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Abstract 

The paper presents a new method based on rigorous principles of mechanics, for determining the 
in-situ rock stress state based on hydraulic fracturing data. A solution can be obtained from a 
single data set which includes breakdown pressure, fracture angular position and trace angle. The 
inversion methodology is demonstrated on a case history from the Kuparuk River field, Alaska as 
reported by Pearson et al. (1992), and shown to give good agreement with observed field data. 
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Introduction 

Hydraulic fracturing is the best-known method of assessing the state of in situ stress at great 
depths. The technique originated in the 1940s as an oilfield stimulation technique designed to 
intensify production by fracturing a segment of a wellbore through pressurization; the fracture 
was then extended by additional pumping and maintained open (or propped) by injecting solid 
particles such as sand grains or glass beads. Following the great success of hydraulic fracturing as 
a stimulation technique, attempts were made to understand the mechanisms behind it. The most 
important effort in the interpretation of hydraulic fracturing mechanism was made by Hubbert 
and Willis (1957) who used the theory of elasticity to reach the conclusion that the direction of 
the induced hydraulic fracture and the pressures recorded during borehole pressurization are 
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directly related to the principal in situ stresses. Fairhurst (1964) was among the first to advocate 
the use of hydraulic fracturing for in situ stress determination. Haimson and Fairhurst (1967) 
extended Biot’s theory of poro-elasticity to include both nonpenetrating and penetrating injection 
fluid cases. Hydraulic fracturing has now become one of the key methods for in-situ rock stress 
estimation as suggested by the International Society for Rock Mechanics (ISRM) (Haimson and 
Cornet 2003).  A detailed history of the method and a thorough description of the equipment, 
setup, test data interpretation and in situ stress derivation are presented by Haimson (1993). 

Although hydraulic fracturing is commonly conducted in vertical holes, testing of inclined or 
deviated wellbores is often required. For example, in the petroleum industry inclined holes are 
increasingly used for added efficiency in production. In geotechnical site investigations 
exploratory inclined holes are often drilled in order to intersect vertical joint sets which could be 
missed by vertical holes. Additionally, rock properties or drilling difficulties may cause 
unintended deviated holes.  

A technique for inverting results from a minimum of two leak-off tests at different well 
inclinations and azimuths was presented by Aadnøy (1990a, 1990b). This method gives an 
estimate of both horizontal stress magnitudes and directions. However, the published technique 
suffers from the assumption that shear stresses are neglected. Gjønnes et al. (1998) present results 
based on a model which also includes the shear stresses. Djurhuus and AadnØy (2003) presens a 
theory for determining the in situ stress state from multiple fracturing data and induced fractures 
from image logs. A solution can be obtained with a minimum of two data sets. However, using an 
inversion technique, a solution can be obtained with any number of data sets, as the solution is 
over determined.  

A fundamental understanding of fracture initiation in arbitrarily inclined wellbores under various 
in situ initial stress conditions is essential for the efficient and effective design of hydraulic 
fracture systems. The basic equations describing the stress distribution around a horizontal, 
vertical and inclined wellbore may be derived from the solutions developed by Kirsch (1898), 
Fairhurst (1968) and Bradley (1979) respectively. It is general believed that a fracture initiates 
when the maximum tensile stress induced at any point around the wellbore exceeds the tensile 
strength of the formation at that point. When this occurs, the resulting fracture on the wellbore 
wall will have an orientation that is perpendicular to the direction of the most tensile principal 
stress.  The angle between the wellbore generatrix and the fracture orientation on the wellbore 
wall is called the trace angle (e.g., Daneshy 1971, Kuriyagawa et al., 1989, Peška and Zoback 
1995, AadnØy and Bell 1998) which can be observed by high-resolution electrical imaging 
technologies (e.g., Barton et al., 1997). Some previous attempts have been made to use the 
fracture trace angle to determine in situ stresses (e.g. Peška and Zoback 1995, Djurhuus and 
Aadnøy 2003). This paper presents a new method for determining the in situ stress state from 
hydraulic fracturing data. It is shown that an analytical solution can be obtained when fracture 
trace angle is available. Later in the paper, this new method is applied to data from the Kuparuk 
River field in Alaska as reported by Pearson et al. (1992), and shown to predict in-situ stresses in 
good agreement with field data. When fracture trace angles are not available, other incomplete 
inversion methods can be used, such as “leak-off” data from the North Sea (e.g. Djurhuus and 
AadnØy, 2003 and Gjønnes et al. 1998).  
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Theoretical development for stresses and hydraulic fracturing 

Hydraulic fracturing consists of sealing off a short segment (typically 0.5-2m) of a wellbore or 
borehole at the desired depth, injecting fluid (usually water) into it at a rate sufficient to raise the 

hydraulic pressure quite rapidly (typically 0.1 1.0 MPa/s ), and bringing about hydraulic 
fracturing. The latter is achieved when the borehole fluid pressure reaches a critical level called 
breakdown pressure. At breakdown the rock fractures in tension causing borehole fluid loss and 
hence a drop in pressure. When pumping is stopped, the hydraulic line to the testing interval 
remains in place. Following fracture, the pressure immediately decays, at first very quickly as the 
fluid chases the still extending fracturing tip, and then more slowly as the fracture closes, after 
which the only remaining fluid loss is due to seepage into the rock through the borehole wall. The 
“shut-in pressure” occurs at the transition between the fast and slow pressure decay and signifies 
the closure of the fracture. 

The in situ principal stresses are assumed to be vertical and horizontal. The rock is assumed to be 
isotropic, homogeneous and linearly elastic. The ambient pore pressure in the rock is assumed to 
remain constant during the test. However, the method presented can easily be extended to cases 
where fluid penetrates into surrounding rock, in which case poro-elastic theory must be adopted. 

 

Fig. 1 Wellbore configuration 

Referring to Fig. 1 and assuming a compression positive convention, let v , H and h  

 H h   be the initial in situ vertical and horizontal principal stresses ( H  is the most 

compressive horizontal principal stress). Let the origin of the principal stress axes lie at the center 
of the top of the inclined wellbore shown in the figure. Consider the local coordinates of the 

wellbore  , ,x y z with the same origin, where the x  axis passes through the highest point of the 

circumference and the z  axis passes down the longitudinal axis. Two angular rotations are 
needed to describe the orientation of the wellbore relative to the in situ principal stress directions: 

1. The wellbore azimuth  is the horizontal angle between the vertical plane containing the 

h -axis and the vertical plane containing the x  axis, measured counterclockwise as 

viewed down the v  axis looking towards the origin. 
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2. The wellbore inclination  is the angle between the v -axis and the z  axis measured 

clockwise as viewed down the y  axis looking towards the origin. 

The geometry of fractures initiated along an arbitrarily inclined wellbore is strongly dependent on 

in situ stresses ( v , H and h ), wellbore azimuth ( ) and inclination ( ). The fracture trace 

angle   between the fracture trace and wellbore generatrix is measured in a clockwise direction 

when looking outwards from the wellbore axis.  

For an arbitrarily oriented wellbore, the rotation of the stress tensor from the in situ coordinate 
system to a local wellbore coordinate system (Fig. 1) is given by  
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Let   be the angle measured counterclockwise starting at 0   on the x  axis as viewed down 

the z  axis looking towards the origin. The stress solutions in cylindrical coordinates  , ,r   , 

around the wellbore are given as (e.g. Hiramastu and Oka 1968; Fairhurst 1968): 
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where a  is the wellbore radius, wP is the compressive applied wellbore pressure, r is the radial 

distance from the wellbore center, and   is Poisson ’s ratio.  

It can be seen from Eq. (2) that fracture initiated from the wellbore reorients itself once it extends 
beyond the zone of the wellbore influence and becomes normal to the least compressive in situ 
principal stress (e.g., Daneshy 1971, Chen and Economides 1999).  

Considering stresses at the wellbore wall  r a  

r wP   
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where 0r r P    , 0P     , 0P     , and 0P  is the pore pressure. 

The effective principal stresses at the wellbore can be found as the eigenvalues of the effective 
stress tensor, thus 

1 r    
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Assuming that 3   is the smallest, and hence the most tensile principal stress, tensile failure 

occurs when 

3 t                                                                      (7) 

where t  is the tensile strength of rock. 

Since the minimum principal stresses direction is perpendicular to the fracture trace:  
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 Alternatively, since r wP   is one of the principal stresses, we also get 
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and by solving Eq. (10), the circumferential angle m  where fracture is initiated can be obtained. 

It should be noted that   depends on the signs of   and      and Table 1 shows how to 

determine   from Eq. (9). 

Table 1 Fracture trace angle determination 

0,          0 45    

0,          45 0     

0,          45 90    

0,          90 45      

0,          0    

0,          90    

 

In situ stresses by testing vertical holes 

In the case of vertical boreholes, the wellbore fluid pressures required to initiate longitudinal 
tensile hydraulic fractures is (Hubbert and Willis, 1957) 
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h H 03w tP P                                                                  (12) 

where H  and h  are the largest and smallest in situ horizontal principal stresses. 

As shown in Eq. (3),    is independent of wP .    remains constant as wP  increases, but    

decreases as wP  increases. It is obvious that    will always be smaller than    during hydraulic 

pressurization and will be the least compressive principal stress. In this case hydraulic fractures 

are always vertical and 0  . 

The shut-in pressure ( sP ) is the pressure needed to keep the fracture barely open, which in this 

case is h  

h sP                                                                       (13) 

The direction of h  is normal to vertical hydraulic fracture. 

The largest in situ horizontal principal stress is calculated based on Eq. (12) which assumes linear 
elasticity and that the effect of fracturing on fluid rock infiltration is insignificant. More elaborate 
pore pressure corrections have been proposed (e.g. Haimson and Fairhurst, 1967) which outline 
the necessity to better understand coupling effects and their dependency on the local stress state.  

In situ stresses by testing inclined holes 

In case of inclined holes, Eq. (3) cannot be solved explicitly, although several attempts have been 
made to derive in situ stresses from hydraulic fracturing data. 

Method of Haimson (1993) 

Haimson (1993) considered a special case in which the hole is inclined in the direction of the 

maximum horizontal stress H  (wellbore azimuth 90   ). In this case Eq. (3) can be written in 

terms of the in situ stress 

r wP   

   2 2 2 2
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H v H v hsin cos 2 cos sin cos 2                                                  (14)

 

0r   
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0r   
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The shear stress   vanishes when =0  or 180    which implies that   at these points is a 

principal stress. Neglecting shear stresses, Haimson (1993) suggested using the following 

equation to obtain  H  

 2 2
H h v3 sin / coswP                                                (15)

 

Although   becomes a principal stress at =0  or 180   , it is not necessarily the least 

compressive principal stress compared with other locations around the circumference from 

=0 to 360   . Huang et al. (2010) showed that under normal faulting  v H h     stress 

condition, the angular position of the fracture  m  and the fracture trace angle    are both 

zero. However, for reverse faulting  H h v    and strike slip faulting  H v h     

stress conditions, m  could be at 90  when the wellbore inclination is high.  In this case, the 

relation between the breakdown pressure and H  is nonlinear as indicated by 

2 2 2
2 2v H

h H v2 2
H v

4( ) cos sin
3 cos 3 sin

sin coswP
       
   


   


                   (16)

 

 

Method of Djurhuus and Aadnøy (2003)  

Djurhuus and Aadnøy (2003) presented a theory for determining the in situ stress state from 
multiple fracturing data and induced fractures from image logs. The position of the fracture on the 

borehole wall was determined by minimization of the tangential stress   , resulting in the 

equation 

   
  

0

2 2
0

tan 2 2 xz yz xy z

yz xz x y z

P

P

   


    
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
   

                                 (17) 

By neglecting the shear stresses, Eq. (17) reduced to 

 
2

tan 2 xy

x y




 



                                                             (18) 

thus the fracturing position on the borehole wall calculated from Eq. (18) will be either 0    or 

90   . 

At tensile failure (assuming rock tensile strength is zero): 

when, 0 , and x y     
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03 0y x wP P                                                           (19) 

and when, 90 ,and x y     

03 0x y wP P                                                           (20) 

After substitution of the stress transformation equations, the above equations becomes 

   2 2 2 2 2 2
H h

2
v 0

3sin cos cos 3cos sin cos

  - sin 0 if w x yP P

       
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                 (21) 

 
   2 2 2 2 2 2

H h

2
v 0

3cos cos sin 3sin cos cos

  +3 sin 0 if w x yP P

       

   

  

   
                 (22) 

Aadnøy (1990a) redefined Eqs. (21) and (22) in the form 

H h

v v

P a b
 
 

                                                                (23) 

and in combination with a number of data sets, the two unknown horizontal in situ stresses 

H and h were determined from Eq. (23) using the and least square method. Gjønnes et al. (1998) 

used a similar approach, but shear stress was included. 

Provided H and h  have been obtained, Djurhuus and Aadnøy (2003) further determined   and 

  from Eqs. (9) and (18) but the back-figured values of    and   were not the same as the 
originally assumed values. 

Method of Okabe et al. (1998)   

Okabe et al. (1998) investigated the feasibility of estimating an in situ three-dimensional stress 
field by using data of drilling-induced tensile fractures observed in a single inclined borehole. 
Based on Eqs. (9) and (10): 

 m , , , , , , , , , ,x y z xy yz zx t wf P                                             (24) 

 , , , , , , , , , ,x y z xy yz zx t wg P                                               (25) 

and knowing , , , ,  and t wP     and three data sets of m and   ( and   are the borehole 

azimuth and inclination defined in coordinate system ( , ,x y z   )), , , , , ,x y z xy yz zx             can 

be determined from Eqs. (24) and (25) using the least square method. 
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Proposed method 

It is assumed that the vertical principal stress v  is known, together with the borehole inclination 
 . This leaves three unknowns, namely the magnitude of the horizontal principal 

stresses H and h , and the horizontal in situ stress azimuth with respect to the borehole 

coordinate system  . 

Using observed data wP , m and  , the in situ stresses H and h  and   can be obtained by 

solving the simultaneous nonlinear equations (7), (9) and (10). Any conventional numerical 
nonlinear equation solver (e.g. Newton-Raphson) can be used.  

Numerical examples 

North Sea  

Aadnøy (1990a, 1990b) and Djurhuus and Aadnøy (2003) presented inversion results of in-situ 
stresses for a small offshore field in the North Sea. Nine data sets from three wells covering a 
depth interval from about one kilometer to three kilometers were analyzed.  Data set 2, 5 and 8 
were from depth interval 1600m-1800m and listed in Table 2. Image analysis was performed for 

data set 2. The angle where fracture is initiated m 43   and the fracture trace angle 

30   were obtained.  

Table 2 Data set 2, 5 and 8 

Data set Depth  ( )wP sg 0 ( )P sg v ( )sg ( )   

2 1880 1.84 1.39 1.82 27 

5 1812 1.78 1.25 1.82 42 

8 1607 1.71 1.05 1.78 48 

 

Assuming 47    with data sets 2, 5, 8 and Eq. (23), the following stress ratios were obtained,  

H

v

0.919



  and 
h

v

0.837



 . 

Djurhuus and Aadnøy (2003) then used these stress ratios to back-figure the inclination of the 

borehole from Eqs. (9) and (12), leading to 36   , which differs from the original value by 9 . 

This inconsistency may need to be corrected by further calibration. 

Using the method proposed in this paper with data set 2 and 30   , m 43   from image 

analysis, the following results were obtained,  
H

v

0.800



 , 
h

v

0.575



  and  44.38    . The 
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Matlab program to solve the simultaneous nonlinear equations (7), (9) and (10) is shown in 
Appendix I. 

If 36    is used, the results are changed to 
H

v

0.852



 , 
h

v

0.749



  38.09    .  

The method in this paper is based on the complete stress solution and uses a single data set 
including data from image analysis. Results by Djurhuus and Aadnøy (2003) are based on an 

incomplete stress solution and require at least two data sets. If the fracture trace angle   is 

available, the inversion method proposed in this paper is to be preferred, since it will deliver a 
consistent stress prediction based on classical mechanics.  

Kuparuk River field in Alaska 

Numerous studies addressing the problems of initiation and propagation of fractures from 
deviated wells have been conducted. Yew et al. (1989) demonstrate that an individual fracture 
starts in a tensile zone at some angle with the well axis (openhole). The tensile zone and the 
fracture angle are determined from the plane strain condition given by the Kirsch solution (with 
superposition of the axial stress) and the Mohr's circle envelope. This criterion is extended to the 
initiation of several fractures by assuming that the interval between two perforations behaves like 
an openhole and that adjacent starter fractures link up tip to tip yielding a zigzag fracture trace at 
the wellbore wall. Yew's analysis was used with some success by Pearson et al. (1992) in the 
design of perforation spacing for offshore wells in the Kuparuk field of Alaska. The Kuparuk 
River field, one of the largest oil field in the U.S., is located in the Alaskan Arctic and covers 
about 115,000 acres. Twenty six wells were drilled in site 2K in the latter half of 1989 and early 

1990. The in situ stress had previously been found to be v 6200(psi)  , H 5803(psi)   and 

h 4538(psi)  . The completion design was conducted by Pearson et al. (1992) to determine 

perforation requirements (minimum spacing and orientation). Table 3 shows the data obtained 

from either laboratory or field measurements. Other parameters are 0 0P  , 500(psi)t   and 

0.2  . 

The input parameters shown in Table 3 ( m,  ,   and wP   ) and v 6200(psi)  , 0 0P  , 

500(psi)t   and 0.2   were used with the Matlab program shown in Appendix I to 

compute he inversion results listed in Table 4 by solving the simultaneous nonlinear equations (7), 

(9) and (10) to obtain   , h  and H . The results are in generally excellent agreement with the 

observed field values H 5803(psi)  , h 4538(psi)  , and  shown in Table 3. The only 

exception to the agreement was observed  in the calculated value of    corresponding to data set 
3. 

 

 



 
 

13 
 

Table 3 Data from either laboratory or field measurements at drill site 2K 

Data set  ( )  ( )   (psi)wP m ( )  ( ) 

1 30 15 8415 57.8 6.6 

2 30 30 8850 49.9 11.5 

3 30 60 9426 17.6 10.6 

4 60 15 8260 28.0 3.7 

5 60 30 8261 22.6 6.3 

6 60 60 8070 9.6 7.6 

7 90 15 8187 0 0 

8 90 30 8017 0 0 

9 90 60 7552 0 0 

 

 

Table 4 Inversion results by the method proposed in this paper 

Data set ( ) 
h (psi) H (psi)

1 30.1 4767 5515 

2 26.1 4712 5286 

3 6.2 4114 5256 

4 60.4 4792 5632 

5 62.0 4812 5714 

6 57.2 4720 5364 

7 90.0 4205 4342 

8 90.0 4152 4394 

9 83.5 5029 5044 

 

Concluding Remarks 

A new method for determination of the in situ stress state from hydraulic fracturing data from 
inclined boreholes is presented and shown to give good agreement with published field 
observation data. The solution is based on classical mechanics and uses a single data set which 
includes breakdown pressure together with the fracture angular position and trace angle. The 
method proposed in this paper avoids the inconsistencies that can occur with existing incomplete 
methods. 
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Notation 

v   vertical in situ stress 

H  major horizontal in situ stress 

h   minor horizontal in situ stress 

   wellbore inclination 

   azimuth, angle between H  and wellbore x  axis 

1

2

3





 
 
 
 
 

 principal stresses 

x

y

z

xy

yz

zx








 
 
 
  
 
 
 
 
  

     far field in situ stress transformed to wellbore coordinate system 

x

y

z

xy

yz

xz




















 
 
 
  
 
 
 
 
  

     far field in situ stress  

r

r

r


















 
 
 
  
 
 
 
 
  

     stress at the wellbore wall 

a   wellbore radius 



 
 

15 
 

0P   pore pressure. 

sP   shut-in pressure 

wP   wellbore pressure 

r   radial distance from the wellbore center 

t   tensile strength of rock. 

   fracture tracer angle 

m   angle where fracture is initiated 

   Poisson ’s ratio 

Primes indicate effective stress. 
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Appendix I Matlab program of stress inversion 

clear 
global gam sigv p0 poi tha tenst bett pw 
gam=cos(27.0*pi/180.0); 
sigv=1.82; 
pw=1.84; 
tha=43.0*pi/180.0; 
tenst=0.0; 
bett=30.0*pi/180.0; 
p0=1.39; 
poi=0.0; 
x0 = [0.0; 0.0; -0.5]; 
options=optimset('Display','iter'); 
[x,fval] = fsolve(@myfun,x0,options) 
x(1)=x(1)/sigv 
x(2)=x(2)/sigv 
x(3)=x(3)*180/pi 
  
function F = myfun(x) 
global gam sigv p0 poi tha tenst bett pw 
sigx=cos(x(3))^2*x(1)*gam^2+x(2)*sin(x(3))^2*gam^2+sigv*(1-gam^2); 
sigy=x(1)*sin(x(3))^2+x(2)*cos(x(3))^2; 
sigz=cos(x(3))^2*x(1)*(1-gam^2)+x(2)*sin(x(3))^2*(1-gam^2)+sigv*gam^2; 
sigxy=-sin(x(3))*cos(x(3))*gam*(x(1)-x(2)); 
sigyz=sin(x(3))*cos(x(3))*sqrt(1-gam^2)*(x(1)-x(2)); 
sigxz=-gam*sqrt(1-gam^2)*(x(1)*cos(x(3))^2+x(2)*sin(x(3))^2-sigv); 
sigt=sigx+sigy-2.0*(sigx-sigy)*cos(2.0*tha)-4.0*sigxy*sin(2.0*tha)... 
    -pw-p0; 
siga=sigz-poi*(2.0*(sigx-sigy)*cos(2.0*tha))-... 
    4.0*poi*sigxy*sin(2.0*tha)-p0; 
sigta=-2.0*sigxz*sin(tha)+2.0*sigyz*cos(tha); 
p3=0.5*((sigt+siga)-sqrt((sigt-siga)^2+4.0*sigta^2)); 
dtdt=4.0*(sigx-sigy)*sin(2.0*tha)-8.0*sigxy*cos(2.0*tha); 
dadt=dtdt*poi; 
dtadt=-2.0*sigxz*cos(tha)-2.0*sigyz*sin(tha); 
dp3dt=0.5*(dtdt+dadt)-0.25*((sigt-siga)^2+4*sigta^2)^(-1/2)*... 
    (2.0*(sigt-siga)*(dtdt-dadt)+8.0*sigta*dtadt); 
F = [p3-tenst;tan(2.0*bett)-2.0*sigta/(sigt-siga); 
      dp3dt]; 
  


