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Abstract

By the extremal number ex(v; {C3, C4, . . . , Cn}) we denote the maximum number of edges

in a graph of order v and girth at least g ≥ n + 1. The set of such graphs is denoted by

EX(v; {C3, C4, . . . , Cn}). In 1975, Erdős mentioned the problem of determining extremal num-

bers ex(v; {C3, C4}) in a graph of order v and girth at least 5. In this paper, we consider a

generalized version of the problem for any value of girth by using the hybrid simulated annealing

and genetic algorithm (HSAGA). Using this algorithm, some new results for n ≥ 5 have been

obtained. In particular, we generate some graphs of girth 6, 7 and 8 which in some cases have

more edges than corresponding cages. Furthermore, future work will be described regarding

the investigation of structural properties of such extremal graphs and the implementation of

HSAGA using parallel computing.
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1 Definitions

Throughout this paper, only undirected simple graphs without loops or multiple edges are consid-

ered. Unless otherwise stated, we follow [12] for terminology and definitions.

The vertex set (respectively, edge set) of a graph G is denoted by V (G) (respectively, E(G)). The

set of vertices adjacent to a vertex v is denoted by N(v). The degree of a vertex v is deg(v) = |N(v)|,
and a graph is called k-regular when all the vertices have the same degree k. We denote by δ(G)

the minimum degree in G and by ∆(G) the maximum degree of G. The distance d(u, v) of two

vertices u and v in V (G) is the length of a shortest path between u and v. We also use the notion

of a distance between a vertex v and a set of vertices X, written d(v, X), which is the distance from

v to a closest vertex in X.

The length of a shortest cycle in a graph G is called the girth and denoted by g = g(G). A

k-regular graph with girth g is called a (k, g)-graph. A (k, g)-graph is called a (k, g)-cage if it has

the least possible number of vertices.

By ex(v; {C3, C4, . . . , Cn}) we denote the maximum number of edges in a graph of order v and

girth at least g ≥ n+1, and by EX(v; {C3, C4, C5, . . . , Cn}) we denote the set of all graphs of order

v, girth at least n + 1, having number of edges equal to ex(v; {C3, C4, C5, . . . , Cn}).

2 Introduction

For a graph, let C(G) denote the set of integers whose elements are lengths of cycles in G. Inves-

tigating the properties of graphs that guarantee the existence of given cycle length has received

much attention by many authors. For example, the results obtained by Bondy [10] show that, for a

graph G with v vertices, if the minimum degree of G is larger than v/2, then the graph is pancyclic

which means C(G) = {3, 4, . . . , v}. However, if the minimum degree of a graph is not more than

v/2, then we cannot guarantee any odd cycles, as the graph may be bipartite. Subsequent research

went on to investigate the problem for particular range of the cycle length. For example, when

does C(G) contain all even integers up to the longest even cycle of G? Bollobás and Thomason

[9] showed that when G has order v and size at least bv2/4c − v + 59, then C(G) contains all even

integers up to 2l, where 2l is the length of a longest even cycle of G. Other interesting results are
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due to Gould, Haxell and Scott [19], who proved that if a graph G with v vertices has minimum

degree at least cv, where c > 0 is a constant, then G contains all even integers up to 2l−k for some

constant k, depending only on c. Many other ranges of cycle lengths have been considered and

concepts such as weakly pancyclic graph, acyclic graph etc. have been introduced and extensively

studied.

In 1975, Erdős [14] mentioned the problem of determining the values of ex(v; {C3, C4}), the

maximum number of edges in a graph of order v with girth at least 5. He also conjectured that

ex(v; {C3, C4}) = (1/2 + o(1))3/2v3/2. Until now, the current best known result [18] regarding this

problem is
1

2
√

2
≤ lim sup

v→∞
ex(v; {C3, C4})

v3/2
≤ 1

2
.

It is known that ex(v;C3) = bv2/4c, and the extremal graph is Kbv/2c,dv/2e, and the exact value of

ex(v; C4) = (1/2 + o(1))v3/2 [11, 13] for some specific v. Füredi et al. [17] determined the current

best known bounds for ex(v;C6).

0.5338v4/3 ≤ ex(v; C6) ≤ 0.627v4/3 + O(v7/6).

It is known (see page 158 of the book by Bollobas [8]) that if e > 90kv1+1/k then the graph

contains a cycle of length 2k. Therefore, ex(v; {C3, C4, . . . , C2k}) ≤ 90kv1+1/k. A result proved

implicity by Erdős [24] gives the lower bound ex(v; {C3, C4, . . . , Cn}) ≥ cnv1+1/(n−1), for some

positive constant cn. Lazebnik et al. [23] improved this lower bound constructing a family of

graphs which shows that for an infinite sequence of values of v the extremal number is lower

bounded, ex(v; {C3, C4, . . . , C2s+1}) ≥ dsv
1+2/(3s−3+ε), where ε = 0 if s ≥ 3 is odd and ε = 1 if

s ≥ 2 is even. To our knowledge, this is the best asymptotic lower bound, for the greatest number

of edges in graphs of order v and girth g at least g ≥ 5, g 6= 11, 12. For g = 11, 12, a better bound

is given by the regular generalized hexagon.

Regarding structural properties of extremal graphs, some theorems, which are summarised

below, have been obtained by several authors.

Theorem 1 Let G ∈ EX(v; {C3, C4, . . . , Cn}), n ≥ 3 and v ≥ n + 1. Then

(i) [22] There exists an extremal graph G of girth n+1; and if v 6= n+2, there exists an extremal

graph G with minimum degree δ ≥ 2 and girth n + 1.
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(ii) [2, 18, 21] For v ≥ 5, the girth of G ∈ EX(v; {C3}) is 4 and, for v ≥ 9, the girth of

G ∈ EX(v; {C3, C4}) is 5.

(iii) [2, 22] For v ≥ 8, the girth of G ∈ EX(v; {C3, C4, C5}) is 6.

(iv) [1] For v ≥ 12, v 6∈ {15, 30, 80, 170}, the girth of G ∈ EX(v; {C3, C4, C5, C6}) is 7, and there

exists an extremal graph G of 15 vertices having girth 8.

(v) [22] For n ≥ 12, ex(2n + 2; {C3, C4, . . . , Cn}) = 2n + 4, and there exists an extremal graph G

with g(G) = n + 2.

(vi) [1] The diameter of an extremal graph G is D(G) ≤ n− 1.

(vii) [22] If ∆(G) ≥ n then the girth of G is g(G) = n + 1.

(viii) [2] If ∆(G) ≥ d(n + 1)/2e and δ(G) ≥ 2 then the girth of G is g(G) ≤ n + 2.

(ix) [2] For n ≥ 7 and v ≥
(
2(n− 2)n−2 + n− 5

)
/(n− 3) + 1, the girth of G is g(G) = n + 1.

(x) [2] Let t = d(n + 1)/2e. For n ≥ 7 and v ≥
(
2(t− 2)n−2 + t− 5

)
/(t− 3) + 1, the girth of G

is g(G) ≤ n + 2.

The same kind of structural properties as contained in points (vi) − (x) of the above theorem

for bipartite graphs are stated in [4].

By applying Erdős’ deletion method on a random graph, it is easy to see that a graph with v

vertices and average degree q must have girth at least logq−1v. This result implies that the maximum

degree is larger than v1/q +1. On the other hand, not much is known about the minimum degree of

a random graph. We know that, for particular values of girth and order, there do exist some graphs

with largest number of edges and minimum degree 1, for example, graphs on 11 vertices have degree

sequences {11, 39, 41}, {21, 310} or {22, 38, 41}. However, in general, it is believed that the degrees

are distributed as evenly as possible [26]. This observation relates the problem of constructing

extremal graphs of the family EX(v; {C3, C4, C5, . . . , Cn}) to the problem of constructing cages.

However, as pointed out in many papers, these two classes of graphs are not the same. For example,

for the graph with 30 vertices, the Wegner graph is the (5,5)-cage and the known extremal graph

in EX(v; {C3, C4}) has 76 edges instead of 75 as in Wegner graph. The degree sequence of this

extremal graph is {44, 520, 66} [26].
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3 Experimental Data

In [21] Garnic et al. developed algorithms which combined hill-climbing and backtracking tech-

niques to generate graphs with order up to 201 for ex(v; {C3, C4}), and Wang et al. [26] used

simulated annealing to generate graphs for several values of v and n; these results resulted in

improvements to lower bounds for ex(v; {C3, C4}).

3.1 Hybrid Simulated Annealing and Genetic Algorithm

We have developed an optimization algorithm method [25]: the Hybrid Simulated Annealing and

Genetic Algorithm (HSAGA). The general idea of HSAGA is that an initial graph is created at

the beginning, and used as the initial graph input into Simulated Annealing, denoted by SA. If

the iteration reaches the maximum generation of attempted moves at the last step of reaching the

Maximum frozen, then SA will terminate and the current population will be transferred to the

Genetic Algorithms, called GA. Otherwise, a candidate solution will be obtained and be saved into

the population. Furthermore, the set of elite individuals of the population is chosen by a selection

procedure of GA according to their evaluation fitness values, following genetic operations consisting

of crossover and mutation. The basic processes of HSAGA are shown in Figure 1, and the details

of each process are described below.

(a) Input parameters into our program, such as the number of vertices, required free cycles, as

well as cooling rate, which controls the decreasing of temperature, and population size, that

is, the number of chromosomes, and so on.

(b) Create an initial base graph in terms of given number of vertices without any edges. Every

graph is represented by an adjacency matrix.

(c) Put the current graph into the method called SA. During its processing, SA will execute

moves to improve the current graph. We have a stopping condition whether or not the

iteration reaches the maximum generation of attempted moves at the last step of reaching

the maximum frozen, which is the maximum number of consecutive iterations allowed for

frozen, normally, the initial value of the frozen starts from 0. If yes, then the process will

stop and go to Step d. Otherwise, it will create a chromosome, based on its fitness value,

which is represented by the number of edges of the current generated graph, then store each
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Figure 1: A basic structure of HSAGA.
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chromosome into the population. If we fix the population size as 200, HSAGA will obtain a

population of the first 200 best chromosomes, based on their fitness values.

(d) Input the current population into GA functions consisting of crossover, mutation and selec-

tion, in order to obtain an improved solution. After a new population is created, we determine

whether the iteration reaches the maximum generation or not. The maximum generation to

run the GA optimizer is set as the number of vertices times the size of the current popula-

tion. If yes, our whole algorithm terminates. Otherwise, GA needs to check the following

operations: If the number of counter, which is a parameter for calculating how many times

when the best individual in the currently evolved population is not updated consecutively,

reaches 50, then 50% of the individuals located at the bottom of the current population will

be replaced with individuals newly generated at random. Additionally, the two individuals

with the highest fitness value in the new population are passed on to the next generation

without being altered by genetic operations.

3.2 Output Results

Each result provided by HSAGA consists of three parts, namely, the maximum number of edges,

the adjacency list and the degree sequence; see an example of output in Figure 2. Tables 1,

2 and 3 give the newly found lower bounds for ex(v; {C3, C4, C5}), ex(v; {C3, C4, C5, C6}) and

ex(v; {C3, C4, C5, C6, C7}) for v ≤ 39, denoted by e. They also give the degree sequence D
of the corresponding generated extremal graphs. Thus, in Table 1 the girth of a graph G ∈
EX(v; {C3, C4, C5}) obtained by our program is 6, for v ≥ 8, as Theorem 1 (iii) claims. In Table

2, the girth of the corresponding graphs is 7. Moreover, HSAGA gives a graph of v = 30 vertices,

degree sequence D = {326, 44}, size e = 47 having girth 7 (see Figure 3). Then a question asked

in [2] as to whether the (3, 8)-cage does or does not belong to EX(30; {C3, C4, C5, C6}) is solved

(negatively) in the following theorem.
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Figure 2: An adjacency list of a graph of v = 30, g = 7 and e = 47.

Figure 3: A graph of v = 30, g = 7 and e = 47.

8



N. of 0 10 20 30
vertices

0 \ e = 12 e = 34 e = 61
D = {26, 34} D = {312, 48} D = {32, 424, 54}

1 \ e = 14 e = 36 e = 63
D = {25, 36} D = {21, 310, 410} D = {33, 423, 55}

2 \ e = 16 e = 39 e = 67
D = {24, 38} D = {310, 412} D = {426, 56}

3 \ e = 18 e = 42 e = 69
D = {23, 310} D = {38, 415} D = {33, 421, 59}

4 \ e = 21 e = 45 e = 73
D = {314} D = {36, 418} D = {33, 418, 513}

5 \ e = 22 e = 48 e = 74
D = {21, 314} D = {34, 421} D = {33, 421, 511}

6 e = 6 e = 24 e = 52 e = 76
D = {26} D = {316} D = {426} D = {21, 32, 423, 58, 62}

7 e = 7 e = 26 e = 53 e = 82
D = {11, 25, 31} D = {22, 312, 43} D = {21, 31, 424, 51} D = {31, 419, 517}

8 e = 9 e = 29 e = 55 e = 85
D = {26, 32} D = {314, 44} D = {21, 32, 423, 52} D = {21, 31, 416, 519, 61}

9 e = 10 e = 31 e = 57 e = 89
D = {27, 32} D = {21, 312, 46} D = {35, 421, 53} D = {31, 415, 523}

Table 1: The current lower bounds for ex(v; {C3, C4, C5}) for v ≤ 39.

N. of 0 10 20 30
vertices

0 \ e = 11 e = 27 e = 47
D = {28, 32} D = {26, 314} D = {326, 44}

1 \ e = 12 e = 29 e = 48
D = {11, 27, 33} D = {25, 316} D = {22, 324, 45}

2 \ e = 14 e = 31 e = 50
D = {28, 34} D = {24, 318} D = {22, 324, 46}

3 \ e = 15 e = 33 e = 52
D = {11, 27, 35} D = {23, 320} D = {22, 324, 47}

4 \ e = 17 e = 36 e = 54
D = {28, 36} D = {324} D = {328, 46}

5 \ e = 18 e = 37 e = 55
D = {210, 34, 41} D = {21, 324} D = {21, 328, 46}

6 \ e = 20 e = 38 e = 58
D = {28, 38} D = {25, 318, 43} D = {24, 328, 44}

7 e = 7 e = 22 e = 41 e = 60
D = {27} D = {27, 310} D = {21, 31, 424, 51} D = {23, 330, 44}

8 e = 8 e = 23 e = 43 e = 62
D = {28} D = {29, 38, 41} D = {21, 32, 423, 52} D = {23, 330, 45}

9 e = 9 e = 25 e = 44 e = 63
D = {11, 27, 31} D = {27, 312} D = {35, 421, 53} D = {25, 328, 46}

Table 2: The current lower bounds for ex(v; {C3, C4, C5, C6}) for v ≤ 39.
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N. of 0 10 20 30
vertices

0 \ e = 10 e = 25 e = 45
D = {12, 26, 32} D = {210, 310} D = {330}

1 \ e = 12 e = 27 e = 46
D = {29, 32} D = {29, 312} D = {21, 330}

2 \ e = 13 e = 29 e = 47
D = {210, 32} D = {28, 314} D = {22, 330}

3 \ e = 14 e = 30 e = 49
D = {11, 29, 33} D = {11, 27, 315} D = {23, 328, 42}

4 \ e = 16 e = 32 e = 51
D = {210, 34} D = {28, 316} D = {23, 328, 43}

5 \ e = 18 e = 34 e = 52
D = {29, 36} D = {27, 318} D = {24, 328, 43}

6 \ e = 19 e = 36 e = 54
D = {11, 28, 37} D = {26, 320} D = {23, 323, 49, 51}

7 \ e = 20 e = 38 e = 56
D = {11, 29, 37} D = {25, 322} D = {21, 326, 410}

8 e = 8 e = 22 e = 40 e = 58
D = {28} D = {210, 38} D = {24, 324} D = {21, 326, 411}

9 e = 9 e = 24 e = 42 e = 59
D = {11, 27, 31} D = {29, 310} D = {23, 326} D = {22, 326, 411}

Table 3: The current lower bounds for ex(v; {C3, C4, C5, C6, C7}) for v ≤ 39.

Theorem 2 ex(30; {C3, C4, C5, C6}) ≥ 47 and the (3, 8)-cage does not belong to EX(30; {C3, C4, C5, C6}).

From Theorem 1 (iv) and Theorem 2 the following corollary is immediate.

Corollary 1 For v ≥ 12, v 6∈ {15, 80, 170}, the girth of G ∈ EX(v; {C3, C4, C5, C6}) is 7, and

there exists an extremal graph G of 15 vertices and 18 edges having girth 8.

Some of the obtained extremal graphs are cages. For instance, in Table 1, if v = 14, the graph

is the (3, 6)-cage, and if v = 26, the graph is the (4, 6)-cage. Furthermore, in Table 2, if v = 24,

the graph is the (3, 7)-cage, and in Table 3, if v = 30, the graph is the (3, 8)-cage. Further, these

extremal graphs are not unique. This shows that the computed lower bounds by using HSAGA are

reasonable.

After we produced good results for extremal graphs with small girth, we also ran the program

for large girths. For example, it is known that for n ≥ 12, ex(n+2; {C3, C4, . . . , Cn}) = 2n+4, and

there exist G ∈ EX(v; {C3, C4, . . . , Cn}) with g(G) = n + 2 (see Theorem 1(v)). Wang et al. [26]

used pure simulated annealling to generate an optimal solution in the above case for n ≥ 15 and
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g(G) ≥ n + 1. By running our HSAGA, we also generate optimal solutions for n ≥ 12, v = n + 2

and g(G) = n + 2.

Not only does our algorithm produce reasonably good solutions, but furthermore, HSAGA

seems robust with the selection of values for the parameters, such as cooling rate and crossover

rate. In either simulated annealling or genetic algorithm, a change in these parameters will affect

the results of the program. However, it seems that our algorithm is more tolerant of changes in

the values of parameters, in other words, the results are not affected too much if parameters are

modified slightly.

From our experiments, we did find some graphs with degree 1, but also some graphs with

degrees distributed in small ranges. Again, this is consistent with our belief that for given order

and girth, there exist some graphs with largest number of edges and “evenly” distributed degrees.

4 Connectivity of Extremal Graphs

Recall that a graph G is called connected if every pair of vertices is joined by a path; that is, the

diameter D = D(G) < ∞. If S ⊂ V and G− S is not connected, then S is said to be a cut set. A

(noncomplete) connected graph is called k-connected if every cut set has cardinality at least k. The

connectivity κ = κ(G) of a (noncomplete) connected graph G is defined as the maximum integer k

such that G is k-connected. The connectivity of a complete graph Kδ+1 on δ +1 vertices is defined

as κ(Kδ+1) = δ. The edge-connectivity λ = λ(G) of a graph G is defined analogously. A classical

result, due to Whitney, is that κ ≤ λ ≤ δ, for every graph G of minimum degree δ = δ(G). A graph

is maximally connected if κ = δ, and maximally edge-connected if λ = δ. Sufficient conditions

for a graph G of minimum degree δ to be maximally connected have been given in terms of its

diameter and its girth. In this regard, the following result is contained in [16, 20]:

κ = δ if D ≤ 2b(g − 1)/2c − 1. (1)

The restricted edge connectivity was proposed by Esfahanian and Hakimi [15] who denoted it

by λ′(G). For a connected graph G, the restricted edge connectivity is defined as the minimum

cardinality of a set W of edges such that G−W is not connected and W does not contain the set

of incident edges of any vertex of the graph, then G −W does not contain isolated vertices. The

restricted edge connectivity has been studied under the name of super edge connectivity. This is a
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stronger measure of connectivity than the standard edge connectivity, and was proposed by Boesch

[6] and Boesch and Tindell [7]. A graph is super edge connected, or super-λ, if every minimum

edge cut consists of a set of edges incident with one vertex. See [6, 7] for more details. A graph

G is maximally edge connected if λ(G) = δ(G). Clearly, λ′(G) > δ(G) is a sufficient and necessary

condition for G to be super edge connected.

It was shown [15] that λ′(G) exists if G is not a star and its order is at least 4, and λ′(G) ≤ ξ(G),

where ξ = ξ(G) denotes the minimum edge-degree of G, defined as ξ(G) = min{(d(u) + d(v) − 2 :

uv ∈ E(G)}. The following result was proved in [3].

λ′ = ξ if D ≤ g − 2. (2)

Applying these results to extremal graphs, we obtain the following result.

Corollary 2 Every graph G ∈ EX (ν; {C3, . . . , Cn}) has λ′ = ξ. Furthermore, if n is even then

κ = δ.

Proof By Theorem 1(vi), the diameter is D ≤ n− 1 ≤ g − 2, because g ≥ n + 1. Therefore, from

(2) it follows that λ′ = ξ. Moreover, either n− 1 = g − 2 which means g is odd because n is even

and hence κ = δ by (1), or n− 1 ≤ g− 3 and D ≤ n− 1 ≤ g− 3 ≤ 2b(g− 1)/2c− 1, yielding κ = δ,

again by (1).

5 Future Work

In order to improve its efficiency, we shall next modify our HSAGA for parallel computation.

Additionally, we have proved that every G ∈ EX(v; {C3, C4, . . . , Cn}) is maximally connected for

all even n. Now we propose

Conjecture 1 Every G ∈ EX(v; {C3, C4, . . . , Cn}) has κ = δ for all odd n.
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