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Abstract 
This paper addresses the mesh-dependence of non-linear mechanical finite element 
analysis. To this end, finite element meshes that are assembled by various element types 
and their solutions are compared. Voxel, tetrahedron, hexahedron and mixed (hex-
dominant) meshes are considered. Different benchmarking parameters for the elastic 
and plastic solutions as well as for the computational load are determined. First, bending 
beams with a square, a circular and a rail cross-section are calculated accounting for 
non-linear material behavior (plasticity). A strong dependence on the mesh type is 
observed and the best results are obtained for mixed meshes and hexahedron-only 
meshes. In the second part of this study, finite element models that are based on the 
complex geometry of a metallic foam are considered. Computed tomography data is 
used to generate geometrically complex finite element models and a convergence 
analysis is performed. Again, superior performance is found for mixed meshes. 
 
Keywords: Finite element method, plasticity, beam, mesh comparison, mixed (hex-
dominant) mesh, hexahedral mesh. 
 
1. Introduction 
Modern engineering materials such as cellular metals [1] exhibit complex geometries. 
Prediction of their mechanical properties by means of numerical finite element analysis 
requires an accurate representation of their very complex meso-structure [2, 3]. To this 
end, computed micro-tomography (µ-CT) images can provide fairly accurate geometric 
information. However, the 3-D mesh generation is a complex task and the manual mesh 
generation becomes extremely time-consuming. Therefore an automatic, robust, 
accurate and repeatable meshing procedure is required. The main objective of the 
present research is to evaluate finite element mesh types for elasto-plastic material 
behaviour. This investigation is based on simple beam geometries and on a complex 
geometry obtained by computed tomography record.  
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In the literature, two different strategies for mesh evaluation can be found. For selected 
geometries, analytical reference solutions exist and can be used for the verification of 
numerical results. However, more complex geometries and loading conditions often 
have no analytical solution and only the convergence of the numerical models can be 
compared. Wang et al. [4] simulated the bending of a beam with a square cross-section, 
fixed at one end and loaded on the other end. Only elastic material behaviour was 
considered. The analytical reference solution for the vertical displacement at the free 
end of the beam includes both a bending and a shear component. It was found that 
results of the use of quadratic tetrahedral and quadratic hexahedral elements are close to 
the analytical solution and that the linear tetrahedral element yields less accurate 
approximations. Cifuentes et al. [5] used the same geometry, material model and 
analytical solution as in the study before. They observed that quadratic tetrahedral and 
linear hexahedral elements are equivalent in terms of accuracy and processing time. As 
already observed in [4], quadratic tetrahedral elements yield better approximations than 
linear tetrahedral elements. Benzley et al. [6] extended the previous studies on a square 
beam by incorporating non-linear material behaviour (plasticity). Again, an analytical 
solution was used for the comparison with the numerical models. In the initial elastic 
range, the findings in [4, 5] could be confirmed, i.e. linear tetrahedral elements yield 
less accurate approximations. For non-linear material behaviour, it was found that both 
linear- and quadratic tetrahedral elements yield poor results. In contrast, linear- and 
quadratic hexahedrons provide more accurate results. 
 
A few studies have been published that compared the convergence behaviour of 
different mesh types for complex geometries. Viceconti et al. [7] addressed a simplified 
model of a proximal femur bone and compared it with an analytical reference solution. 
Only elastic material behaviour was considered. Additionally, a more realistic model of 
a proximal femur bone was considered. No analytical solution was available for this 
complex geometry and therefore a convergence analysis was performed. In good 
agreement with the other approaches [4-6] it was found that hexahedral elements 
possess the most accurate results for the simplified geometric model and proximal 
femur bone. In addition, voxel meshes were considered. It was found that this method 
requires a large number of elements to reach the accuracy comparable to that of the 
other meshing approaches. Ramos et al. [8] addressed the same geometries (simplified- 
and realistic proximal femur bone) as in the previous study by Viceconti [7]. In 
contradiction to the other studies, they observed that the simplified model of a proximal 
femur bone with linear tetrahedral elements is closer to the approximated analytical 
solution than the model with quadratic tetrahedrons, linear- and quadratic hexahedrons. 
The results obtained simulating the realistic proximal femur with first- and second order 
tetrahedral- and hexahedral elements did not show significant mesh dependence. 
 
The present paper is based on a similar concept but takes the previous research further 
with important development. Beams with a square cross section, a circular cross section 
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and a rail profile are investigated. The bending of a beam, fixed at one end and loaded at 
the other end is simulated and non-linear material behaviour is taken into account. 
Results of the square- and circular cross section beams are compared to an analytical 
reference solution. For the rail profile, an approximate analytical solution is obtained 
and also a convergence analysis is performed. In addition to the bending beams, a 
metallic foam with the complex geometry obtained by computed micro tomography is 
considered. No analytical solution is available for this complex geometry and therefore 
only a convergence analysis can be performed. This complex model was necessary to 
test the automatic mesh generation under more realistic conditions. 
 
2. Finite Element Analysis 
In the present study, finite element analyses are conducted in order to compare three-
dimensional solid element types. Full integration is used in all cases [9]. Linear- and 
quadratic hexahedral elements, linear- and quadratic tetrahedral elements, voxel meshes 
and mixed meshes (containing linear hexahedral-, linear tetrahedral- and pentahedral 
elements) are considered. The element type used in voxel meshes is identical to the one 
applied in the linear hexahedral meshes. The difference is that voxel meshes are 
assembled by uniform cubes whereas in a hexahedron mesh also distorted elements of 
different size may be used to achieve a more accurate geometric discretisation. The 
linear hexahedron element (MSC.Marc element type 7 [9]) is an eight-node, 
isoparametric, arbitrary element. This element uses trilinear interpolation functions and, 
accordingly, the strains are constant throughout the element. The stiffness of this 
element is formed using eight-point Gaussian integration. The quadratic hexahedron 
element (MSC.Marc element type 21 [9]) is a 20-node, isoparametric, arbitrary 
hexahedron. This element uses triquadratic interpolation functions to represent the 
displacements. The stiffness of this element is formed using 27-point Gaussian 
integration. The linear tetrahedron element (MSC.Marc element type 134 [9]) is a four-
node, isoparametric three-dimensional element. This element uses linear interpolation 
functions and the strains are constant throughout the element. For those elements the 
numerical integration is done by using one point at the centroid of the element. The 
quadratic 10-node tetrahedron element (MSC.Marc element 127 [9]) is a second-order 
isoparametric three-dimensional element. The stiffness of this element is formed using 
four-point integration. The mixed mesh contains the linear tetrahedron and hexahedron 
elements mentioned above. In addition, 6-node pentahedral elements (MSC.Marc 
element 136 [9]) may be used in the mixed mesh. This element uses trilinear 
interpolation functions and consequently the strains are constant throughout the 
element. The stiffness of this element is formed using six-point Gaussian integration.  
 
As discussed above, linear or higher order (i.e. quadratic) shape functions can be used in 
combination with the elements. However, the maximum number of elements is 
restricted by the available computer memory. Elements with higher-order shape 
functions (i.e. degrees of freedom) require additional memory to handle additional 
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nodes and therefore fewer elements can be used resulting in a less accurate 
discretisation of complex geometries. Accordingly, predominantly linear shape 
functions are considered in the present study. 
 
Two commercial software packages are used for automatic mesh generation. The first 
one is the commercial grid generation package Harpoon (Sharc Ltd). Harpoon is able to 
generate mixed, only-tetrahedrons and voxel meshes. For the mixed technique, Harpoon 
uses an octree technique [10] to mesh geometry using user-defined element size 
constraints. Mixed meshes are created in two steps. First, the volume is roughly 
approximated by a voxel type hexahedron mesh. In the second step, nodes are mapped 
on the surface and the surface is smoothed by adding additional tetrahedral- and 
pentahedral elements. The second software package HEXPRESSTM allows the 
generation of an only-hexahedron mesh. The input geometry is represented as a STL 
format surface. HEXPRESSTM requires a very clean and accurate representation of the 
surface prior to the generation of a volumetric mesh. In the first step, a rough mesh is 
created that encompasses the entire model. Then, the model is refined via an octree 
technique [11] so that cells are sufficiently small for capturing the details of the domain. 
At the next step, all cells of the octree-refined mesh that fall outside the domain or 
intersect its boundary are removed. The resulting mesh is then projected onto the 
surface geometry by moving nodes on the surface geometry. This method is also known 
as volume to surface approach. The commercial software Harpoon program has shown 
to be fast, robust and easy to use. In contrast, the meshing process with HEXPRESSTM is 
more time-intensive and at this time restricted to less complex geometries. The solution 
of the finite element models and the post-processing are realised with the commercial 
Software MSC.Marc (MSC Software Corp.). 
The bending of a beam, fixed at one end and loaded on the other end is simulated (cf. 
Fig. 1a) and non-linear material behaviour (ideal-plasticity with no plastic hardening) is 
accounted for. Three-dimensional beam models with different cross sections (cf. Fig. 
1b-d) are used for the assessment of different element types. The applied force on the 
end of the beam incrementally increases until the maximum force is reached. The 
numerical computation results are then compared to analytical solutions. The material 
properties of the beams are: Young´s modulus E = 210 000 N/mm2, Poisson´s ratio ν = 
0.3 and initial yield stress k = 112.5 N/mm2. 
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Fig. 1. Beam geometries: a) cantilever beam oriented in the x-direction and loaded in 
the negative y-direction; b) square cross section (l = 100 mm, a = 20 mm); c) circular 
cross section (l = 100 mm, d = 20 mm); d) simplified rail profile S54 [15] (l = 473.11 
mm, b1 = 70 mm, b2 = 16 mm, b3 = 87.7 mm, b4 = 125 mm, h1 = 55 mm, h2 = 70 mm, h3 
= 29 mm, h4 = 12 mm, h5 = 43.3 mm, h6 = 79 mm, h7 = 154 mm, h8 = 14.4 mm). 
 
A second set of finite element models is based on computed tomography data of 
metallic foam (cf. Fig. 2a). Segmentation (identification of metallic and void phases) of 
the CT data was done using the imaging and editing software Mimics (Materialize). The 
obtained geometry was then meshed with the different meshing software packages 
mentioned earlier. Compressive loading was simulated according to the boundary 
conditions shown in Fig. 2b. The metallic foam is constrained at three surfaces (grey 
planes) by confining the displacement in the corresponding normal direction of each 
surface. Compressive loading is simulated by a time-dependent nodal displacement in 
the negative y-direction. A non-linear material model of AlCu4SiMg (Aluminium 2014-
O) was applied [12] with E = 73 100 N/mm2, ν = 0.33 and k = 185 N/mm2. 
 

 
Fig. 2. Compressive testing: a) computed tomography 3D reconstruction of Empore® 
foam; b) schematic drawing of boundary conditions. 
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3. Analytical Solution 
The analytical expression for the vertical displacement of the centre-line at the free end 
of the beam is calculated for all beam profiles (cf. Fig. 1b-d). Elastic and elasto-plastic 
material behaviour is considered. The following equations for the elastic solution are 
taken from the engineering mechanic text [13]. The total deflection of the beam w(x) is 
calculated with Eq. (1) and contains a bending wb(x) and a shear ws(x) component. For 
the geometries considered, bending is the dominant effect. 

)()()( sb xwxwxw +=          (1) 

The bending solution is calculated with Eq. (2) where F is the applied Force, l the total 
length of the beam, E is Young’s Modulus, Iz the moment of inertia (see Table 1) and 
the x-coordinate is the distance from the fixed side: 
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The shear deflection ws is calculated with Eq. (3) where G is the shear modulus (for 
isotropic material behaviour see Eq. (4)) and the shear area As (see Table 1) which is the 
area A of the cross section multiplied by the shear correction factor: 
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The analytical solution for plastic material behaviour is used as given in [14]. This 
solution is based on the main Bernoulli-Navier assumption that distribution of the stress 
component in the x direction, σxx (= σ), is a function only of the x and y (see Fig. 1a) 
variables but not the z variable. Moreover, only a linear distribution of the axial strain 
component εxx (= ε) is permitted in the elastic response regions. 
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As = 0.42A, 
A = 7031.81 mm2 

Table 1: Equations for the moment of inertia and shear area for square-, circle- and rail 
cross sections. 
 
The representative equivalent plastic strain distribution is shown in Figure 5a-d. It can 
be observed that these assumptions are only fulfilled in the case of the square and 
circular cross sections. The assumption is no longer valid in the case of the rail profile 
accordingly to the equivalent plastic strain distribution. In general, there is no restriction 
on the nature of irreversible inelastic response. However for the purposes of the present 
research we decided to use ideal-plasticity with no plastic hardening. 
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Fig. 3. Plastification and position of the neutral axis on a rail profile. 
 
As a consequence of the main assumption the set of the quantities required for the 
problem to be solved is {ap(x), ρp(x), w(x)} where ap and ρp describe the degree of 
plastification and its impact on the displacement of the neutral axis (cf. Fig. 3) and w is 
the beam deflection in the y direction. Equations for ap and ρp are: 
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where A(x) is the cross-section of the beam at x; Ap(x) is the region of plastic 

deformations in A(x): Ap(x) =  {A(x) ∩ {(y,z), y > ap + ρp} ∩ {(y,z), y < ap – ρp}};  
whereas Ae(x) is the region of elastic only deformations in A(x): Ae(x) = {A(x) – Ap(x)}. 
Ae(x) is located centrally around the actual neutral axis. M(x) is the applied moment; σ0 
is the yield stress; σp is the plastic stress which in general can be a function of plastic 
deformations and the y and x variables, but in our chosen model for plasticity without 
plastic hardening we have that σp is constant and equal to σ0. 
Accordingly, the equation for w(x) yield: 
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where Ωe and Ωp are elastic and plastic sections of the beam, respectively. These 

sections are made by cutting the beam perpendicular in the x direction. In Ωe there is no 

plastic deformation (or yield stress is not exceeded) and Ωp is the remaining part of the 

beam. Ωp comprises all cross sections that are characterized by the presence of plastic 

deformations. Obviously, in Ωe the elastic solution outlined above is followed.  
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If the load F is lower than the critical value Fcr = a3k/6l then only linear deformations 
are present in the beam. Once the load F is greater than the critical value Fcr plastic 
deformations are developed in the beam. 
For the elasto-plastic region Ωp solution for the square beam can be found in closed 

form as follows. For the functions ρp(x) and wp(x) we have following expressions: 
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+ l) = m1x + m0; constants c1 and c0 can be found from the boundary conditions between 
elastic only (described by general Eq. (1-3) and elasto-plastic regions (Eq. (11)) where 
w(x) and its first derivative must be continuous functions. 

Now the volume Vp of the plastic region in Ωp can be calculated as follows: 
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For the cases of circular and rail beams for each load F (and associated moment M(x)) 

we solved Eq. (9) for a set of points in the elasto-plastic region Ωp and then integrated 
Eq. (10) numerically (using the solution for the elastic region – Eq. (1-3)). The resulting 
values are presented in the next section. 
 
4. Results and Discussion 

4.1. Bending beams 
Numerical computations for all beams are performed with the following mesh types: 
mixed, linear hexahedron, linear tetrahedron and voxel. Beam models with different 
numbers of nodes (10 000, 50 000 and 150 000) are investigated and the elastic 
gradient, maximum deflection, plasticity volume and processing time are evaluated. 
Analytical force-deflection curves and selected numerical solutions with the least 
deviation are plotted in Figure 4. It can be observed that the analytical solution of the 
square- and circular beam is in excellent agreement with the corresponding numerical 
solutions (see Fig. 4a). In contrast, Figure 4b shows that the analytical solution of the 
rail profile deviates from the numerical solution. The reason for this deviation are the 
simplifications presumed for the analytical solution, i.e. that the plastic strain has a 
constant horizontal distribution in the yz-plane. The area where the equivalent plastic 
strain obtained by finite element analysis is not equal to zero is coloured grey in Figure 
5. Figure 5d shows that the numerical computation of the rail profile leads to a curved 
plastic strain distribution that strongly deviates from the analytical assumption. In 
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contrast, the square and circular beams (cf. Figure 5b, c) show only a very minor 
deviation between the assumed analytical and the numerical plastic strain distribution. 
Accordingly, good agreement of the analytical and numerical solutions is obtained. Due 
to the poor agreement between numerical and analytical solution in case of the rail 
profile, a high-resolution finite element model (300 000 nodes) is used as reference 
instead. 
 

 
Fig. 4. Force-deflection-curves: a) square- and circular beam; b) rail profile. 
 

 
Fig. 5. Total equivalent plastic strain distribution: a) longitudinal view of the square- 
and circular beam; b) cross section of the square beam; c) cross section of the circular 
beam; d) cross section of the rail. 
 
For the comparison of the different mesh types first the elastic gradient is considered. 
The elastic gradient is obtained from the initial constant slope ∆F/∆D of the force-
displacement curve in the elastic region (cf. Fig. 4a). Figure 6a shows the deviation to 
the reference solution. As expected, an increase of the number of elements also 
decreases the deviation. It can be observed that the mixed meshes achieve the most 
accurate results independent of the cross-section. In good agreement with earlier results 
[4, 5, 6], the highest deviation is observed for the linear tetrahedral elements. 
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The maximum displacement at the end of the beam obtained for the maximum load F is 
addressed in Figure 6b. It should be mentioned here that according to Eq. (1) this value 
contains elastic and a plastic component. The absolute deflection deviation quantifies 
the difference between the numerical and reference solutions. As already observed for 
the elastic solution the most accurate results are obtained by the mixed mesh. Likewise, 
the linear hexahedron meshes exhibit consistently good results and poor accuracy is 
found for the linear tetrahedrons. 
 
The initial deformation of the beam is purely elastic. Plastification starts at higher 
bending loads at the upper and lower surface at the clamping where the maximum 
stresses arise. In the case of the symmetric square- and circular beams also the plastic 
deformation field develops symmetrically. For the rail profile, the plasticity starts at the 
upper surface due to higher stresses (cf. Fig. 3). The load is then increased 
incrementally and the volume of plastic deformation continues to grow and propagate. 
This volume is used for further benchmarking of different mesh types for non-linear 
material behaviour (cf. Fig. 6c). The reference values for the square beam (load F = 
2000 N) and circular beam (load F = 1450 N) are obtained by making use of the 
analytical solution. They are 1925 mm3 (direct use of the Eq. (13)) and 2885 mm3 
(numerical integration of Eq. (10)), respectively. For the rail profile, the reference value 
164 245 mm3 is obtained by the finite element reference model (mixed mesh, 300 000 
nodes, load F = 80 000 N). It can be observed that in accordance with the previous 
results, mixed meshes achieve the most accurate results and linear tetrahedron meshes 
show the highest deviation. 
 
The processing time (computational weight) is shown in Fig. 6d. The simulations were 
done on a DELL Precision T7400 machine with Windows Vista 64-Bit, 2.5 GHz and 64 
GByte of RAM memory. It can be seen that linear hexahedral elements require the 
longest calculation times. Surprisingly, small calculation times are observed for mixed 
meshes. 
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Fig. 6. Results of the mesh comparison study for the different bending beams: a) elastic 
gradient; b) deflection; c) plasticity volume; d) processing time. 
 
 

4.2. Metallic Foam 
The second part of the mesh analysis simulates the compressive testing of a segment of 
Empore® metal foam. In addition to the mesh types considered before, quadratic 
tetrahedron meshes (MSC.Marc element type 127 [9]) are investigated. No analytical 
solution is available for this complex geometry and therefore only a convergence 
analysis can be performed. In order to study the convergence behaviour, meshes with 
different numbers of nodes (5 000, 20 000, 50 000, 100 000, 200 000 and 250 000) are 
generated. For each mesh, volume deviation, Young’s modulus, the 0.2% offset yield 
strength and processing time are determined. The solution of the highest resolution 
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mesh with 250 000 nodes (hexahedron-only type) is chosen as the reference solution (E 
= 209.15 MPa, Rp0.2 = 0.84 MPa). It should be mentioned here that the foam segment 
does not necessarily comprise a representative volume, and accordingly the obtained 
results cannot be interpreted as representing the macroscopic properties of Empore® 
aluminium foam. However, the foam segment exhibits a complex geometry and is 
therefore highly suitable for the comparison of finite element mesh types. The size of 
the meshed volume is limited due to the work-intensive meshing procedure using the 
software HexpressTM. 
The absolute volume deviation (cf. Table 2a) describes the difference between the 
volume obtained by the computed tomography data and the various FE volume meshes. 
The value is an indicator for the accuracy of the geometric representation. An excellent 
geometric representation is obtained for the mixed meshes and linear tetrahedron 
meshes. Linear hexahedron meshes show a slightly higher deviation followed by 
quadratic tetrahedron and voxel meshes. The poor performance of the quadratic 
hexahedron meshes is due to a smaller number of elements for a fixed number of nodes. 
As an example, approximately 100 000 nodes correspond to 66 000 elements in the 
quadratic tetrahedron mesh and 530 000 elements in the linear tetrahedron mesh.  
The results for Young’s modulus are shown in Table 2b. The absolute deviation with 
the numerical convergence solution is given as a percentage. It can be observed that the 
linear hexahedron meshes and the mixed mesh converge faster towards the reference 
solution than the tetrahedral elements. The deviation continuously decreases with 
increasing numbers of elements. Interestingly, mixed type meshes already show good 
convergence even for a relatively low number of nodes (50 000 nodes). In comparison, 
a strong deviation is obtained by the quadratic tetrahedral elements which might be 
caused by the poor geometric representation of the volume (cf. Table 2a) due to a lower 
number of elements. Very poor results are obtained for the voxel type meshes with a 
deviation of over 70%. 
The stress-strain response of metal foam generally does not show a well recognizable 
yield point. Instead, the 0.2% offset yield strength is determined. To this end, a line with 
the gradient E that intersects the x-axis at value 0.2 % is drawn. The stress at the 
intersection of this line and the stress–strain curve is reported as the 0.2% offset yield 
strength. This parameter (cf. Table 2c) shows the same trend already observed for 
Young’s modulus: linear hexahedron and mixed meshes show a faster convergence than 
linear tetrahedrons meshes. Again, the quadratic tetrahedron and voxel meshes yield 
poor results. 
The processing time (computational weight) is considered in Table 2d. Linear 
hexahedron and voxel meshes require high processing times for calculation. In 
comparison, the processing of tetrahedron and mixed meshes is faster. For 100 000 
nodes, the quadratic tetrahedron mesh requires the lowest processing time. 
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a) Abs. Volume Deviation [%] 
 

Nodes 250 000 200 000 100 000 50 000 20 000 5 000 
Hex. (8) 1.44 1.71 3.01 N/A N/A N/A 
Mixed N/A 0.60 1.00 1.60 3.25 9.92 
Tet. (4) N/A 0.69 1.11 2.43 3.23 N/A 
Tet. (10) N/A N/A 4.42 N/A N/A N/A 
Voxel N/A 31.95 36.89 N/A N/A N/A 
Reference is obtained from the CT-record = 699134.94 mm3 
 

b) Abs. Young’s Modulus Deviation [%] 
 

Nodes 250 000 200 000 100 000 50 000 20 000 5 000 
Hex. (8) Reference* 0.03 7.75 N/A N/A N/A 
Mixed N/A 1.27 1.43 1.33 1.97 10.25 
Tet. (4) N/A 4.42 5.67 6.87 10.10 N/A 
Tet. (10) N/A N/A 54.28 N/A N/A N/A 
Voxel N/A 72.69 88.77 N/A N/A N/A 
*Reference = 209.15 MPa 
 

c) Abs. Rp 0.2 Deviation [%] 
 

Nodes 250 000 200 000 100 000 50 000 20 000 5 000 
Hex. (8) Reference* 0.01 4.42 N/A N/A N/A 
Mixed N/A 0.89 1.74 2.65 8.21 12.47 
Tet. (4) N/A 5.10 7.20 13.26 17.42 N/A 
Tet. (10) N/A N/A 43.28 N/A N/A N/A 
Voxel N/A 71.47 85.23 N/A N/A N/A 
*Reference = 0.83 MPa 
 

d) Processing Time [min] 
 

Nodes 250 000 200 000 100 000 50 000 20 000 5 000 
Hex. (8) 2820 1390 960 N/A N/A N/A 
Mixed N/A 1340 530 420 90 10 
Tet. (4) N/A 1100 530 85 50 N/A 
Tet. (10) N/A N/A 390 N/A N/A N/A 
Voxel N/A 1500 1420 N/A N/A N/A 
                                

e) Distorted Elements [%] 
 

Nodes 250 000 200 000 100 000 50 000 20 000 5 000 
Hex. (8) 51.16 53.72 61.02 N/A N/A N/A 
Mixed N/A 60.91 69.68 76.91 82.13 94.76 
Tet. (4) N/A 93.03 95.23 96.64 97.45 N/A 
Tet. (10) N/A N/A 97.67 N/A N/A N/A 
Voxel N/A 0 0 N/A N/A N/A 
For the distorted elements a threshold value of 0.3 is used. 
Table 2: Results for the Empore® foam. 
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4.3. Discussion 

A comparative analysis of the results shows a clear trend: mixed and hexahedron 
meshes are superior to voxel and tetrahedron meshes. This is in good agreement with 
earlier investigations [4-7]. In the following, the performance of mixed and hexahedron 
meshes will be compared in detail. 
 
First, let us consider the bending beams. The mesh generation for the relatively simple 
beam geometries is unproblematic for both mesh types. The elastic solution of the 
bending beams is benchmarked using the elastic gradient of the force-deflection curve 
(cf. Fig. 4a). For the circular and rail cross section, mixed meshes showed a faster 
convergence towards the reference solution. It should be mentioned here that in the case 
of the square cross-section, no mixed mesh was created since this would simply have 
resulted in another hexahedron mesh. These findings are confirmed for non-linear 
material behaviour (deflection Fig. 6b and plasticity volume Fig. 6c). Again, mixed 
meshes show a slightly better performance than hexahedron-only meshes. Evaluation of 
processing times shows faster processing of mixed meshes in comparison with 
hexahedron meshes.  
The superior performance of mixed meshes is confirmed in the analysis of the metallic 
foam segment. A hexahedron mesh with 250 000 nodes is chosen as a reference solution 
for the convergence analysis. It is important to note that this reference solution exhibits 
a volume deviation of 1.44% to the target geometry. Accordingly, small deviations in 
the results are likely to be caused by this geometric deviation. Mixed meshes allow an 
accurate geometric representation of the metallic foam segment and showed the lowest 
volume deviation among all mesh types (cf. Table 2a). The generation of only-
hexahedron meshes imposes a major constraint on the geometric complexity. The 
meshing procedure is extremely work-intensive in comparison with the generation of 
mixed meshes. In addition, the maximum size of hexahedron meshes is currently 
restricted by the ability of the meshing software to address sufficient amount of RAM. 
The elastic solution (Young’s modulus, cf. Table 2b) shows fast convergence for mixed 
meshes. Hexahedron meshes only yield good convergence for more than 100 000 nodes. 
A similar behaviour is observed for 0.2% offset yield strength (cf. Table 2c). Finally, 
mixed meshes require lower processing time than hexahedron ones (cf. Table 2d). One 
likely explanation for the superior performance of mixed meshes is their lower number 
of distorted elements. The additional use of tetrahedral- and pentahedral elements in 
mixed meshes allows for an accurate approximation of complex shapes without the 
necessity of strongly distorted element that may arise in hexahedron-only meshes or 
tetrahedron meshes. This theory is supported by the results displayed in Figure 7 and for 
the foam segment in Table 2e. Elements with a distortion value greater than the user 
specified threshold value are identified as distorted. The analysis is performed with a 
threshold value of 0.3. The distortion of an element is calculated by evaluating the 
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angles between the edges of the element. It can clearly be seen that mixed meshes have 
less distorted elements than hexahedron meshes. 

 
 
Fig. 7. Distorted elements in the beam geometries. 
 
Conclusion 
In the present study, bending beams with different cross-sections and the compression 
of a metal foam segment were simulated. Where possible, results were compared with 
analytical benchmark solutions. In all other cases, numerical convergence analysis was 
performed. The results indicate that linear mixed meshes are superior to linear 
hexahedron, linear- and quadratic tetrahedron and linear voxel meshes. Mixed meshes 
yield accurate results and allow a simple mesh generation. In addition, they are 
characterised by an accurate volume representation and fast processing times. With 
respect to the calculation accuracy, linear hexahedron meshes achieve comparable 
results. However, unlike mixed meshes, the meshing of complex geometries is work-
intensive and currently restricted to smaller models. In addition, hexahedron models 
require slightly longer processing times. Tetrahedron and voxel meshes showed mostly 
poor results, in particular with respect to the accuracy of results, and should be avoided 
for non-linear mechanical finite element analysis.  
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