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Abstract

This paper addresses the mesh-dependence of m@m-tmechanical finite element
analysis. To this end, finite element meshes tteahasembled by various element types
and their solutions are compared. Voxel, tetrahednexahedron and mixed (hex-
dominant) meshes are considered. Different bendkingaparameters for the elastic

and plastic solutions as well as for the computatidoad are determined. First, bending
beams with a square, a circular and a rail crosseseare calculated accounting for
non-linear material behavior (plasticity). A strodgpendence on the mesh type is
observed and the best results are obtained fordmeshes and hexahedron-only
meshes. In the second part of this study, fingeneint models that are based on the
complex geometry of a metallic foam are conside@amputed tomography data is
used to generate geometrically complex finite elemn@odels and a convergence
analysis is performed. Again, superior performasdeund for mixed meshes.

Keywords: Finite element method, plasticity, beam, mesh aspn, mixed (hex-
dominant) mesh, hexahedral mesh.

1. Introduction

Modern engineering materials such as cellular mg¢ijlexhibit complex geometries.
Prediction of their mechanical properties by meafinsumerical finite element analysis
requires an accurate representation of their venyptex meso-structure [2, 3]. To this
end, computed micro-tomography-CT) images can provide fairly accurate geometric
information. However, the 3-D mesh generatione®@plex task and the manual mesh
generation becomes extremely time-consuming. Tae¥efn automatic, robust,
accurate and repeatable meshing procedure is eelqihe main objective of the
present research is to evaluate finite element riygs for elasto-plastic material
behaviour. This investigation is based on simpkEntbgeometries and on a complex
geometry obtained by computed tomography record.



In the literature, two different strategies for im@valuation can be found. For selected
geometries, analytical reference solutions exidt@m be used for the verification of
numerical results. However, more complex geometieksloading conditions often
have no analytical solution and only the convergesfdhe numerical models can be
compared. Wang et al. [4] simulated the bending loéam with a square cross-section,
fixed at one end and loaded on the other end. €laktic material behaviour was
considered. The analytical reference solutiontiervtertical displacement at the free
end of the beam includes both a bending and a sbegvonent. It was found that
results of the use of quadratic tetrahedral andigi@ hexahedral elements are close to
the analytical solution and that the linear tetchhkelement yields less accurate
approximations. Cifuentes et al. [5] used the sgammetry, material model and
analytical solution as in the study before. Thegevled that quadratic tetrahedral and
linear hexahedral elements are equivalent in t&fnascuracy and processing time. As
already observed in [4], quadratic tetrahedral elesiyield better approximations than
linear tetrahedral elements. Benzley et al. [6gpded the previous studies on a square
beam by incorporating non-linear material behaviplasticity). Again, an analytical
solution was used for the comparison with the nuzakmodels. In the initial elastic
range, the findings in [4, 5] could be confirmed, linear tetrahedral elements yield
less accurate approximations. For non-linear madtbghaviour, it was found that both
linear- and quadratic tetrahedral elements yielor pesults. In contrast, linear- and
quadratic hexahedrons provide more accurate results

A few studies have been published that compareddaheergence behaviour of
different mesh types for complex geometries. Vicgicet al. [7] addressed a simplified
model of a proximal femur bone and compared it \&ithanalytical reference solution.
Only elastic material behaviour was considered.i#althlly, a more realistic model of
a proximal femur bone was considered. No analysoaltion was available for this
complex geometry and therefore a convergence asaigs performed. In good
agreement with the other approaches [4-6] it wasddahat hexahedral elements
possess the most accurate results for the sinplg®metric model and proximal
femur bone. In addition, voxel meshes were constiidi was found that this method
requires a large number of elements to reach tteracy comparable to that of the
other meshing approaches. Ramos et al. [8] addf¢ssesame geometries (simplified-
and realistic proximal femur bone) as in the prasistudy by Viceconti [7]. In
contradiction to the other studies, they obserhad the simplified model of a proximal
femur bone with linear tetrahedral elements isalds the approximated analytical
solution than the model with quadratic tetrahedréinear- and quadratic hexahedrons.
The results obtained simulating the realistic pmadifemur with first- and second order
tetrahedral- and hexahedral elements did not sigmifisant mesh dependence.

The present paper is based on a similar concepbkes the previous research further
with important development. Beams with a squareseection, a circular cross section



and a rail profile are investigated. The bending beam, fixed at one end and loaded at
the other end is simulated and non-linear mateeahviour is taken into account.
Results of the square- and circular cross seceamis are compared to an analytical
reference solution. For the rail profile, an appmoate analytical solution is obtained

and also a convergence analysis is performed.ditiad to the bending beams, a
metallic foam with the complex geometry obtaineccbynputed micro tomography is
considered. No analytical solution is availabletfos complex geometry and therefore
only a convergence analysis can be performed. ddngplex model was necessary to
test the automatic mesh generation under morestieadonditions.

2. Finite Element Analysis

In the present study, finite element analyses anelaected in order to compare three-
dimensional solid element types. Full integratismised in all cases [9]. Linear- and
guadratic hexahedral elements, linear- and quadittiahedral elements, voxel meshes
and mixed meshes (containing linear hexahedrakali tetrahedral- and pentahedral
elements) are considered. The element type useakgl meshes is identical to the one
applied in the linear hexahedral meshes. The eiffeg is that voxel meshes are
assembled by uniform cubes whereas in a hexahaedesh also distorted elements of
different size may be used to achieve a more ategeometric discretisation. The
linear hexahedron element (MSC.Marc element ty[#§)7ds an eight-node,
isoparametric, arbitrary element. This element tisisear interpolation functions and,
accordingly, the strains are constant throughoeietement. The stiffness of this
element is formed using eight-point Gaussian irstegn. The quadratic hexahedron
element (MSC.Marc element type 21 [9]) is a 20-nastgparametric, arbitrary
hexahedron. This element uses triquadratic intatjwel functions to represent the
displacements. The stiffness of this element isiéat using 27-point Gaussian
integration. The linear tetrahedron element (MSCGdwdement type 134 [9]) is a four-
node, isoparametric three-dimensional element. dlleisient uses linear interpolation
functions and the strains are constant through@ietement. For those elements the
numerical integration is done by using one poirthatcentroid of the element. The
guadratic 10-node tetrahedron element (MSC.Mamete 127 [9]) is a second-order
iIsoparametric three-dimensional element. The gg$of this element is formed using
four-point integration. The mixed mesh containslthear tetrahedron and hexahedron
elements mentioned above. In addition, 6-node pedtal elements (MSC.Marc
element 136 [9]) may be used in the mixed meshs &@ment uses trilinear
interpolation functions and consequently the sgraire constant throughout the
element. The stiffness of this element is formddgisix-point Gaussian integration.

As discussed above, linear or higher order (i.adgatic) shape functions can be used in
combination with the elements. However, the maxinmumber of elements is

restricted by the available computer memory. Elasith higher-order shape
functions (i.e. degrees of freedom) require addalonemory to handle additional



nodes and therefore fewer elements can be useltimgsn a less accurate
discretisation of complex geometries. Accordingiggdominantly linear shape
functions are considered in the present study.

Two commercial software packages are used for aatiormesh generation. The first
one is the commercial grid generation packdgepoon(Sharc Ltd)Harpoonis able to
generate mixed, only-tetrahedrons and voxel mes$twgghe mixed technique, Harpoon
uses an octree technique [10] to mesh geometryg usiar-defined element size
constraints. Mixed meshes are created in two stéps, the volume is roughly
approximated by a voxel type hexahedron mesh.drséitond step, nodes are mapped
on the surface and the surface is smoothed by gddiditional tetrahedral- and
pentahedral elements. The second software padkB¥®RESE" allows the

generation of an only-hexahedron mesh. The inpoingéry is represented as a STL
format surfaceHEXPRES®' requires a very clean and accurate representatite
surface prior to the generation of a volumetric Imés the first step, a rough mesh is
created that encompasses the entire model. Thremaklel is refined via an octree
technique [11] so that cells are sufficiently snfiatlcapturing the details of the domain.
At the next step, all cells of the octree-refineglsimthat fall outside the domain or
intersect its boundary are removed. The resultieghms then projected onto the
surface geometry by moving nodes on the surfacengtg. This method is also known
as volume to surface approach. The commercial softiarpoonprogram has shown
to be fast, robust and easy to use. In contrasimishing process WithHEXPRES® is
more time-intensive and at this time restrictetes complex geometries. The solution
of the finite element models and the post-procegsane realised with the commercial
SoftwareMSC.Marc(MSC Software Corp.).

The bending of a beam, fixed at one end and loaddtie other end is simulated (cf.
Fig. 1a) and non-linear material behaviour (iddakpcity with no plastic hardening) is
accounted for. Three-dimensional beam models witaerdnt cross sections (cf. Fig.
1b-d) are used for the assessment of differenteiemypes. The applied force on the
end of the beam incrementally increases until tagimum force is reached. The
numerical computation results are then compareshébytical solutions. The material
properties of the beams are: Young's mod&es210 000 N/mrfy Poisson’s ratio =

0.3 and initial yield streds= 112.5 N/mm.
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Fig. 1. Beam geometries: a) cantilever beam oreem¢he x-direction and loaded in
the negative-direction; b) square cross sectivr-(L00 mma= 20 mm); c) circular
cross sectionl & 100 mmd = 20 mm); d) simplified rail profile S54 [15] £ 473.11
mm,b; = 70 mmb, = 16 mm,bs = 87.7 mmbp, = 125 mmh; = 55 mm,h, = 70 mm hs
=29 mmhs =12 mmhs = 43.3 mmhg = 79 mmh; = 154 mmhg = 14.4 mm).
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A second set of finite element models is basedoompuited tomography data of
metallic foam (cf. Fig. 2a). Segmentation (idecafion of metallic and void phases) of
the CT data was done using the imaging and edstifitgvareMimics (Materialize). The
obtained geometry was then meshed with the difterezshing software packages
mentioned earlier. Compressive loading was simdlateording to the boundary
conditions shown in Fig. 2b. The metallic foam amstrained at three surfaces (grey
planes) by confining the displacement in the cqoesling normal direction of each
surface. Compressive loading is simulated by a-tlegendent nodal displacement in
the negative-direction. A non-linear material model of AICu4SyMAluminium 2014-
0) was applied [12] witlE = 73 100 N/mrf, v = 0.33 andk = 185 N/mm.
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Fig. 2. Compressive testing: a) computed tomograihyeconstruction dEmpore®
foam; b) schematic drawing of boundary conditions.




3. Analytical Solution
The analytical expression for the vertical dispfaeat of the centre-line at the free end
of the beam is calculated for all beam profiles Fef). 1b-d). Elastic and elasto-plastic
material behaviour is considered. The followingaans for the elastic solution are
taken from the engineering mechanic text [13]. Wial deflection of the beam(x) is
calculated with Eq. (1) and contains a bendip(x) and a sheaws(x) componentFor
the geometries considered, bending is the domféendt.
W(X) = W, (X) + W, (x) (1)
The bending solution is calculated with Eq. (2) vefeis the applied Forcé the total
length of the beant is Young’s Modulusl, the moment of inertia (see Table 1) and
thex-coordinate is the distance from the fixed side:

3 2
W) = g e +30) @
The shear deflectiows is calculated with Eq. (3) whefgis the shear modulus (for
isotropic material behaviour see Eq. (4)) and tieas are#s (see Table 1) which is the
areaA of the cross section multiplied by the shear aiioa factor:

_ F
W, (X) G X 3)
_E
_2E(1+v) )

The analytical solution for plastic material betwawriis used as given in [14]. This
solution is based on the main Bernoulli-Navier agstion that distribution of the stress
component in the direction,oy (= 0), is a function only of th& andy (see Fig. 1a)
variables but not thevariable. Moreover, only a linear distributiontbé axial strain
componentyy (= ¢) is permitted in the elastic response regions.

Cross Section Square Circle Rail (using data
given in Figure 1d)
Iz | = tf | ﬂm4 é
2714 = I, = 2.1348x1
12 z z
64 mrrt*
As _ 5 2 ]Tl]jz As = 04%,
A=gh A =0 A= 7031.81 mih

Table 1: Equations for the moment of inertia andlastarea for square-, circle- and rail
Cross sections.

The representative equivalent plastic strain distron is shown in Figure 5a-d. It can
be observed that these assumptions are only &dfilt the case of the square and
circular cross sections. The assumption is no lowngkd in the case of the rail profile
accordingly to the equivalent plastic strain dsition. In general, there is no restriction
on the nature of irreversible inelastic responsawéler for the purposes of the present
research we decided to use ideal-plasticity witlplastic hardening.
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Fig. 3. Plastification and position of the neutxgis on a rail profile.

As a consequence of the main assumption the skeé afuantities required for the
problem to be solved isa{(X), pp(X), W(X)} where a, andp, describe the degree of
plastification and its impact on the displacemdrhe neutral axis (cf. Fig. 3) andis
the beam deflection in the y direction. Equatiomrsaf, andp,, are:

[sign(y-a,(0)0,dA+ | Jo[deA:O

Ap(X) Ag(x) P (x) (9)
Isign(y—ap(x))apydA+ j a{w}ydA:W ()|
Ay(X) A(X) Iop(x)

whereA(X) is the cross-section of the beanx;a®(x) is the region of plastic
deformations ilA(X): Ap(X) = {AX) n {(¥.2),y>a, +pp} n {(Y.2),y <&y —pp}}
whereasA¢(x) is the region of elastic only deformationsAx): A«(X) = {A(X) — Ax(X)}.
Ad(X) is located centrally around the actual neutrad.a(x) is the applied momendy
is the yield stress;, is the plastic stress which in general can benatfon of plastic
deformations and thgandx variables, but in our chosen model for plastiertshout
plastic hardening we have thatis constant and equal &e.

Accordingly, the equation fax(x) yield:

_M(x)
dzw(x) _ = xO0Q,
¢ | sign(-M (x) Ep”O(X), x00Q,

: 10
where Q. and(2, are elastic and plastic sections of the beamgenctiely. These( )
sections are made by cutting the beam perpendicuthex direction. InQ. there is no
plastic deformation (or yield stress is not excegdmd(2, is the remaining part of the
beam., comprises all cross sections that are charactebyehe presence of plastic
deformations. Obviously, i the elastic solution outlined above is followed.



If the loadF is lower than the critical value, = a’k/6l then only linear deformations
are present in the beam. Once the IBasl greater than the critical valég plastic
deformations are developed in the beam.

For the elasto-plastic regiag, solution for the square beam can be found in diose
form as follows. For the functions(x) andwy(x) we have following expressions:

_a [{, M)
pp(x)—i {1 2k J (11)
w0, =2 M, - M OO +excre,

(12)

3
whereM; = g9 b:®;, K =sign(-M (x)) Zlgg ; applied moment has the foa(x) = F(—x

+ 1) = myx + mp; constantg; andcy can be found from the boundary conditions between
elastic only (described by general Eg. (1-3) amdtelplastic regions (Eq. (11)) where
w(x) and its first derivative must be continuous fimcs.

Now the volume Y of the plastic region i, can be calculated as follows:

_ Keaal a2 3 3 12F
V, =2 | Jidydzdx 2| 18F1 - 4a’k +3(a’k - 4Fl) [3-=2 (13)
0 0p,(x) 18F a’k

For the cases of circular and rail beams for eaatfF (and associated momevi(x))

we solved Eq. (9) for a set of points in the elgdtstic region, and then integrated
Eqg. (10) numerically (using the solution for thastic region — Eq. (1-3)). The resulting
values are presented in the next section.

4. Results and Discussion

4.1.Bending beams
Numerical computations for all beams are perfornvéd the following mesh types:
mixed, linear hexahedron, linear tetrahedron angekdeam models with different
numbers of nodes (10 000, 50 000 and 150 00Ohaesiigated and the elastic
gradient, maximum deflection, plasticity volume grdcessing time are evaluated.
Analytical force-deflection curves and selected ptigal solutions with the least
deviation are plotted in Figure 4. It can be obedrthat the analytical solution of the
square- and circular beam is in excellent agreenvéhtthe corresponding numerical
solutions (see Fig. 4a). In contrast, Figure 4bnshtinat the analytical solution of the
rail profile deviates from the numerical solutidie reason for this deviation are the
simplifications presumed for the analytical solatiae. that the plastic strain has a
constant horizontal distribution in tlye-plane. The area where the equivalent plastic
strain obtained by finite element analysis is rgptad to zero is coloured grey in Figure
5. Figure 5d shows that the numerical computatidherail profile leads to a curved
plastic strain distribution that strongly deviafesm the analytical assumption. In



contrast, the square and circular beams (cf. Fighre) show only a very minor
deviation between the assumed analytical and theenaal plastic strain distribution.
Accordingly, good agreement of the analytical ancharical solutions is obtained. Due
to the poor agreement between numerical and acalwolution in case of the rall

profile, a high-resolution finite element model (3000 nodes) is used as reference

instead.
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Fig. 4. Force-deflection-curves: a) square- ancudar beam; b) rail profile.
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Fig. 5. Total equivalent plastic strain distributi@) longitudinal view of the square-
and circular beam; b) cross section of the squeaan c) cross section of the circular
beam; d) cross section of the rail.

For the comparison of the different mesh types fivs elastic gradient is considered.
The elastic gradient is obtained from the initiahstant slop&F/AD of the force-
displacement curve in the elastic region (cf. Ba). Figure 6a shows the deviation to
the reference solution. As expected, an increasigeaiumber of elements also

decreases the deviation. It can be observed thahiked meshes achieve the most

accurate results independent of the cross-sedtiagood agreement with earlier results

[4, 5, 6], the highest deviation is observed fa@ linear tetrahedral elements.



The maximum displacement at the end of the beaairadat for the maximum lodé is
addressed in Figure 6b. It should be mentioned thateaccording to Eq. (1) this value
contains elastic and a plastic component. The atesdeflection deviation quantifies
the difference between the numerical and refersntigions. As already observed for
the elastic solution the most accurate result®btained by the mixed mesh. Likewise,
the linear hexahedron meshes exhibit consisteotbg gesults and poor accuracy is
found for the linear tetrahedrons.

The initial deformation of the beam is purely dlagPlastification starts at higher
bending loads at the upper and lower surface atlémeping where the maximum
stresses arise. In the case of the symmetric sqaadecircular beams also the plastic
deformation field develops symmetrically. For thé profile, the plasticity starts at the
upper surface due to higher stresses (cf. Figl't8.load is then increased
incrementally and the volume of plastic deformatontinues to grow and propagate.
This volume is used for further benchmarking ofatiént mesh types for non-linear
material behaviour (cf. Fig. 6¢). The referenceuealfor the square beam (ldad

2000 N) and circular beam (lo&d= 1450 N) are obtained by making use of the
analytical solution. They are 1925 mfdirect use of the Eq. (13)) and 2885 fnm
(numerical integration of Eq. (10)), respectiveétgr the rail profile, the reference value
164 245 mmis obtained by the finite element reference méaked mesh, 300 000
nodes, loadF = 80 000 N). It can be observed that in accordavittethe previous
results, mixed meshes achieve the most accuratksesd linear tetrahedron meshes
show the highest deviation.

The processing time (computational weight) is shawiig. 6d. The simulations were
done on a DELL Precision T7400 machine with Wind®ista 64-Bit, 2.5 GHz and 64
GByte of RAM memory. It can be seen that lineardiedral elements require the
longest calculation times. Surprisingly, small cddtion times are observed for mixed
meshes.

10



&

b)

Ln
o0

=y
b
5 =
[ —
g j 8
=]
DS =~
b= 5
o 4 = o -
= m
& =}
T 2 =
Q
@] Q
E= i = 5
EE 0 L -
= 14 ]
aa) .
. w
% 1 £
ﬁo <:EO
c o olococol ooo coeoloocol oaocco
=S = O o oo D o S o o o o O S o 2 S
o o Q2 o O D o o O - R s R o o O O oo O
—_ v =N n — — W = n N — N
Square Circular Rail Square Circular Rail
c) d)

b2
L
|

1000 -

= 100

10000
50000

wny

Abs. Plasticity Volume Deviation [%]
] f— 2
[a] (90 o N <
| | 1 1 I
150000 m——————
Processing Time [min]
— o
[l 1 N N N N
50000 p——————
150000 —"

10000
50000 |
150000
10000
50000
150000
10000
0000
150000
10000
0000
150000
10000

Square Circular Rail Square Circular Rail

[ ] smixed [ ] Hex. ) IR 1<t 0

Fig. 6. Results of the mesh comparison study ferdifferent bending beams: a) elastic
gradient; b) deflection; c) plasticity volume; dppessing time.

4.2. Metallic Foam
The second part of the mesh analysis simulatesaimpressive testing of a segment of

Emporé metal foam. In addition to the mesh types considéefore, quadratic
tetrahedron meshes (MSC.Marc element type 127af@])nvestigated. No analytical
solution is available for this complex geometry dimekrefore only a convergence
analysis can be performed. In order to study thievexgence behaviour, meshes with
different numbers of nodes (5 000, 20 000, 50 @00,000, 200 000 and 250 000) are
generated. For each mesh, volume deviation, Youngdulus, the 0.2% offset yield
strength and processing time are determined. Thi@o of the highest resolution

11



mesh with 250 000 nodes (hexahedron-only typehasen as the reference soluti@n (
= 209.15 MPaRy0.2= 0.84 MPa). It should be mentioned here that daenf segment
does not necessarily comprise a representativeneyland accordingly the obtained
results cannot be interpreted as representing #weascopic properties &mporé
aluminium foam. However, the foam segment exhbitemplex geometry and is
therefore highly suitable for the comparison oftérelement mesh types. The size of
the meshed volume is limited due to the work-intemeshing procedure using the
softwareHexpres§".

The absolute volume deviation (cf. Table 2a) déssithe difference between the
volume obtained by the computed tomography datalengarious FE volume meshes.
The value is an indicator for the accuracy of thergetric representation. An excellent
geometric representation is obtained for the mixeghes and linear tetrahedron
meshes. Linear hexahedron meshes show a sligigtehdeviation followed by
quadratic tetrahedron and voxel meshes. The patorpeance of the quadratic
hexahedron meshes is due to a smaller numbermkels for a fixed number of nodes.
As an example, approximately 100 000 nodes correspm66 000 elements in the
guadratic tetrahedron mesh and 530 000 elemetite iimear tetrahedron mesh.

The results for Young’'s modulus are shown in T@&tleThe absolute deviation with
the numerical convergence solution is given asregméage. It can be observed that the
linear hexahedron meshes and the mixed mesh canfaster towards the reference
solution than the tetrahedral elements. The d@natontinuously decreases with
increasing numbers of elements. Interestingly, ohiy@e meshes already show good
convergence even for a relatively low number ofeso(b0 000 nodes). In comparison,
a strong deviation is obtained by the quadrati@betdral elements which might be
caused by the poor geometric representation ofgheme (cf. Table 2a) due to a lower
number of elements. Very poor results are obtafloethe voxel type meshes with a
deviation of over 70%.

The stress-strain response of metal foam geneata#lg not show a well recognizable
yield point. Instead, the 0.2% offset yield strénigtdetermined. To this end, a line with
the gradienk that intersects the-axis at value 0.2 % is drawn. The stress at the
intersection of this line and the stress—straiveus reported as the 0.2% offset yield
strength. This parameter (cf. Table 2c) shows #meestrend already observed for
Young’'s modulus: linear hexahedron and mixed meshew a faster convergence than
linear tetrahedrons meshes. Again, the quadratahtedron and voxel meshes vyield
poor results.

The processing time (computational weight) is co@sd in Table 2d. Linear
hexahedron and voxel meshes require high proceseieg for calculation. In
comparison, the processing of tetrahedron and mixeshes is faster. For 100 000
nodes, the quadratic tetrahedron mesh requirdswhest processing time.

12



a) Abs. Volume Deviation [%]

Nodes 250 000 200 000 100 00Q 50 00Q 20 000 5 00(
Hex. (8) | 1.44 1.71 3.01 N/A N/A N/A
Mixed N/A 0.60 1.00 1.60 3.25 9.92
Tet. (4) | N/A 0.69 1.11 2.43 3.23 N/A
Tet. (10) | N/A N/A 4.42 N/A N/A N/A
Voxel N/A 31.95 36.89 N/A N/A N/A
Reference is obtained from the CT-record = 6991B8h8a7

b) Abs. Young’s Modulus Deviation [%]
Nodes 250 000 200000 |100000 |50000 |20000 |5000
Hex. (8) | Reference* | 0.03 7.75 N/A N/A N/A
Mixed N/A 1.27 1.43 1.33 1.97 10.25
Tet. (4) | N/A 4.42 5.67 6.87 10.10 N/A
Tet. (10) | N/A N/A 54.28 N/A N/A N/A
Voxel N/A 72.69 88.77 N/A N/A N/A
*Reference = 209.15 MPa

c) Abs. R0 Deviation [%]
Nodes 250 000 200000 |[100000 |50000 |20000 |5000
Hex. (8) | Reference* | 0.01 4.42 N/A N/A N/A
Mixed N/A 0.89 1.74 2.65 8.21 12.47
Tet. (4) | N/A 5.10 7.20 13.26 17.42 N/A
Tet. (10) | N/A N/A 43.28 N/A N/A N/A
Voxel N/A 71.47 85.23 N/A N/A N/A
*Reference = 0.83 MPa

d) Processing Time [min]
Nodes 250 000 200000 |100000 |50000 |20000 |5000
Hex. (8) | 2820 1390 960 N/A N/A N/A
Mixed N/A 1340 530 420 90 10
Tet. (4) | N/A 1100 530 85 50 N/A
Tet. (10) | N/A N/A 390 N/A N/A N/A
Voxel N/A 1500 1420 N/A N/A N/A

e) Distorted Elements [%]
Nodes 250 000 200000 |[100000 |50000 |20000 |5000
Hex. (8) | 51.16 53.72 61.02 N/A N/A N/A
Mixed N/A 60.91 69.68 76.91 82.13 94.76
Tet. (4) | N/A 93.03 95.23 96.64 97.45 N/A
Tet. (10) | N/A N/A 97.67 N/A N/A N/A
Voxel N/A 0 0 N/A N/A N/A

For the distorted elements a threshold value ofuzed.

Table 2: Results for the Empore® foam.
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4.3.Discussion
A comparative analysis of the results shows a ¢tead: mixed and hexahedron
meshes are superior to voxel and tetrahedron meshissis in good agreement with
earlier investigations [4-7]. In the following, tiperformance of mixed and hexahedron
meshes will be compared in detail.

First, let us consider the bending beams. The rgeshration for the relatively simple
beam geometries is unproblematic for both meshstyplee elastic solution of the
bending beams is benchmarked using the elasticemtanf the force-deflection curve
(cf. Fig. 4a). For the circular and rail cross ssttmixed meshes showed a faster
convergence towards the reference solution. ItIlshioe mentioned here that in the case
of the square cross-section, no mixed mesh wasecrsmce this would simply have
resulted in another hexahedron mesh. These findiregsonfirmed for non-linear
material behaviour (deflection Fig. 6b and plastigplume Fig. 6¢). Again, mixed
meshes show a slightly better performance thanheskan-only meshes. Evaluation of
processing times shows faster processing of mixeshes in comparison with
hexahedron meshes.

The superior performance of mixed meshes is coefirm the analysis of the metallic
foam segment. A hexahedron mesh with 250 000 nisdd®sen as a reference solution
for the convergence analysis. It is important ttertbat this reference solution exhibits
a volume deviation of 1.44% to the target geometocordingly, small deviations in

the results are likely to be caused by this geamedéaviation. Mixed meshes allow an
accurate geometric representation of the metalhof segment and showed the lowest
volume deviation among all mesh types (cf. Table Phe generation of only-
hexahedron meshes imposes a major constraint ayetimaetric complexity. The
meshing procedure is extremely work-intensive imparison with the generation of
mixed meshes. In addition, the maximum size of hedeon meshes is currently
restricted by the ability of the meshing softwaretidress sufficient amount of RAM.
The elastic solution (Young’s modulus, cf. Tablg 8bows fast convergence for mixed
meshes. Hexahedron meshes only yield good conveggenmore than 100 000 nodes.
A similar behaviour is observed for 0.2% offsetigistrength (cf. Table 2c). Finally,
mixed meshes require lower processing time thaatmesdron ones (cf. Table 2d). One
likely explanation for the superior performancemoked meshes is their lower number
of distorted elements. The additional use of tetdaal- and pentahedral elements in
mixed meshes allows for an accurate approximati@omplex shapes without the
necessity of strongly distorted element that masean hexahedron-only meshes or
tetrahedron meshes. This theory is supported byethdts displayed in Figure 7 and for
the foam segment in Table 2e. Elements with a distovalue greater than the user
specified threshold value are identified as disthriThe analysis is performed with a
threshold value of 0.3. The distortion of an elememralculated by evaluating the
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angles between the edges of the element. It canlylee seen that mixed meshes have
less distorted elements than hexahedron meshes.
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Fig. 7. Distorted elements in the beam geometries.

Conclusion

In the present study, bending beams with diffeceoss-sections and the compression
of a metal foam segment were simulated. Where plessesults were compared with
analytical benchmark solutions. In all other cagsesnerical convergence analysis was
performed. The results indicate that linear mixezshes are superior to linear
hexahedron, linear- and quadratic tetrahedron iaedd voxel meshes. Mixed meshes
yield accurate results and allow a simple meshggioa. In addition, they are
characterised by an accurate volume representatidriast processing times. With
respect to the calculation accuracy, linear hexaidrecheshes achieve comparable
results. However, unlike mixed meshes, the mesbiimpmplex geometries is work-
intensive and currently restricted to smaller medil addition, hexahedron models
require slightly longer processing times. Tetrabadand voxel meshes showed mostly
poor results, in particular with respect to theumacy of results, and should be avoided
for non-linear mechanical finite element analysis.
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