our experiments: first, to allow a direct comparison with the results of
Ross et al (2000) (which were biased to obtain over-expressed genes), and to provide genetic
signatures for Colon, Renal and Central Nervous Systems tumours. 

3.2. Computational Experiments
First, we completed all missing values for the NCI60 dataset using the LSImpute_EMarray
algorithm introduced by Bø, Dysvik and Jonassen (2004). Our choice was based on its relatively
low running time and good performance on the NCI60 dataset as independently verified by the
original authors. For the estimation of the missing values we have used the set of 64 cell lines and
6,831 genes. After the missing values have been completed we worked with a reduced instance
containing just the 34 samples from the five main types of cancer, namely CNS (5 samples), Renal
(7 samples), Leukaemia (8 samples), Colon (7 samples) and Melanoma (7 samples), totalling 34 cell
lines. The Leukaemia, Renal and Colon cell lines chosen are the same evidenced in Ross et al
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(2000). For the Melanoma group, they included two breast cancer cell lines (MDA-MB435 and
MDA-N). We removed them from this group for our study, and kept the original seven melanoma
cell lines. Finally, we also selected five CNS cell lines. In Ross et al (2000) the authors did not
consider the CNS cell lines as a separate group due to their results using an unsupervised
hierarchical clustering heuristic method. The five groups and their associated cell lines are
described in Figure 1 (top-left). This figure is also available in colour, along with other
supplementary material at http://www.cs.newcastle.edu.au/~nbi/JRPIT/JRPIT_nci60sup.html.

Next, the gene expression values, which extend over a large interval (between -5.6 and 8.0) need
to be quantized in a few states, to use the mathematical model described in Section 2.3. In Berretta
et al (2005), we use information on the average and the standard deviation of the gene expression
values over all genes and samples to create the discretization. As gene expression values can vary
over different intervals for each gene, genes for which the expression values lie within a sufficiently
small interval may be considered not relevant as discriminators, whereas they would if the
discretization thresholds were gene-specific.  

We applied an entropy-based heuristic introduced by Fayyad and Irani (1993) to create binary
states for each gene (indicating over or under expression over a given value). The procedure used
to discretize the gene expression values is described next.

In our application, assigning a threshold T for the gene expression values of gene g, induces a
partition of the set of samples S in two subsets S1 and S2. If we have been also given as input for
each sample one of two possible class labels, either C1 or C2, we can compute P(Ci,Sj) the
proportion of samples from class Ci in Sj. The class information entropy of the partition induced by
T for gene g, denoted E(g,T;,S), is given by:

(10)

where Ent(Sj) is the class entropy of a subset Sj defined as:

(11)

A binary discretization for g is determined by selecting the cut point T for which E(g,T;S) is
minimal amongst all the possible cut points. The resulting information gain is given by:

(12)

The Minimal Description Length Principle is used to check whether the information gain
suffices to characterize the gene g as being discriminative for the two classes of cell lines. Thus, the
gene is considered to be discriminative if:

(13)

where N is the number of expression values in the set S (34 in our tests), and:

(14)

where c is the number of class labels, and ci is the number of class labels represented in the set Si.
In this paper, we will only provide genetic signatures with genes for which the algorithm above has
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assigned a unique threshold. We have chosen to do this for illustrative purposes only, as in these
cases an individual gene will tend to be in two clearly identifiable different states. 

To find a genetic signature associated to one of the groups, for instance the Melanoma cell lines,
our two classes will be ‘Melanoma’ and ‘all-others’, where ‘all others’ in this case correspond to
the other four remaining groups (CNS, Renal, Leukaemia and Colon) bundled as a single group
(‘non-Melanoma’). By repeating the same procedure with the five groups, we could uncover sets of
genes that are differentially expressed in each of the groups, in comparison with the others. Using
the entropy based method described above, we first remove the genes which are a priori not
discriminative. In this paper, from the 6,831 genes in the dataset, those that did not receive a unique
threshold were discarded from the instance. The genes that have not been filtered out, now
discretized in only two states, constitute an instance of the α−β FEATURE SET problem (where the
maximum attainable value of α is different in each case). The number of genes that remain after the
entropy-based filtering took place were 460 for CNS, 842 for Renal, 1,614 for Leukaemia, 735 for
Colon and 990 for Melanoma. Any gene that has an expression level above that threshold value will
be considered as “over-expressed” (for that sample, analogously we define “under-expressed”). We
then calculate, for each of the instances, the maximum value of α that could be obtained by a
feasible α−β feature set. These values were 283 for CNS, 431 for Renal, 767 for Leukaemia, 338
for Colon, and 605 for Melanoma. This means, for example, that we know that for every pair of cell
lines, with one belonging to any of the seven Renal cell lines and the other belonging to anyone of
the other “non-Renal’’ group, we have at least 431 genes for which in one sample the gene is “over-
expressed” and in the other sample it is “under-expressed”. 

We then find, for each of the instances, the size of the minimum cardinality α−β feature set, with
β=0 and with α being fixed to the maximum a priori value which is possible for that instance. We
have solved each of these problems to optimality using CPLEX (a mathematical programming
software package). We found that there exists: an (α,β)=(283,0) feature set (with an optimal number
of k=402 genes) for CNS; an (α,β)=(431,0) feature set with k=663 genes for Renal; (α,β)=(767,0)
feature set with k=1175 genes for Leukaemia; an (α,β)=(338,0) feature set with k=497 for Colon;
and an (α,β)=(605,0) feature set with k=850 for Melanoma. 

Finally, we aim to try to find the maximal β achievable by a Max Cover α−β FEATURE SET
(with α fixed to the previously obtained maximum a priori values), for each of the optimal
cardinalities obtained in the previous step. We have solved each of this Max Cover α−β FEATURE
SET problems to optimality so we found that there exists: an optimal Max Cover (α,β)=(283,264)
feature set (with a number of k=402 genes) for CNS; an optimal Max Cover (α,β)=(431,363) feature
set with k=663 genes for Renal; an optimal Max Cover (α,β)=(767,703) feature set with k=1175
genes for Leukaemia; an optimal Max Cover (α,β)=(338,283) feature set with k=497 for Colon; and
an optimal Max Cover (α,β)=(605,610) feature set with k=850 for Melanoma.

3.3. Computational Results
The solutions are shown in Figure 1 (a-e) generated using the gene ordering algorithm of Moscato
et al (2005a). It is clear that our method has uncovered not only a significantly larger number of
genes that are differentially over-expressed, but more significant number of under-expressed genes
in each group. The existence of those under-expressed genes is not cited in Ross et al (2000), even
though they can certainly contribute to understand the pathways involved in the disease. These
images also illustrate another source of useful information that is obtained by good orderings of the
genes identified. For instance in Figure 1d, a large number of genes is differentially under-expressed
in Leukaemia and Colon (see the lower half of the figure) yet markedly over-expressed in the other
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Figure 1: Genes consistently over-expressed/under-expressed in cell lines from five different types of cancer present
in the NCI60 instance. They are: (a) Central Nervous System (CNS) – 402 genes; (b) Renal – 663 genes; 

(c) Leukaemia – 1,175 genes; (d) Colon – 497 genes; and (e) Melanoma – 850 genes. The cell lines that compose
each group of samples are seen at the top-left diagram. Please refer to the supplementary material

(http://www.cs.newcastle.edu.au/~nbi/JRPIT/JRPIT_nci60sup.html) for the colour version of the images 
and the complete list of genes.

JRPIT 39.4.QXP  14/9/07  10:11 AM  Page 297



Selection of Discriminative Genes in Microarray Experiments Using Mathematical Programming

Journal of Research and Practice in Information Technology, Vol. 39, No. 4, November 2007298

cell lines. These expression similarities between different types of cell lines can also help
understand the diseases and how they operate.

4. CONCLUSION
We have presented integer programming models and algorithms that have shown to be very useful
to address the molecular classification of cancer from microarray data. The methodology is
completely general and can have a much broader application (Moscato et al, 2005b). Our
contribution also highlights the importance of safe data reduction methods that keep optimal
solutions and maintain the relevant information in the dataset. Although the problem is NP-hard, for
these instances the total computational time required to run each of the experiments was always
below one second, in an Intel Xeon 1.8 GHz computer with 3Gb of RAM. 

The results indicate that the method allows a good balance of discrimination between classes
while keeping within-class consistency. This allows Life Science researchers to uncover a larger
number of genetic pathways that could lead, in turn, to a broader picture of differential genetic
regulation mechanisms. That is an indicative of the relevance and flexibility of the method, which
would help to uncover yet unknown mechanisms that link genes, their products, and diseases.
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