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Abstract: This paper studies stability of Model Predictive Control for systems with a finite
input alphabet. Since this kind of systems may present a steady-state error under closed-
loop control, the forms is on stability in the sense of ultimate boundedness of solutions. To
derive sufficient conditions for stability, two different approaches are presented. The first one
approximates the finite input alphabet via saturation-control allowing us to analyze the problem
from a robust control perspective. In the second approach, a direct analysis of the problem is
carried out. The results thus obtained are shown to be less conservative regarding ultimate
bounded set than those obtained via the robust control approach.

Keywords: Quantization; Model predictive control; Stability; Ultimate boundedness

1. INTRODUCTION

Model predictive control (MPC) is a control technique
capable to deal with state and input constraints. Most
work has focused on convex constraints (Mayne et al.
(2000)). However, in several control problems, the control
input is characterized by a finite alphabet of possible
control actions. One of the most studied cases is related
to on-off system, e.g., power electronics converters (see
Goodwin et al. (2010)), where each input is restricted to
take just two values. Digital control systems also belong
to this class of controller since they are affected by a
quantization process (Quevedo and Goodwin (2003)).

MPC has been extensively applied to system with finite
input alphabet. In Cortés et al. (2008), a survey about
different predictive strategies applied to power electronics
has been presented. One of the most widely used is
the so-called Finite Control Set-MPC (FCS-MPC) which
considers the switching elements as control inputs. The
main advantage of such strategies comes from the fact
that switching actions are explicitly tacked into account.
Consequently, modulation stages (to handle the switches)
are not required.

Whilst stability of convex MPC formulations is relatively
well understood, less is known in the finite alphabet case.
In Picasso et al. (2003) a receding-horizon formulation
for LTI systems with quantized input has been presented.
Here, the stabilization problem is based on the search of
invariant sets (without relying on Lyapunov techniques).
In Quevedo et al. (2004), some stability results for linear
systems with finite constraint sets have been presented.
However, analysis is restricted to open-loop stable systems.
Moreover, the origin must be an element of the finite
control set.

A key observation is that when system inputs are restricted
to belong to a finite set, in general, the best one can hope

for, is that state trajectories be bounded. Therefore, in the
present work we will focus on practical stability or ultimate
boundedness. Here, will we study two analysis methods.
The first approach approximates the input via saturation
control whereupon the elements of the finite control set
are treated as the quantization levels. This gives rise to a
quantization error which can be considered as a bounded
disturbance. Thus, FCS-MPC can be analyzed as a robust
problem; see, e.g., (Lazar et al. (2008), Raković (2009) and
Raimondo et al. (2009)).

The second approach is based on a more direct analysis of
the system. Here, we present an MPC stability analysis
method for the original system, with a suitable local
controller. The latter acts in the terminal region and is
used to establish stability and also to define the final
invariant set. In this case, as it will be shown in this work,
the obtained final invariant set is smaller than the obtained
one via ISS, due to the fact that no-approximations are
considered over the system state predictions.

NOTATION AND BASIC DEFINITIONS

Let R and R≥0 denote the real and non-negative real
number sets. The difference between two given sets A ⊆
Rn and B ⊆ Rn is denoted by A\B = {x : x ∈ A, x /∈
B}. We represent the Euclidean norm by | · | and the
weighted Euclidean norm by |x|2P = x′Px. We define a
neighborhood of the origin as a ball via Bδ = {x ∈ Rn :
|x| < δ}, where δ is a positive number. We represent the
transpose of a given matrix A via A′.

Definition 1. (K Functions). A function σ: R≥0 → R≥0
is said to be a K function if it is continuous, strictly
increasing and σ(0) = 0; σ is a K∞ function if it is a K-
function and unbounded (σ(s)→∞ as s→∞); a function
β: R≥0 × R≥0 → R≥0 is a KL-function if it is continuous
and if, for each t ≥ 0, the function β(·, t) is a K-function
and for each s ≥ 0 the function β(s, ·) is nonincreasing and
satisfies that β(s, t)→ 0 as t→∞.



2. PROBLEM DESCRIPTION

Consider the following system

x+ = f(x, u), (1)

where x ∈ X ⊆ Rn is the system state and u ∈ U ⊂ Rm is
the control input vector. Each element ui is restricted to
belong to a finite set of p-elements such that

ui ∈ U = {u1, . . . , up}. (2)

It is necessary to find a suitable control law u = κ(x) which
can lead the system state to the origin. To do this, one can
use a MPC strategy, in where the system behavior can be
forecast by using a cost function V (x).

In this case, the optimal control problem, PN (x), for the
system (1), can be stated as

PN (x) : V 0
N (x) = min

u
{VN (x,u) | u ∈ UN (x)} (3)

where UN (x) is the set of inputs u = {u(0), · · · , u(N −1)}
which satisfies

x(k) ∈ X, ∀k ∈ {0, · · · , N}, (4)

u(k) ∈ U, ∀k ∈ {0, · · · , N − 1}, (5)

x(N) ∈ Xf . (6)

The cost function has been defined as

VN (x,u) =

N−1∑
k=0

`(x(k), u(k)) + Vf (x(N)). (7)

Due to the fact that elements of the set U can only be con-
sidered in the minimization, one can evaluate each element
of this set (2) in the proposed cost function and then obtain
an optimal input sequence, u = {u(k), . . . , u(N−1)} which
minimizes the cost function and satisfies constraints (4)-
(6). This methodology is called Finite-Control-Set MPC
(FCS-MPC). Therefore, this strategy directly provides
a valid input. Nevertheless, establishing stability of this
methodology still remains as an open problem. In Quevedo
et al. (2004), stability of LTI systems, x+ = Ax + Bu,
under quadratic MPC has been presented. However, this
analysis is limited to those LTI systems in which the
matrix A is Hurwitz, i.e. the plant model is open-loop
stable. Additionally, the finite control set U must include
the origin in its interior.

To overcome these limitations, it is necessary to take into
account the nature of the input. Since this is restricted to
belong to a finite set U which could not include the origin
in its interior, it is not possible to guarantee convergence
of the system to the origin due to the fact that oscillations
around it (steady-state error) can be presented. For this
reason, the performance of these control strategies are
addressed in terms of practical stability which is also
referred to as ultimate boundedness Khalil (2001).

Definition 2. (Uniform Practical Stability) Let δ be a
positive number. The ball Bδ ⊂ A is said to be Uniformly
Practically Asymptotically Stable (UpAS) for (1) if there
exists a KL-function β such that the solution of (1) from
any initial state x0 ∈ A satisfies

|x(k, x0)| ≤ β(|x0|, k) + δ, ∀k ≥ 0, ∀x ∈ A.
Additionally, the ball Bδ is said to be Uniformly Practi-
cally Exponentially Stable (UpES) for (1) if there exist a
positive number c and a constant ρ ∈ (0, 1) such that

β(|x0|, k) = c · |x0| · ρk,

To establish this kind of stability, we investigate in this
work two methods. The first one is based on approximating
the input via saturation control and uses results from
robust control, in particular input-to state stability. The
second one presents a direct analysis which gives some
conditions to be satisfied for the cost function in the
terminal region Xf .

3. ROBUST CONTROL ANALYSIS

In order to consider FCS-MPC strategy as a robust control
problem, we first approximate the system considering the
finite input alphabet in (1) as a saturated control ū, which
is defined as:

ū = { ū ∈ Ū : ūj ∈ [umin, umax], ∀j ∈ {1, · · · ,m} },
in which ūmin < u1 and ūmax > up.

Now we can consider that real input u as defined in (2) is
a quantization of the saturated input ū. This allow us to
represent the real input as u = ū + v, where v stands for
the quantization error which is defined via

v = { v ∈ V : |vj | ≤ µ, ∀j ∈ {1, · · · ,m} }. (8)

Now, the quantized input system (1) can be defined by

x+ = f(x, ū) + w, (9)

where w = f(x, u) − f(x, ū) represents the state distur-
bance produced by the input quantization noise v which
is expressed by

w = { w ∈W : |wj | ≤ ρw · µ, ∀j ∈ {1, · · · ,m} },
in which ρw > 0.

Notice that, since sets U and Ū are bounded, the input
quantization noise set V and system disturbance set W
are also bounded.

Recently, researches related to MPC have shown that
this useful technique can also guarantee robust stability
in some cases. In this area input-to state stability (ISS)
concepts (Jiang et al. (2001), Jiang and Wang (2002))
have shown to be a good framework to determine ro-
bustness of nominally stable MPC controller specially for
the predictive technique called min-max MPC, (see Magni
et al. (2006), Limón et al. (2006), Lazar et al. (2008) and
Raimondo et al. (2009)). Other methodology to obtain
robust MPC controller is the so-called tube based MPC
(Raković (2009), Raković et al. (2006)). This technique has
recently emerged and is based on determining sequence of
reachable sets which form a tube considering the nominal
system trajectory as its center.

The following assumption on the system is considered:

Assumption 3. The nominal system in (9) is such that the
origin is an equilibrium point f(0, 0) = 0 and there is a
CLF as a cost function V (x) which makes that the origin
is asymptotically (or exponentially) stable.

Remark 4. It is important to emphasize that unlike in
Quevedo et al. (2004), here we do not require that the
origin belongs to the finite set U. However, to satisfy
Assumption 3, the origin must be included in the interior
of the associated nominal input set Ū.

Due to the fact that quantization error is bounded and
nominal system is considered stable, ISS is a suitable tool
to establish stability for this kind of systems.



3.1 Regional ISS

ISS concepts have been extensively used to establish robust
stability for discrete-time nonlinear systems, based on the
works presented in Jiang et al. (2001) and Jiang and Wang
(2002). Recently, this technique has been extended to work
with constrained states and inputs, see Magni et al. (2006).
This is called regional ISS.

Next, some necessary definitions are presented in order to
define the regional ISS theorem.

Definition 5. (Robust control invariant set). A set A is
robust control invariant for the system (9) if for every x ∈
A there exists an input u ∈ U such that x+ ∈ A ∀w ∈W.

Definition 6. (Regional ISS (Magni et al. (2006))). Given
a compact set A ⊂ Rn including the origin in its interior,
the system (9) is said to be ISS in A if A is robust control
invariant for (9) and if there exists a KL-function β and a
K-function γ such that

|x(k, x0, w)| ≤ β(|x0|, k) + γ(µ), ∀k ≥ 0, ∀x ∈ A.

This ISS property allows one to define an associated
Lyapunov function as follows.

Definition 7. (Regional ISS-Lyapunov Function (Magni
et al. (2006))). A function V : Rn → R≥0 is said to be
an ISS-Lyapunov function in A for the system (9) if A is a
robust control invariant set and the origin is in its interior
and if there exists a compact set Ω which also includes the
origin in its interior, some K∞-functions α1, α2 and α3,
some K-functions α4, σi and εi such that

V (x) ≥ α1(|x|), ∀x ∈ A
V (x) ≤ α2(|x|) + εi(µ), ∀x ∈ Ω

∆V (x) = V (f(x, ū) + w)− V (x)

≤ −α3(|x|) + σi(µ), ∀x ∈ A, ∀v ∈ V (10)

D = {x ∈ Ω : V (x) ≤ α4(µ) ≤ b} ⊂ Ω.

The following result was presented in Magni et al. (2006)
as Theorem 2:

Theorem 8. (Regional ISS-Lyapunov Function implies Re-
gional ISS). If the system (9) admits an ISS-Lyapunov
function in A, then (9) is ISS in A. Moreover, ∆V (x) < 0
for all x ∈ A\D. It implies that the system will be steered
to the final positive invariant set D where system will
remain once it is reached.

3.2 Regional ISS applied to FCS-MPC

Here we will show how to establish stability of MPC when
the quantization error is propagated over the prediction
horizon. Moreover, if the system and the cost function are
locally Lipschitz-continuous then exponentially stability
can be guaranteed.

Assumption 9. (Locally Lipschitz continuity of the Model).
System x+ = f(x, u) is locally Lipschitz in x in the domain
X× U with a Lipschitz constant Lf such that

|f(x1, u)− f(x2, u)| ≤ Lf |x1 − x2|, ∀x ∈ X, ∀u ∈ U.
Assumption 10. (Locally Lipschitz continuity of the stage
cost). Stage cost function in (7) is locally Lipschitz in x in
the domain X× U with a Lipschitz constant Ll such that

|`(x1, u)− `(x2, u)| ≤ Ll|x1 − x2|, ∀x ∈ X, ∀u ∈ U.

Assumption 11. (Locally Lipschitz continuity of the final
cost). Final cost function in (7) is locally Lipschitz in x in
the domain X×U with a Lipschitz constant LVf

such that

|Vf (x1, u)− Vf (x2, u)| ≤ LVf
|x1 − x2|, ∀x ∈ Xf , ∀u ∈ U.

Assumption 12. (Nominal Exponential Stability). In Def-
inition 7, αi = ci|x|a where ci > 0 ∀i ∈ {1, 2, 3} and a > 0,
the nominal system x̄+ = f(x̄, u) under MPC, the origin is
exponentially stable with a region of attraction XN . That
is, there exists a KL-function β, a constant c > 0 and a
constant ρx ∈ (0, 1) such that

|x(k, x0)| ≤ β(|x0|, k) = c · |x0| · ρkx,
and a constant ρv ∈ (0, 1) such that

V 0
N (f(x, κN (x))) ≤ ρv · V 0

N (x), ∀x ∈ XN . (11)

Now we can define the following Lema:

Lemma 13. (Locally Lipschitz continuity of the cost func-
tion (Limón et al. (2002).)). Considering that Assumptions
9-11 hold. Then, cost function (7) is locally Lipschitz in x
in the domain X × U with a Lipschitz constant LJ such
that

|V (x+, u)− V (x̄+, u)| ≤ LJ · ρw · µ,
where

LJ = Ll
LN−1f − 1

Lf − 1
+ LVf

· LN−1f . (12)

Theorem 14. (ISS of FCS-MPC). Let suppose that nom-
inal system x+ = f(x, ū) is exponentially stable and the
quantization error in (8) is bounded by

µ ≤ b · (1− ρv)
Lj · ρw

.

Then system (9) controlled by FCS-MPC is UpEs.

Proof. Since Assumption 12 holds, from Definition 7 one
can see that (15) and (16) are satisfied when α1 = c1|x|a,
α2 = c2|x|a, A = XN and Ω = Xf .

Now we can see that the cost function evolves along the
uncertain system trajectories according to

∆V (x) = V (f(x, κN (x)) + w))− V 0
N (x)

≤ V 0
N (f(x, κN (x))) + Lj · ρw · µ− V 0

N (x) (13)

≤ −α3(|x|) + Lj · ρw · µ, ∀x ∈ XN ,

where α3 = c3|x|a and σi(µ) = Lj · ρw · µ.

It implies that the system will be steered by the controller
towards the set Xf and then into the set D ⊂ Xf . Once D
is reached (V (x) ≤ b), and taking into account Assumption
12, one can expressed the cost function as follows

V (f(x, κN (x)) + w)) ≤ ρvV 0
N (x) + Lj · ρw · µ

≤ ρv · b+ Lj · ρw ·
b · (1− ρv)
Lj · ρw

≤ b.
This result proves, as established in Definition 5, that the
final set D is a robust control invariant set and it is ,by
Definition 2, UpES.

�

4. DIRECT ANALYSIS

In the analysis depicted in Section 3, robust stability
has been established taking into account only bounds of



the quantization effect (worst case scenario), determining
the propagation of the disturbance effect over the cost
function. In this section, we present a direct analysis
to establish a uniform practical stability for FCS-MPC
strategy were no approximations are considered over the
system predictions except for the last element.

Assumption 15. (Terminal Region Condition) For a K-
function σp, the cost function satisfies the following con-
dition:

min
u∈U
{Vf (f(x, u) + `(x, u)− Vf (x)} ≤ σp(µ), (14)

for all x ∈ Xf and f(x, u) ∈ Xf .

This assumption implies that for all x ∈ Xf there exists
an input u ∈ U such that f(x, u) ∈ Xf . This means that,
by Definition 5, Xf will be a robust control invariant set.

Theorem 16. (Uniform Practical Stability of FCS-MPC).
Let Ddp = {x ∈ Xf : |x| < dp} be a neighborhood of the
origin. If

(1) there exist two K∞-functions α1, and α2, and some
K-function α3, εp and σp such that the cost function
satisfies that

V (x) ≥ α1(|x|), ∀x ∈ XN (15)

V (x) ≤ α2(|x|) + εp(µ), ∀x ∈ Xf (16)

∆V (x) = V (f(x, u))− V (x)

≤ −α3(|x|) + σp(µ), ∀x ∈ XN . (17)

(2) for all x ∈ XN \ D the condition `(x, u) > σ(µ) is
satisfied.

Then, Ddp is UpAS for system (1) under FCS-MPC
strategy presented in (3)-(7).

The proof follows the shifted sequence technique as used,
e.g, in Rawlings, J. B. and Mayne, D. Q. (2009). It is
included in Appendix A.

Remark 17. It is important to emphasize that u in (14)
only considers elements from the finite set U defined in
(2). Therefore, the cost function V (f(x, u)) in (17) is
not approximated unlike in (10) where the system error
w is propagated ahead (considering the worst case) over
the predictions in the cost function V (f(x, ū) + w) , as
presented in Lemma 13.

Corollary 18. Let consider that in Theorem 16 αi = ci|x|a,
where ci > 0 ∀i ∈ {1, 2, 3} and a > 0. Then, Ddp is UpES
for system (1) under FCS-MPC strategy.

5. EXAMPLE: LTI SYSTEM WITH
QUANTIZED-INPUT

As an illustrative example we apply the ideas presented
in the previous section to a linear time-invariant (LTI)
system. Therefore, the system to be controlled will be
represented by

x+ = f(x, u) = Ax+Bu, (18)

where matrix A is not necessary stable. The state x is
subject to the constraint x ∈ X ⊂ Rn and the control u
is constrained to belong to a finite set, u ∈ U ⊂ Rm as
shown in (2).

Regarding to the cost function V (x) presented in (7), the
stage cost is defined as `(x, u) = |x|2Q + |u|2R where Q and

R are positive definite. In addition, the final cost is defined
as Vf = |x|2P in which P is positive definite.

The key idea to establish stability of FCS-MPC is based
on finding a suitable controller, uf = κ(x), which acts
in the terminal region Xf in order to satisfy the stability
conditions presented in the Theorem 16.

It is well known that for a disturbance-free LTI system
under linear quadratic MPC one can consider uf = Kx
as a stabilizing controller for the terminal region Xf (see
Section 2.5 in Rawlings, J. B. and Mayne, D. Q. (2009)).

For our system, we propose to use the quantized input of
the nominal solution, it means uf = q{Kx} = Kx + v.
Thus, the system can be expressed via:

x+ = AKx+ w, ∀x ∈ Xf . (19)

where AK = A+BK and w = Bv is the state disturbance
produced by the input quantization noise v.

Now we will check the Assumption 15 given for the
terminal region

Vf (f(x, u)) + `(x, uf )− Vf (x)

≤ |AKx+ w|2P + |x|2Q + |Kx+ v|2R − |x|2P ,
= |AKx|2P + |x|2Q + |Kx|2R − |x|2P + |v|2R + |Bv|2P
+ 2x′(A′KPB +K ′R)v,

= x′
(
A′KPAK +Q∗ − P

)
x+ |Bv|2P + |v|2R

+ 2x′(A′KPB +K ′R)v,

(20)

where Q∗ = Q + K ′RK. Similarly to the nominal case,
matrix P is chosen to be the solution to the discrete Riccati
equation

A′KPAK +Q∗ − P = 0, (21)

in which K = −(B′PB + R)−1B′PA, is the optimal
controller gain. In addition, the following relationship can
be derived

A′KPB +K ′R = A′PB +K ′(B′PB +R) = 0.

Remark 19. It is important to emphasize that the con-
troller uf = q{Kx} is not implemented. It is only used
to establish stability and to define the final invariant set
D. However, matrix K determine the size of the terminal
region Xf which must satisfies that for all x ∈ Xf , (AKx+
w) ∈ Xf for all w ∈W and KXf ⊆ U.

Finally, from (20), Assumption 15 for an LTI system with
finite input alphabet is satisfied as follows:

Vf (f(x, u)) + `(x, uf )− Vf (x) ≤ |Bv|2P + |v|2R.

Consequently, we have that the evolution of the cost
function between two consecutive instants (A.5) can be
expressed by:

∆V (x) ≤ −`(x, u) + |Bv|2P + |v|2R, ∀x ∈ XN ,

Since `(x, u) > c1|x|2, one can say that

∆V (x) ≤ −c1|x|2 + σp(µ), ∀x ∈ XN , (22)

where σp(µ) = |B′PB +R| · µ2 and c1 = λmin(Q).

To establish the smallest final invariant set D, it is conve-
nient to define a region Br as follows

Br = { x ∈ Xf : |x|2 ≤ r2 =
|B′PB +R|
λmin(Q)

· µ2 }. (23)



Remark 20. Notice that from (22), one can guarantee
that for all x ∈ Xf \ Br, the cost function will decrease
monotonically, V 0

N (x+) − V 0
N (x) < 0. Nevertheless, when

the system reaches the ball Br, the cost function could be
increased, steering the system state outwards of this set.

Afterwards, we define the maximum outward movement
that the system state can present from the ball Br by

dp ≤ |f(r, u)+w)| = |AKr +Bv| ≤ |AK |r + |B||v|,

dp ≤

(
|AK |

√
|B′PB +R|
λmin(Q)

+ |B|

)
µ.

Finally, the final control invariant set is defined by

Ddp = {x ∈ Xf : |x| ≤ dp}, (24)

which is UpES for the system (18), for all x ∈ XN \ Ddp .

Remark 21. Notice that the size of the final invariant set
Ddp depends not only on the quantization error µ, but also
on the matrices Q and R which can be adjusted in order
to guarantee that Ddp ⊂ Xf .

6. SIMULATION RESULTS

Simulation studies were carried out in order to verify the
conditions for uniform practical stability of FCS-MPC
presented in this work. Let consider the LTI system (18)
with finite input alphabet, where

A =

[
0.6 0
0.7 −1.2

]
, B =

[
0.1
0.8

]
.

Here, the input is restricted to belong to the following
finite set

U = {u ∈ R : u ∈ {−1,−0.6,−0.2, 0.2, 0.6, 1} }. (25)

In this case, the maximum quantization error defined in
(8) is given by µ = 0.2. Thus, the approximated saturated
input is expressed by

ū = { ū ∈ Ū : ū ∈ [−1.2, 1.2] }, (26)

Notice that the origin is not an element of the finite control
set U. Nevertheless, as stated in Remark 4, the associated
non-quantized input set Ū does contain the origin.

FCS-MPC strategy was implemented by using a quadratic
cost function, where the stage cost, `(x, u) = |x|2Q + |u|2R,
is adjusted by setting Q = I2 and R = 0.2. With this, the
terminal cost Vf = |x|2P can be obtained by solving the
Ricatti equation (21):

P =

[
1.5399 −0.1046
−0.1046 −1.3963

]
.

In addition, the optimal gain of the controller uf = q{Kx}
and the matrix AK are given by

K = [−0.7478 1.2157], AK =

[
0.5252 0.1215
0.1018 −0.2274

]
.

The prediction horizon was considered as N = 4.

Due to the input constraint (26), the terminal region for
the approximated system is defined as

Xf = {x ∈ R2 : |x| ≤ a = 0.84}.

The final invariant set, defined in (24), is given by

Ddp = {x ∈ Xf : |x| ≤ dp = 0.28}.
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Fig. 1. Evolution of the system state under FCS-MPC.

In order to illustrate the benefits of using the direct anal-
ysis we will compere it with the robust control approach
(based on regional ISS), presented in Section 3, in term of
the design of the final invariant set D.

To do this, firstly we obtain the following Lipschitz con-
stants

Lf = |Ak| = 0.5418,

Ll = |Q|(ρw · µ+ 2a) = 1.9503,

LVf
= |P |(ρw · µ+ 2a) = 3.1107,

where ρw = |B| = 0.8062. Thus, the Lipschitz constant for
the cost function (12) is given by LJ = 4.0740.

On the other hand, considering that Assumption 12 holds,
from (11) we have that ρv = 1− c1/c2 = 0.3730.

Finally, the final invariant set defined by regional ISS is
expressed via:

Ddi = {x ∈ R2 : |x| ≤ di = 1.0463}.
It is clear that the final invariant set define by the direct
analysis, Ddp , is less conservative than the obtained one
by regional ISS, Ddi .
Figure 1 depicts the system state evolution when FCS-
MPC is applied, starting from the initial condition x(0) =
[−2, − 2]′ until reaching the final invariant set Ddp . It is
important to notice that the controller directly provided
a valid input to steer the system towards the final set, it
means only elements of the finite set (25) are considering
in the minimization of the cost function.

7. CONCLUSION

In this work, sufficient conditions to ensure practical sta-
bility of systems with finite input alphabet have been pre-
sented. It has been shown that robust control can be used
to guarantee uniform asymptotical (exponential) practical
stability of MPC for this kind of systems. However, since
this technique propagates the quantization error ahead
over all states predictions and considers the worst case
scenario, the analysis becomes unnecessarily conservative.
A less conservative method was presented by carrying out
a direct analysis for the real system. To illustrate the
differences between both approaches, these methodologies
where applied to an LTI system using a quadratic FCS-
MPC strategy.



The presented analysis in this paper only considers regu-
lation of the system. So, further work must be done for
reference tracking. Other issue to be studied is the design
of a robust FCS-MPC controller for external disturbances.

Appendix A. PROOF OF THEOREM 16

Proof. Let x(0) = x ∈ X ⊂ Rn be the initial condition
for the state. Then, the cost function for the given initial
condition is defined by:

V 0
N (x) = VN (x,u0(x)) (A.1)

where u0(x) = {u(k), u(k + 1), . . . , u(N − 1)}, is the
optimal minimizing control sequence which satisfies the
constrains stated in the optimal problem (3). This will
generate the following optimal state sequence

x0(x) = {x, x(k + 1), . . . , x(N)}.
Now, we can define the cost function for the next step via:

V 0
N (x+) = VN (x+,u0(x+)). (A.2)

To analyze how the cost function evolves over the time, it
is necessary to compare (A.1) with (A.2). To simplify this
task, we can use a suboptimal solution for (A.2) such that

V 0
N (x+) = VN (x+,u0(x+)) ≤ VN (x+, ũ),

where ũ is chosen as ũ(x) = {u(k+1), u(k+2), . . . , u(N−
1), uf}. Here, the last element uf is the control input which
is applied in the final set Xf . Hence, we will obtain the
following state sequence

x̃ = {x(k + 1), · · · , x(N), f(x(N), uf )}.
As define in (7), we know that

V 0
N (x) = VN (x,u0)

= `(x, κN (x)) +

N−1∑
j=0

`(x(j), u(j)) + Vf (x(N)). (A.3)

and

VN (x+, ũ) =

N−1∑
j=1

`(x(j), u(j)) + `(x(N), uf )

+ Vf (f(x(N), uf )).

(A.4)

Comparing (A.3) with (A.4) we have that

∆V (x) =V 0
N (x+)− V 0

N (x)

≤VN (x+, ũ)− V 0
N (x)

=− `(x, κN (x)) + Vf (f(x(N), uf ))

+ `(x(N), uf )− Vf (x(N)).

Considering that Assumption 15 holds, it follows that

∆V (x) ≤ −`(x, u) + σp(µ), ∀x ∈ XN . (A.5)

Finally, the system will be steered by the controller to-
wards the set Xf due to (A.5) will be negative when
x ∈ XN \ D and then into the set D ⊂ Xf where finally
the system will be confined.

�
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