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Abstract: Stochastic stability for centralized Kalman filtering over a wireless sensor network
with correlated fading channels is studied. On their route to the gateway, sensor packets, possibly
aggregated with measurements from several nodes, may be dropped because of fading links. By
assuming the network states to be Markovian, we establish sufficient conditions that ensure the
Kalman filter to be exponentially bounded in norm. In the one sensor case, this new stability
condition is shown to include previous results obtained in the literature as special cases. The
results also hold when applying power control, where the transmission power of each node is a
nonlinear mapping of the network state and the channel gains.
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1. INTRODUCTION

Wireless sensor technology is of growing interesting for
process and automation industry. The driving force behind
using wireless technology in monitoring and control appli-
cations is its lower deployment and reconfiguration cost,
e.g., Alur et al. (2009). In addition, wireless devices can be
placed where wires cannot go, or where power sockets are
not available, see Ilyas et al. (2004); Shen et al. (2007).

A drawback of wireless communication technology lies in
that wireless channels are subject to fading and interfer-
ence, which frequently lead to packet errors. The wireless
channel is in general time varying. This time variability
may in an industrial setting be caused by moving ma-
chines, vehicles, people, and so forth, or when the receiver
or the transmitter are mounted on a moving object. There-
fore, in addition to the propagation path loss, channels will
commonly be subject to shadow and small scale fading,
see Goldsmith (2005). The time-variability of the fading
channel can be partially compensated for through control
of the power levels used by the radio amplifiers. Several
interesting approaches have been reported for state esti-
mation of linear time-invariant (LTI) systems via wireless
sensor networks. For example, the works Shi et al. (2010)
and Shi (2009) focus on delay issues in a multiple-sensor
network with no dropouts, whereas Gupta et al. (2009)
studies the effect of dropouts within an architecture with
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only one sensor node, but where intermediate nodes are
allowed to process data.

In the present work, we study centralized state estima-
tion for LTI systems via wireless sensor networks. The
fading channels introduce random packet dropouts. In our
approach, we allow the channel gains to be correlated in
time and between each other. We also account for power
control of sensor radio amplifiers. Based on motivating case
studies from process industry, we assume that in-network
processing is much faster than the dynamics of the system
whose state is being estimated and, thus, neglect delays
introduced by the network. By using elements of stochas-
tic stability theory, we derive sufficient conditions on the
system and network parameters for the covariance matrix
of the state estimation error to be exponentially bounded
in norm. In special cases, the results obtained correspond
to conditions which have been previously documented in
the literature on estimation with packet dropouts.

The remainder of the paper is organized as follows: Sec-
tion 2 describes the sensor network architecture and Sec-
tion 3 the communication model adopted. Section 4 char-
acterizes the associated state estimator. In Section 5, we
derive the main technical result. Its proof is given in
Section 7. Section 6 studies the special case where the
network has only one sensor. Section 8 draws conclusions.

Notation: We write N for {1, 2, 3, . . .}, and N0 for N∪{0}.
The notation {ν}N0 refers to the sequence {ν(0), ν(1), . . . },
and {ν}k

0 to {ν(0), ν(1), . . . , ν(k)}. The notation | · | refers
to cardinality of a set. The trace of a matrix A is denoted
by trA, and its norm by ||A|| ,

√
max eigs(AT A), where



eigs(AT A) are the eigenvalues of AT A and the superscript
T refers to transposition. If a matrix A is positive definite
(non-negative definite), then we write A � 0 (A � 0).
To denote the conditional probability of an event Ω given
∆, we write Pr{Ω |∆}. The expected value of a random
variable µ given ∆, is denoted via E{µ |∆}, whereas for the
unconditional expectation we write E{µ}. A real random
variable η, which is zero-mean Gaussian with covariance
matrix Γ is denoted by η ∼ N (0,Γ).

2. SENSOR NETWORK ARCHITECTURE

Consider an uncontrolled LTI n-dimensional system:
x(k + 1) = Ax(k) + w(k), k ∈ N0, (1)

where x(0) ∼ N (x0, P0), with xT
0 x0 < ∞, ‖P0‖ < ∞. The

driving noise process {w}N0 is independent and identically
distributed (i.i.d.), with w(k) ∼ N (0, Q), ∀k ∈ N0.

To estimate the system state sequence {x}N0 , a collection
of M wireless sensors {S1, . . . , SM} is used. Each sensor
provides a noisy measurement sequence {ym}N0 of the form

ym(k) = Cmx(k) + vm(k), Cm ∈ Rlm×n, m ∈ {1, . . . ,M},
(2)

with Cm ∈ Rlm×n, lm ∈ N. In (2), the measurement noise
processes {vm}N0 are i.i.d., with each vm(k) ∼ N (0, Rm).

The M (possibly vector) measurements in (2) are to be
transmitted via wireless links to a single gateway (or
fusion centre), denoted S0. Since the links are wireless,
unavoidably some measurements will be dropped by the
network. The received measurement values are used to
remotely estimate the state of the system (1).

We will assume that the network is much faster than the
process (1) and will therefore neglect any delays experi-
enced by the data when traveling through the network.
Each sensor node aggregates its own measurements to
the received packets from incoming nodes and transmits
the resulting packet to a single destination node. Sen-
sor nodes do not buffer old data. Thus, the measure-
ments received by the gateway at time k are a subset of
{y1(k), y2(k), . . . , yM (k)}.
It is convenient to describe the network by means of a
graph, with vertices {S0, . . . SM}, and edges associated
with the wireless links. As noted before, each sensor Sm

transmits to a single node, called its parent and hence-
forth denoted via Par(Sm). Thus, the graph constitutes a
directed tree graph with root S0. Each sensor node Sm has
a single outgoing edge, say,

Em =
(
Sm,Par(Sm)

)
∈ E (3)

where
E , {E1, E2, . . . , EM} (4)

denotes the set of all edges of the tree. Furthermore, there
exists a unique path from each Sm to the gateway. We de-
note this path by Path(Sm), its edges by Edge(Path(Sm))
and its nodes by Node(Path(Sm)).
Example 1. In Fig. 1, the packet transmitted by S3 at time
k ∈ N0 contains y3(k) and a subset of {y6(k), y7(k)}. We
also have Par(S4) = Par(S5) = S2, Node(Path(S7)) =
{S7, S3, S1, S0}, and Edge(Path(S7)) = {E7, E3, E1} =
{(S7, S3), (S3, S1), (S1, S0)}. �
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Fig. 1. Sensor network tree with 9 nodes and 8 edges.

3. TRANSMISSION EFFECTS

Since the links used to convey measurements from the
sensors to the gateway are wireless, transmission errors
are likely to occur. We will model transmission effects
via random packet dropouts at the individual links of
the network and, hence, introduce the binary stochastic
communication success processes {γE}N0 , E ∈ E, where:

γE(k) =


1 if at time k

transmission via E ∈ E is successful,
0 otherwise.

(5)

The distributions of the the processes {γE}N0 are deter-
mined by power levels and channel gains. More precisely,
for each link Em = (Sm,Par(Sm)) ∈ E, we will write (with
a slight abuse of notation):
Pr

{
γEm(k) = 1

∣∣ um(k), hEm(k)
}

= fEm

(
um(k)hEm(k)

)
,

(6)
where um(k) denotes the power used by the radio power
amplifier of sensor Sm at time k, hEm(k) is the chan-
nel (power) gain from Sm to its parent node, and
fEm

(·) : [0,∞) → [0, 1] is a monotonically increasing func-
tion, which depends on the modulation used; see, e.g.,
Proakis (1995).

Channel gains are modelled as random variables, which are
affected by shadow and small scale fading; see Goldsmith
(2005). Shadow fading is caused by large (and possibly
slowly moving) objects obstructing the radio link, and can
therefore be correlated in time and space. Thus, if sensors
are close to each other, then shadow fading may cause
correlations between the individual link gains. Small scale
fading is commonly modelled via uncorrelated channel
gain distributions.

To model shadow fading we introduce an overall discrete
network state process {Ξ}N0 , where

Ξ(k) ∈ B , {0, 1, . . . , |B| − 1},
where |B| denotes the cardinality of the finite set B. The
network state process describes a finite number of con-
figurations of the overall physical environment and, thus,
governs the channel gains, which can be spatially corre-
lated. To incorporate temporal correlations, we will allow
the network states {Ξ}N0 to form a discrete homogeneous
Markov chain with transition probabilities
G(j, i) = Pr

{
Ξ(k+1) = j

∣∣ Ξ(k) = i
}
, ∀i, j ∈ B, k ∈ N0,

(7)
see, e.g., Brémaud (1999).

Due to small-scale fading, for a given network state,
channel gains are random and independent in time and



of each other. More formally, if El 6= Em or k 6= `, then the
channel gain distributions satisfy

Pr
{
hEl

(k) ≤ h1, hEm(`) ≤ h2

∣∣ Ξ(k) = j, Ξ(`) = i
}

= Pr{hEl
(k) ≤ h1 |Ξ(k) = j}

×Pr{hEm(`) ≤ h2 |Ξ(`) = i},
(8)

for all h1, h2 ∈ R and all i, j ∈ B.

In view of (6), power control can be used to counteract
fading effects; see Pantazis and Vergados (2007); Quevedo
et al. (2010, 2011). In the present work, we consider power
control laws to be of the form:

um(k) = κm(Ξ(k), hEm(k)), (9)
where κm(·, ·) are non-linear mappings. Particular cases in-
clude the use of fixed power levels and fixed gain controllers
with saturated outputs, um(k) = sat

(
Km/hEm

(k)
)
.

It is important to emphasize that the network state deter-
mines the distribution of the channel gains and, thereby,
the distribution of the link success probabilities in (5).
The fading model adopted is related to the Gilbert-Elliot
Model, see Gilbert (1960). A distinguishing feature of our
model is that in all network states Ξ the individual link
success probabilities are described by probability distri-
butions, see (8) and (9). Thus, whilst {Ξ}N0 is assumed
Markovian, we do not require that the channel gains
{hE}N0 or the dropout processes {γE}N0 be Markovian. We
note, however, that i.i.d. transmissions and also Markovian
models for the dropout processes, as studied in Xie and Xie
(2008); Huang and Dey (2007); Smith and Seiler (2003),
are special cases of our model.

A key feature of the network and power control model pre-
sented above is that, when conditioned upon the network
states Ξ, the link transmission success processes are inde-
pendent in time and of each other. For further reference,
we will denote the associated success probabilities via

φEm
(j) , Pr

{
γEm(k) = 1

∣∣ Ξ(k) = j
}
, Em ∈ E, j ∈ B

(10)
and note that:

φEm
(j) = E

{
fEm

(
hEm

· κm(Ξ, hEm
)
) ∣∣ Ξ = j

}
, (11)

where Em = (Sm,Par(Sm)). Thus, for given control poli-
cies κm(·, ·), calculating φE(j) involves simply taking ex-
pectation with respect to the conditional distribution of
the channel gain hE given the network state Ξ = j.
Example 2. Suppose that the M links are independent of
each other and that each link can be either operating
“normally”, or be in “outage”, e.g., due to blocking by
a large object. In this situation it is convenient to choose
the network state as

Ξ(k) =
M∑

m=1

2m−1ΞEm(k) (12)

where
ΞE(k) ∈ {0, 1}, ∀E ∈ E, (13)

so that the set B becomes {0, 1, . . . , 2M − 1}. In (13), the
value ΞE(k) = 1 indicates that the link E is in normal
operation, whereas ΞE(k) = 0 models outage. Transition
between the link states is random and obeys, see Fig. 2

Pr{ΞE(k + 1) = 1 |ΞE(k) = 1} = 1− pE
Pr{ΞE(k + 1) = 0 |ΞE(k) = 1} = pE
Pr{ΞE(k + 1) = 0 |ΞE(k) = 0} = 1− qE
Pr{ΞE(k + 1) = 1 |ΞE(k) = 0} = qE ,

(14)

ΞE = 0

pE

1− pE

qE

1− qE

normal outage

ΞE = 1

Fig. 2. Markovian model for links which are independent
of each other, as described in Example 2.

where pE is the failure rate and qE is the recovery rate. �

4. STATE ESTIMATION OVER A SENSOR
NETWORK TREE WITH PACKET DROP-OUTS

The purpose of the sensor network architecture considered
is to estimate the state of the system (1) centrally at
the gateway by using the measurements received from the
sensors {S1, S2, . . . , SM}. As we have seen in Section 3,
fading channels will introduce random packet loss. From
an estimation point of view, it is convenient to introduce
the binary processes {θm}N0 , where:

θm(k) =


1 if at time k transmission

via Path(Sm) is successful,
0 otherwise.

(15)

We will assume that the packets transmitted from the
sensors to the gateway incorporate error detection coding,
see, e.g., Proakis (1995), and that the gateway knows,
whether received packets are correct or not. Thus, the
information available for state estimation at the gateway
at time k is given by

I(k) =
{
{θ1}k

0 , . . . , {θM}k
0 , {y}k

0

}
, (16)

where

y(k) ,


θ1(k)y1(k)
θ2(k)y2(k)

...
θM (k)yM (k)

, k ∈ N0.

An important observation is that with power control laws
of the form (9) and given the channel model adopted, the
dropout realizations in (16) do not convey information
about the system state {x}N0 . Since we have assumed
that the network does not introduce any delays, it turns
out that state estimation in the wireless sensor network
configuration studied amounts to sampling the system (1)
using the time-varying (stochastic) observation matrix

C(k) ,


θ1(k)C1

θ2(k)C2

...
θM (k)CM

, k ∈ N0. (17)

Consequently, the conditional distribution of x(k) given
I(k − 1) is Gaussian. The conditional mean of x(k)

x̂(k|k − 1) , E
{
x(k)

∣∣ I(k − 1)
}

and the associated conditional error covariance matrix,
P (k | k − 1) , E

{
ε(k)ε(k)T

∣∣ I(k − 1)
}



with ε(k) , x(k) − x̂(k|k − 1), satisfy the Kalman filter
recursions (see, e.g., Anderson and Moore (1979)):
x̂(k + 1|k) = Ax̂(k|k − 1) + K(k)

(
y(k)− C(k)x̂(k|k − 1)

)
P (k + 1|k) = AP (k|k − 1)AT + Q (18)

−K(k)C(k)P (k|k − 1)AT

where R , diag
(
R1, R2, . . . , RM

)
,

K(k) , AP (k|k− 1)C(k)T
(
C(k)P (k|k− 1)C(k)T +R

)−1
,

and with initial values P (0| − 1) = P0 and x̂(0| − 1) = x0.
Remark 3. A key difference of our approach when com-
pared to that in Shi et al. (2010); Shi (2009), is that
we consider packet dropouts. Thus, the estimation error
covariance matrix will not be stationary. �

Remark 4. It is easy to see that, since we assume that the
network does not introduce any delays, we have:

θm(k) =
∏

E∈Edge(Path(Sm))

γE(k), ∀m ∈ {1, . . . ,M}.

Furthermore, the conditional distributions of {θm} given
the network states can be written in terms of the individual
link functions φE(j):

Pr{θm(k) = 1
∣∣ Ξ(k) = j}

=
∏

E∈Edge(Path(Sm))

Pr{γE(k) = 1
∣∣ Ξ(k) = j}

=
∏

E∈Edge(Path(Sm))

φE(j).

Note, however, that if Sm ∈ Node(Path(Sl)), with m 6= l,
then, in general,

Pr{θm(k) = 1, θl(k) = 1 |Ξ(k) = j}
6= Pr{θm(k) = 1 |Ξ(k) = j}

×Pr{θl(k) = 1 |Ξ(k) = j},
compare to (8). �

5. STABILITY ANALYSIS

Due to packet dropouts, the covariance matrix P (k + 1|k)
in (18) will, in general not converge to a fixed value and
may, at times, diverge. As shown in Schenato et al. (2007),
this type of behaviour occurs even in the simplest scenario,
where only one sensor is used and dropout probabilities are
i.i.d. We will next study stability of the Kalman filter (18)
for the sensor network model at hand. For that purpose
we will adopt the following stochastic stability notion:
Definition 5. The process {P (k + 1|k)}k∈N0 is said to
be exponentially bounded in norm, if there exist finite
constants α and β and ρ ∈ [0, 1) such that:

E
{
‖P (k + 1|k)‖

}
≤ αρk + β, ∀k ∈ N0. (19)

Accordingly, we say that the Kalman filter (18) is expo-
nentially bounded. �

Our analysis makes use of the process {r}N0 , where:

r(k) =
{

1 if C(k) has full column-rank,
0 otherwise.

Clearly, r(k) is a (Boolean) function of the individual
link success outcomes γE(k), E ∈ E. By the discussion
in Section 3, it is easy to see that r(k) is temporarily

independent, when conditioned upon the network state
Ξ(k). We can therefore define

φr(j) , Pr{r(k) = 1 |Ξ(k) = j}. (20)

Note that φr(j) can be written in terms of the functions
φE(j) introduced in (10), see also Example 7 included at
the end of this section.

The following theorem gives a sufficient condition for
exponential stability of the Kalman filter used for state
estimation over a sensor network with Markovian channel
states:
Theorem 6. Define

ν(i) ,
∑
j∈B

(1− φr(j))G(j, i), i ∈ B, (21)

where G(j, i) are the transition probabilities in (7). 1

If there exists ρ ∈ [0, 1) such that

‖A‖2 max
i∈B

ν(i) ≤ ρ, (22)

then the Kalman filter with the channel gain and power
control model described in Section 3 is exponentially
bounded in norm.

Proof. See Section 7. �

Our result establishes a sufficient conditions for a spe-
cific form of stochastic stability of the covariance matrix
in (18), when the dropout process is governed by the
model described in Section 3. The condition is stated in
terms of a bound which involves the norm of the system
matrix A, the transition probabilities of the channel state
Ξ, and the conditional probabilities φr(j). The latter is
determined by the individual conditional transmission suc-
cess probabilities φE(j), and can therefore be influenced
by designing the power control policies, see (11). The
situation generalizes that investigated for the simpler case
of having independent channel gains in our recent work
Quevedo et al. (2011).

Before turning our attention to a particular case, namely
when the network has only one sensor, we will first give
an example on how to calculate the functions φr(j).
Example 7. Consider the subgraph of the sensor network
depicted in Fig. 1, having vertices {S0, S1, . . . , S5}. Sup-
pose that for C(k) to be of full-column rank (at least) three
of the measurements {y1(k), y2(k), . . . , y5(k)} need to be
received at the gateway. Then r(k) = 1 if and only if

[γE1(k) γE2(k) . . . γE5(k)]T ∈ J,

where

J =




0
1
0
1
1

,


0
1
1
1
1

,


1
1
0
0
1

,


1
1
0
1
0

,


1
1
0
1
1

,


1
1
1
0
0

,


1
1
1
0
1

,


1
1
1
1
0

,


1
1
1
1
1




Since, as noted in Section 3, the link transmission success
processes are conditionally independent, we obtain

1 The term ν(i) denotes the total probability of C(k+1) not having
full column-rank, if the network state at time k is Ξ(k) = i.



φr(j) = (1− φE1(j))φE2(j)(1− φE3(j))φE4(j)φE5(j)
+ (1− φE1(j))φE2(j)φE3(j)φE4(j)φE5(j)
+ φE1(j)φE2(j)(1− φE3(j))(1− φE4(j))φE5(j)
+ φE1(j)φE2(j)(1− φE3(j))φE4(j)(1− φE5(j))
+ φE1(j)φE2(j)(1− φE3(j))φE4(j)φE5(j)
+ φE1(j)φE2(j)φE3(j)(1− φE4(j))(1− φE5(j))
+ φE1(j)φE2(j)φE3(j)(1− φE4(j))φE5(j)
+ φE1(j)φE2(j)φE3(j)φE4(j)(1− φE5(j))
+ φE1(j)φE2(j)φE3(j)φE4(j)φE5(j),

where j ∈ B. �

6. THE ONE-SENSOR CASE

If the sensor network has only one sensor and one edge,
namely S1 and E1, then
P (k + 1|k) = AP (k|k − 1)AT + Q

− γE1(k)K(k)P (k|k − 1)AT (23)
K(k) = AP (k|k − 1)CT

1

(
C1P (k|k − 1)CT

1 + R
)−1C1.

The question of stability of the Kalman filter when the
packet dropout process {γE1}N0 is i.i.d. has been exten-
sively studied; see, e.g., Schenato et al. (2007). The case
of Markovian packet dropout processes {γE1}N0 was in-
vestigated in Xie and Xie (2008); Huang and Dey (2007).
Corollary 8, given below, establishes exponential bound-
edness of the Kalman filter for the more general channel
model presented in Example 2 of Section 3. 2

Corollary 8. Consider the model of Example 2 in the one-
sensor case. Suppose that C1 in (2) has full column-rank
and define:

ν(0) ,
(
1− φE1(0)

)
(1− qE1) +

(
1− φE1(1)

)
qE1

ν(1) ,
(
1− φE1(0)

)
pE1 +

(
1− φE1(1)

)
(1− pE1).

(24)

If there exists ρ ∈ [0, 1) such that

max
(
ν(0), ν(1)

)
‖A‖2 ≤ ρ, (25)

then the Kalman filter is exponentially bounded in norm.

Proof. Follows directly from Theorem 6. �

If we now further restrict our setting, then Corollary 8
reduces to well-known results. To be more specific, a par-
ticular instance of the situation examined in Corollary 8
results when fixing φE1(0) = 0 and φE1(1) = 1. In this
case, the dropout process {γE1}N0 is Markovian, and the
sufficient condition (25) becomes

max(1− qE1, pE1 )‖A‖2 ≤ ρ < 1
Perhaps not surprisingly, Corollary 8 then becomes akin
to Theorem 3 in Xie and Xie (2008).

An even simpler situation results if, in (14), we set
pE1 = 1− qE1 = 0,

i.e., success probabilities are independent. In this case, we
have ν(0) = ν(1) = 1− φE1(1) and (25) becomes(

1− φE1(1)
)
‖A‖2 ≤ ρ < 1,

thus, resembling various conditions which have been re-
ported in the literature; see Schenato et al. (2007).
2 We recall that in our model the link state {ΞE1}N0 is Markovian,
but {γE1}N0 is, in general, not Markovian.

7. PROOF OF THEOREM 6

We first prepare two preliminary lemmas:
Lemma 9. The composite process {Z}N0 defined via

Z(k) ,
(
P (k|k − 1),Ξ(k − 1)

)
, k ∈ N0 (26)

is a Markov Chain.

Proof. Recall that the network state {Ξ}N0 is Markovian,
that for given network states the dropout processes are
independent and that the power control policies satisfy (9).
Therefore, the distribution of the matrix C(k) satisfies

Pr{C(k) = c |Ξ(k − 1) = Ξk−1,Ξ(k − 2) = Ξk−2, . . . }
= Pr{C(k) = c |Ξ(k − 1) = Ξk−1}.

The result now follows from (18). �

Lemma 10. Define
Vk , trP (k|k − 1). (27)

Then Vk ≥ 0, for all k ∈ N0. Furthermore, there exists
W < ∞, such that

E
{
V1 |Z(0) = (P0, i)

}
≤ W + ν(i)

(
‖A‖2 trP0 + trQ

)
,

(28)
where Z(0) is as defined in (26).

Proof. The fact that Vk is non-negative follows directly
from P (k|k − 1) being a covariance matrix and, thus,
non-negative definite. To prove (28), it is convenient to
condition as follows:
E

{
V1 |Z(0) = Z

}
= E

{
V1 |Z(0) = Z, r(0) = 1

}
Pr{r(0) = 1 |Z(0) = Z}

+ E
{
V1 |Z(0) = Z, r(0) = 0

}
Pr{r(0) = 0 |Z(0) = Z}.

(29)
We next examine the outcomes r(0) ∈ {0, 1} separately.

1) For r(0) = 1, C(0) has full column-rank. Therefore, a
simple predictor for x(1) given y(0) ⊂ I(0), is given by

x̌(1) = A
(
C(0)T C(0)

)−1
C(0)T y(0),

in which case
x̌(1)− x(1) = A

(
C(0)T C(0)

)−1
C(0)T v(0)− w(0).

Hence, there exists a constant W < ∞, such that

E
{(

x̌(1)− x(1)
)(

x̌(1)− x(1)
)T }

� (W/n)In,

where In denotes the n × n identity matrix. Since the
Kalman filter gives the minimum conditional error covari-
ance matrix, and by the fact that for any square matrix
F , E{trF} = trE{F}, we obtain the bound 3

E
{
V1 |Z(0) = Z, r(0) = 1

}
Pr{r(0) = 1|Z(0) = Z}

≤ WPr{r(0) = 1|Z(0) = Z} ≤ W.
(30)

2) For the cases where r(0) = 0, the covariance matrix
P (1|0) is upper-bounded by that resulting form the worst
case, where γE(0) = 0,∀E ∈ E. We, thus have:

E
{
V1 |Z(0) = Z, r(0) = 0

}
≤ E

{
V1 |Z(0) = Z, γE(0) = 0,∀E ∈ E

}
= tr{AP0A

T + Q} = tr{AT AP0}+ trQ

≤ ‖A‖2 trP0 + trQ,

(31)

where we have used (18) and (Bernstein, 2009, Fact
8.12.29).
3 Clearly, (30) is not a tight bound, but it suffices for our purpose.



To calculate Pr{r(0) = 0 |Z(0) = Z}, we condition upon
Ξ(0) and use the channel model to obtain:
Pr{r(0) = 0 |Z(0) = Z} = Pr{r(0) = 0 |Z(0) = (P0, i)}
=

∑
j∈B

Pr
{
r(0) = 0

∣∣P (0|−1) = P0,Ξ(−1) = i,Ξ(0) = j
}

× Pr
{
Ξ(0) = j

∣∣ P (0| − 1) = P0,Ξ(−1) = i
}

=
∑
j∈B

Pr
{
r(0) = 0

∣∣Ξ(0) = j
}
Pr

{
Ξ(0) = j

∣∣ Ξ(−1) = i
}

=
∑
j∈B

(1− φr(j))Pr
{
Ξ(0) = j

∣∣ Ξ(−1) = i
}

= ν(i). (32)

The result follows upon replacing (30)–(32) into (29). �

Proof. [Theorem 6] We will use a stochastic Lyapunov
function approach with candidate function Vk introduced
in (27). By Lemma 10, we have

0 ≤ E
{
V1 |Z(0) = (P0, i)

}
≤ W +

(
‖A‖2 trP0 + trQ

)
max
i∈B

ν(i)

= ‖A‖2V0 max
i∈B

ν(i) + β̄ ≤ ρV0 + β̄,

(33)

where ρ ∈ [0, 1) is as in (22) and

β̄ , W + trQmax
i∈B

ν(i) ∈ [0,∞).

Since (33) holds for all Z(0) and, by Lemma 9, {Z}N0 is
Markovian, we can combine Theorem 2 in (Kushner, 1971,
Ch. 8.4.2) with Theorem 2 in Tarn and Rasis (1976), to
conclude that (33) is a sufficient condition for

0 ≤ E
{
Vk |Z(0) = Z

}
≤ ρkV0 + β̄

k−1∑
i=0

ρi, ∀k ∈ N. (34)

On the other hand, since P (k|k − 1) � 0, it holds that
Vk ≥ ‖P (k|k − 1)‖, for all k ∈ N. Therefore, upon noting
that P (0| − 1) is given, (34) provides

E
{
‖P (k|k − 1)‖

}
≤ ρkV0 + β̄

k−1∑
i=0

ρi = ρkV0 + β̄
1− ρk

1− ρ

≤ (ρV0)ρk−1 +
β̄

1− ρ
, ∀k ∈ N.

Consequently, expression (19) holds with α = ρV0 and
β = β̄/(1− ρ). This proves the theorem. �

8. CONCLUSIONS

In this work we have studied stability properties of a
Kalman filter when used for state estimation over a wire-
less sensor network. Since the radio links between the
nodes are fading, even if alleviated by power control,
packet drops may occur. We have established sufficient
conditions, for the Kalman filter covariance matrix to be
exponentially bounded in norm when the underlying net-
work state is Markovian. Under this assumption, channel
gains will be correlated over time, which is a suitable model
when considering shadow fading.

In particular cases, the sufficient condition obtained re-
duces to stability results previously documented in the
literature. Future work includes the development of power
control and rerouting strategies for state estimation with
sensor networks.
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