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Real-Time Perceptual Moving-Horizon

Multiple-Description Audio Coding
Jan Østergaard∗, Member, IEEE, Daniel E. Quevedo, Member, IEEE, and Jesper Jensen

Abstract

A novel scheme for perceptual coding of audio for robust and real-time communication is designed

and analyzed. As an alternative to PCM, DPCM, and more general noise-shaping converters, we propose

to use psychoacoustically optimized noise-shaping quantizers based on the moving-horizon principle.

In moving-horizon quantization, a few samples look-ahead is allowed at the encoder, which makes it

possible to better shape the quantization noise and thereby reduce the resulting distortion over what is

possible with conventional noise-shaping techniques. It is rst shown that signicant gains over linear

PCM can be obtained without introducing a delay and without requiring post-processing at the decoder,

i.e., the encoded samples can be stored as e.g., 16-bit linear PCM on CD-ROMs, and played out on

standards-compliant CD players. We then show that multiple-description coding can be combined with

moving-horizon quantization in order to combat possible erasures on the wireless link without introducing

additional delays.
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I. INTRODUCTION

The aim of this work is to encode and communicate audio from a remote encoder (e.g., cell phone,

ipod, CD player, radio, tv, concert) over a wireless link to a low power listening device e.g., a pair of

hearing aids or head phones. Contrary to other applications, it is here essential that the latency is kept

low. Low latency is important, primarily in order to avoid distortions due to a direct path acoustic signal

reaching the eardrums earlier than the hearing aid output [1], but also to facilitate lip synchronicity in a

real-time communication situation. We will assume that the tolerable latency is a few samples or at most

up to a few milliseconds.

Due to battery and space considerations, the computational complexity at the decoder should be kept

low. Thus, besides the cost of operating the antenna(s) and the demodulators, we only allow simple

scaling and table look-up operations in this work.

Since the persons wearing the listening devices are often not spatially stationary, the transmission

channel is susceptible to fading. In order to guarantee a certain degree of robustness towards channel

impairments without introducing additional delay, we rely on multiple-description (MD) coding [2].

We consider the general case of n channels. For example, a hearing aid may have more than one

receiving antennas, and, furthermore, since hearing aids are typically worn pair-wise, the hearing aids

may communicate with each other. Thus, several channels are available even in the single person situation.

model

Encoder
MH/MD

Psychoacoustic

Hk(z)

xk
y1k
y2k

yn−1
k

(a) Encoder

Decoder
MD x̂k

y1k
y2k

yn−1
k

(b) Decoder

Fig. 1. The encoder consists of two parts; the moving-horizon multiple-description MH/MD Encoder and the Psychoacoustic

model.

MD coding was recently used for robust perceptual audio coding [3]�–[5]. In [3], [4], the case of two

descriptions was considered, whereas in [5] it was shown, that even with highly unreliable networks, it is

possible to achieve audio streaming of acceptable quality by using more than two descriptions. In [4], [5],

perceptual models were employed at the encoder in order to derive masked thresholds. These were used
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as perceptual weighting lters at the decoder and therefore needed to be encoded and transmitted to the

decoder as side information, in addition to the encoded audio data. It turns out that the bit rate required

for encoding the perceptual weighting lter is up to 8 kbps for mono audio signals with a sampling

frequency of 44.1 kHz [4], [5]. Since the perceptual weighting lters are required in all the descriptions,

the bit rate of the side information can be signicant. Moreover, it is an open question how to optimally

distribute the bit budget between the perceptual model and the actual audio data.

To achieve perceptually efcient encoding without introducing large delays, we employ moving-horizon

(MH) quantization techniques at the encoder [6]. MH quantization relies upon online optimization of a

nite-horizon cost function and was recently cast in the framework of low delay audio coding [6]. In [6],

given a xed rather than a time-varying perceptual weighting lter, it was shown that, by increasing the

optimization horizon, better performance could be achieved at the expense of increased complexity at

the encoder. The delay of the design in [6], was dictated by that of the optimization horizon, i.e. was on

the order of a few samples.

In the work presented here, we rst extend [6] to the case of a time-varying perceptual weighting

lter. A key feature of our design is that, as in [6], the perceptual weighting lter need not be transmitted

as side information to the decoder. Thus, we avoid the issue of having to distribute the bits between

the audio data and the perceptual weighting lters. We then provide a rate-distortion analysis of MH

quantization. Subsequently, we show how one can combine MD coding and MH quantization in order

to achieve robustness towards packet losses. The overall delay of the proposed design, depends upon the

choice of perceptual model. For example, if the psychoacoustic model of MPEG1 layer 1 [7] is chosen,

then the delay is about 6 ms. at 44.1 kHz. sampling frequency. We also show that signicant gains over

conventional linear PCM can be achieved with zero delay, by deriving the perceptual weighting lters

from an approximation of the threshold in quiet of the human hearing system. Interestingly, if one leaves

out entropy coding, the MH encoded samples may be stored as e.g., 16-bit linear PCM on CD-ROMs,

and no post-processing is then required at the decoder. Thus, the encoded samples can be directly played

out on any typical CD-player. The encoder and decoder of our proposal are presented in Fig. 1(a) and

Fig. 1(b), respectively.

This paper is structured as follows: In Section II, we describe the setup, present known results on MH

quantization for the case of xed and time-invariant lters, and nally extend these results to include time-

varying lters. Sections III and IV contain the main contributions, i.e., a rate-distortion analysis of single-

description MH quantization and the proposed perceptual MH MD audio coding scheme, respectively. In

Section V we show how to design the system in practice and provide extensive rate-distortion simulations.
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Conclusions appear in Section VI.

II. THE PERCEPTUAL MOVING HORIZON CODER

In this section, we present background material on MH quantization. In particular, we revise the

framework of [6], [8] and extend it to the case of time-varying lters.

A. Perceptual Moving Horizon Quantization

In MH quantization, the current scalar sample xk ∈ R is combined with N − 1 future samples and

quantized using a vector quantizer QN
k (·) [6]. Thus, the input to the quantizer is the N -dimensional vector

!xk = (xk, xk+1, · · · , xk+N−1)T and the output of the quantizer, i.e. the quantized version of !xk is the

vector !yk = (yk, yk+1, · · · , yk+N−1)T . More precisely, given the current input vector !xk, the quantizer

QN
k (·) minimizes a cost function, JN

k (·), which includes perceptual weighting. For example, the cost

function may be taken to be1

JN
k (!xk) !

k+N−1∑

i=k

ε2i = ‖!εk‖2, (1)

where εi ∈ R is the perceptually weighted error at the ith time-lag, that is

εi ! !hi ∗ (!x− !y) !
K∑

n=0

hi,n(xi−n − yi−n), (2)

where
!hi = (hi,0, hi,1, . . . , hi,K)T

denotes the set of lter coefcients of the perceptual weighting lter H i(z) to be used at time i (and ∗

is the linear convolution operator). Thus,

εi(z) = Hi(z)(!x(z)− !y(z))

and

Hi(z) = 1 +
K∑

n=1

hi,nz
−n (3)

is a causal linear time varying lter of nite order K with a direct feedthrough and thus !hi,0 = 1,∀i.

1The cost function JN
k (·) depends upon the current input vector !xk, the choice of reconstruction alphabet Yk containing the

candidate output vectors !yk, and the perceptual weights !hi. Moreover, in the next section, we will extend the cost function so

that it also depends upon a state vector. To keep the notation brief, we will simply write JN
k (!xk) throughout the document.
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It follows that, given an input vector !xk, the (locally) optimal output vector !y ∗
k = QN

k (!xk) (locally,

for the current time k) is given by

!y ∗
k = arg min

!yk∈Yk,!yk=QN
k (!xk)

JN
k (!xk) (4)

where Yk denotes the alphabet (or codebook) of !yk.

The output of the MH encoder is then simply taken to be yk, i.e. the rst sample of the quantized

vector !y ∗
k . Thus, an MH encoder consists of the non-linear map QN

k (!xk) = !y ∗
k which is followed by a

function that picks out the scalar element yk. At any time k, the MH encoder therefore takes as input

the current sample xk (as well as N − 1 future samples) and outputs a single sample yk.

B. State-Space Interpretation

Since we are working with time varying lters it is convenient to formulate the problem in the state

space domain.

An equivalent minimal state-space form for the lter Hk(z) is, see, e.g., [9]

Hk(z) = 1 + Ck(zI −A)−1B (5)

where A ∈ RK×K , B ∈ RK×1, and Ck ∈ R1×K are given by

A =





0 0 0 · · · 0

1 0 0 · · · 0

0 1 0 · · · 0
... . . . ...

0 · · · 0 1 0





, B =





1

0

0
...

0





, CT
k =





hk,1

hk,2
...

hk,K




(6)

and are related to the sequence of lters {!hk} through [9]

hk,n = CkA
n−1B, n = 1, . . . ,K, k = 0, . . . . (7)

With this, we can express the weighted error εk ∈ R as given by (2) in state-space form, that is

!zk+1 = A!zk +B(xk − yk) (8)

εk = Ck!zk + (xk − yk) (9)

where !zk ∈ RK is the current system state vector given by

!zk = [xk−1 − yk−1, xk−2 − yk−2, . . . , xk−K − yk−K]T . (10)
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C. Cost Function with Terminal State Weighting

As mentioned in Section II-A, we will make use of a cost function, which includes perception, cf. (1).

In the MH quantization literature, it has been suggested to include state-weighting on the nal state

!zk+N within the cost function [8], [10].2 In this work, the cost function will be based on the following

expression:

JN
k (!xk) ! ‖!εk‖2 + ‖!zk+N‖2P , (11)

where !εk = [εk, εk+1, . . . , εk+N−1]T and where the latter term provides a nal-state weigthing via a

positive semidenite matrix P ∈ RN×N , i.e., we have ‖!zk+N‖2P = !z T
k+NP!zk+N .

We will now express (11) from a state-space point of view. To do so, we iterate (9) (as was done

in [6]) in order to obtain

εk+1 = Ck+1A!zk +Ck+1B(xk − yk) + (xk+1 − yk+1)

εk+2 = Ck+2A
2!zk + Ck+2AB(xk − yk)

+ Ck+2B(xk+1 − yk+1) + (xk+2 − yk+2)

...

From the above, we deduce that the perceptually weighted error can be written as

‖!εk‖2 = ‖Ψk(!xk − !yk) + Γk!zk‖2, (12)

where Ψk ∈ RN×N is the matrix with unit determinant given by

Ψk=





hk,0 0 · · · · · · 0

hk+1,1 hk+1,0 0
...

hk+2,2 hk+2,1 hk+2,0 0
...

... . . . 0

hk+N−1,N−1 · · · · · · hk+N−1,1 hk+N−1,0





(13)

and Γk ∈ RN×K satises

Γk =
[
CT
k , (Ck+1A)

T , . . . , (Ck+N−1A
N−1)T

]T
. (14)

2The motivation behind using nal state weighting is partly to stabilize the feedback loop by approximating the effect of the

innite-horizon behavior [8], [10]. For example, in certain cases, it may be useful (from a stabilization point of view) to choose

Pk so that it satises the Lyapunov equation ATPkA+ CT
k Ck = Pk, cf. [8], [11].
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Following a similar recursive principle, the nal state !zk+N can be written as

!zk+N = AN!zk +M(!xk − !yk), (15)

where

M ! [AN−1B,AN−2B, . . . , AB,B]. (16)

With this, the cost function JN
k (!xk) can be written as

JN
k (!xk) = ‖AN!zk +M(!xk − !yk)‖2P

+ ‖Ψk(!xk − !yk) + Γk!zk‖2. (17)

D. Nearest Neighbor Euclidean Vector Quantization

In this section, we use ideas of [6], [8] and show that the MH quantizer can be implemented as a

nearest neighbor vector quantizer by utilizing appropriate mappings in the state-space domain.

Let us dene Φk ∈ RN×N as the positive semidenite matrix square root in ΦT
k Φk ! ΨT

k Ψk+MTPM

and rewrite the cost function (17) as

JN
k (!xk) = ‖!yk‖2ΦT

k Φk

− 2〈!yk,ΦT
k Φk!xk + (ΨT

k Γk +MTPAN )!zk〉+ Ξk(!xk, !zk) (18)

= ‖!yk‖2ΦT
k Φk

−2〈Φk!yk,Φk!xk + Φ−T
k (ΨT

k Γk +MTPAN )!zk〉

+ Ξk(!xk, !zk), (19)

where the function Ξk(!xk, !zk) at time k is independent of !yk and given by

Ξk(!xk, !zk) = ‖!xk‖2ΦT
k Φk

+ 2〈!xk, (ΨT
k Γk +MTPAN )!zk〉

+ ‖!zk‖2ΓT
k Γk+(AN )TPAN . (20)

Inspired by (19), we now let !ξk ! Φk!yk and introduce the metric f !w
k : RN → R dened as

f !w
k (!ξk) ! ‖!ξk‖2 − 2!ξTk !wk, (21)

where

!wk ! Φk!xk + Φ−T
k (ΨT

k Γk +MTPAN )!zk. (22)

With this notation, JN
k (!xk) = f !w

k (!ξk) + Ξk(!xk, !zk), which implies that the optimal !y ∗
k is given by

!y ∗
k = arg min

!yk∈Yk

JN
k (!xk) = Φ−1

k arg min
!ξk∈ΦkYk

f !w
k (!ξk). (23)
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From (21), it may be observed that f !w
k (!ξk) has isocontours (level sets) that are shifted spheres in RN

and centered at !wk. Thus, for any !ξ′k,
!ξ′′k ∈ Sc, where Sc ! {!ξk ∈ RN : f !w

k (
!ξk) = c}, for some c ∈ R,

it follows that ‖!ξ′k − !wk‖ = ‖!ξ′′k − !wk‖. Clearly, the optimal !ξk should therefore be chosen as close as

possible to !wk and we establish the following relationship:

!y ∗
k = Φ−1

k arg min
!ξk∈ΦkYk

f !w
k (!ξk) = Φ−1

k QΦkYk(!wk), (24)

whereQΦkYk(·) ∈ ΦkYk is a conventional nearest-neighbor (Euclidean) vector quantizer with code vectors

in the transformed alphabet given by ΦkYk.

E. Noise Shaping Architecture

In this section, we show that the closed-form expression for the optimizer given in (24) allows us to

describe the system by a noise-shaping architecture, which can be implemented efciently.

As is evident from (17), the optimizing vector !y ∗
k should be chosen such that the ltered error vectors

Ψk(!xk − !yk) and M(!xk − !yk) are close to the mirror images of AN!zk and Γk!zk, respectively. Thus,

the past decisions contained in !zk affect current and future decisions. We will now follow the approach

of [6], [8] and show that the MH quantizer has an equivalent noise-shaping architecture.

Let Gk(z) be dened as

Gk(z) ! (zI −A)−1B, (25)

where the square matrix zI contains the one-step advance (forward) operator z on its diagonal and let

Fk(z) ∈ RN×N be dened as

Fk(z) ! ΦT
k Φk + (ΨT

k Γk +MTPAN )G(z)[1 0 · · · 0], (26)

where the unit row vector [1 0 · · · 0] is of dimension 1×N as will become clear below. Then, writing

!zk+1 in terms of the forward operator, i.e., !zkzI = !zk+1, inserting into (8) and solving for !zk yields

!zk = (zI −A)−1B(xk − yk) (27)

= Gk(z)[1 0 · · · 0](!xk − !yk). (28)

Moreover, we may express !wk given by (22) through

!wk = (Φk + Φ−T
k (ΨT

k Γk +MTPAN )G(z)[1 0 · · · 0])!xk

− Φ−T
k (ΨT

k Γk +MTPAN )G(z)[1 0 · · · 0]!yk

= Φ−T
k

(
Fk(z)!xk − (Fk(z)− ΦT

k Φk)!yk
)

(29)
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!xk yk!ykFk(z) Φ−T
k Φ−1

kQΦkYk [1 0 · · · 0]!wk
!ξk

Fk(z)− ΦT
k Φk

Fig. 2. MH quantization implemented using a noise-shaping architecture.

Recalling that yk = [1 0 · · · 0]!yk, !yk = Φ−1!ξk and using (29), leads to the noise-shaping nearest-neighbor

quantization architecture shown in Fig. 2.

The analysis provided in the previous sections showed that the MH quantizer can be implemented as

a nearest neighbor (Euclidean) vector quantizer. It is important to see that the mapping Φ−1
k is applied

upon the quantized vector !ξk to obtain !yk whereafter the rst element yk of !yk is transmitted to the

decoder. In general, it may not be possible to apply an abitrary transform Φ−1
k on a quantized vector !ξk

and yet be within a desired quantization space, e.g., within Yk.

If the nearest neighbor quantizer QΦkYk(·) is obtained as the transformation ΦkYk of the codebook

Yk of the MH quantizer QN
k (·), then clearly Φ−1

k
!ξk ∈ Yk. In this case, if Yk denes a lattice codebook,

then ΦkYk will be a shaped lattice w.r.t. Yk, where Φk is called the shaping operator [12]. Thus, ΦkYk

will also be a lattice.

If the nal state weighting matrix P is taken to be the all-zero matrix, then the cost function simplies

to the one given in (1). In this case, Φk = Ψk and it follows from (13) that Φk will then be lower uni-

triangular. But since the inverse of nite-dimensional and lower unitriangular is also lower unitriangular,

it follows that the rst row of Ψ−1
k will be the unit vector [1 0 · · · 0]. This implies that yk = ξk, i.e.,

the rst element of the quantized vector !ξk will be equal to the rst element of !yk.

In the general case where P is not the all-zero matrix and the codebook for the nearest neighbor

quantizer QΦkYk is arbitrarily designed (e.g., the codebook could be a xed lattice) the resulting ouput

variable yk = [1 0 · · · 0]Φ−1
k

!ξk generally lies in a time-varying domain, since Φk is time-varying. In this

case, care must be taken, since Φk is not known at the decoder and hence the resulting codebook is not

known at the decoder. One possible approach is to make Φ−1
k all integers (in which case the transpose

Φ−T
k is also all integers). If now the codebook Yk is chosen to consist of all integer coordinates, as is the

case if e.g., appropriately scaled scalar quantizers are used, then y k ∈ Z as desired. This approach where

the quantization operation is applied before the transformation has been studied in e.g., the Wavelet
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literature where it is known as lifting [13] and in the source coding literature where it is commonly

referred to as integer-to-integer transformations [14] or reversible integer mappings [15].

III. RATE-DISTORTION ANALYSIS OF PERCEPTUAL MOVING HORIZON QUANTIZATION

In this section we perform a rate-distortion analysis of the perceptual MH quantizer. We use bold faced

symbols for stochastic variables, e.g., !ξk denotes the kth vector of the vector process !ξ and !ξk denotes

a realization. For sequences e.g., {!ξi,!ξi+1, . . . ,!ξk} we use the notation {!ξj}kj=i. Also recall the slight

abuse of notation that ξk denotes the rst sample of the kth vector !ξk so that ξk+1 is the rst sample of the

vector !ξk+1. We will make use of the following information theoretic quantities, E[·],H(·), h(·), I(·; ·),

and D(·; ·), which denote statistical expectation, discrete entropy, continuous entropy, mutual information,

and Divergence (or Kullback Leibler distance), respectively, see [16] for details.

A. Without Final State Weighting

We rst consider the case of MH quantization without nal state weighting (i.e., where P = 0I). In this

case, it follows from the previous section that Ψk = Φk is lower triangular and hence yk = ξk. To make

the proposed system amenable to a rigorous analysis, we will be using entropy coded and substractively

dithered lattice quantizers, which are hereafter abbreviated ECDQs and denoted by the symbol QΛ, where

Λ ∈ RN refers to the underlying N -dimensional lattice. An ECDQ uses a dither signal !νk ∈ RN which

is i.i.d. and uniformly distributed over a Voronoi cell of the lattice Λ [17]. Given an input !wk the output

of the ECDQ is given by
!ξk = QΛ(!wk + !νk). (30)

Thus, !ξk belongs to a discrete alphabet (i.e., Λ). The rst sample of !ξk, i.e., ξk, is further entropy coded

in order to be represented by a sequence of bits b̄k = E(ξk, νk), where E(·, ·) denotes the entropy coder.3

The reconstruction !ξ′k at the encoder is obtained by subtracting the dither signal, i.e. !ξ′k = !ξk − !νk, and

!yk is then given by !yk = Ψ−1
k

!ξ′k. Notice that due to dithering, !ξ′k and !yk belong to continuous alphabets.

It was shown in [17], that the quantization error !qk, where

!qk = !ξ′k − !wk = !ξk − !wk − !νk, (31)

is i.i.d., independent of !wk, and distributed as −!νk. The reconstruction ξ ′k at the decoder follows by rst

obtaining ξk = D(b̄k, νk), where D(·, ·) denotes entropy decoding, and then subtracting the dither νk,

3We emphasize that the entropy coding is conditioned upon the dither signal νk [17].
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that is

ξ′k = D(b̄k, νk)− νk (32)

= ξk − νk (33)

= wk + qk, (34)

where it is assumed that the rst sample νk of the dither vector !νk is known at the decoder.4 To accomodate

dithering, we redraw the schematics of Fig. 2 into the form shown in Fig. 3.

E b̄k

!νk

!νk

!νk

!xk Fk(z) Φ−T
k

Φ−1
k

QΛ [1 0 · · · 0]!wk
!ξk

!ξ′k
Fk(z)− ΦT

k Φk
!yk

Fig. 3. MH quantization (with subtractive dithering) implemented using a noise-shaping architecture.

Let R̄ denote the average conditional entropy of the ECDQ, when the quantized variables {ξ k} are

independent (sample-by-sample) entropy coded, i.e.,

R̄ ! lim
k→∞

1

k

k−1∑

i=0

H(ξi|νi). (35)

It is known that this conditional entropy provides a lower bound on the per sample average (operational)

coding rate R̄∗ of the ECDQ. Moreover, the conditional entropy H(ξk|νk) is equal to the mutual

information over the additive noise channel ξ ′
k = wk + qk [17]. Thus, the operational coding rate is

lower bounded by

R̄∗ ≥ R̄ = lim
k→∞

1

k

k−1∑

i=0

I(wk; ξ
′
k). (36)

We are interested in designing the quantizer codebook Λ so as to minimize the time-averaged expected

perceptual distortion D̄ (per dimension), for a xed horizon lengthN , subject to a target entropy constraint

4This kind of common randomness can be obtained by e.g., guaranteeing that the encoder and decoder are synchronized w.r.t.,

to their random generators, or e.g., by transmitting (or agreeing upon) a common seed.
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R̄ ≤ RT on the average conditional entropy R̄ when independently encoding the sequence of �“rst

coordinates�” of the quantized outputs, i.e., {ξ j}∞j=0.5 Specically, by use of (1), we can express D̄ as

D̄ = lim
k→∞

1

kN

k−1∑

i=0

E‖!εi‖2 (37)

Lemma 1: The average perceptual distortion D̄ of Fig. 3 is given by

D̄ = lim
k→∞

1

kN

k−1∑

i=0

E‖!νi‖2. (38)

Proof: Whether or not we use dithering, the output !ξk of the quantizer can always be written as
!ξk = !wk + !qk, where !qk at this point can be arbitrarily distributed. The cost metric (1) can be rewritten

as

‖!εk‖2 = f !w
k (!ξk) + Ξk(!xk, !zk) (39)

= ‖!ξk‖2 − 2!ξ T
k !wk + Ξk(!xk, !zk) (40)

= ‖!wk + !qk‖2 − 2(!wk + !qk)
T !wk + Ξk(!xk, !zk) (41)

= ‖!qk‖2, (42)

where the last equality follows since P = 0I so that !wk = Ψk!xk + Γk!zk and Ξk(!xk, !zk) = ‖!xk‖2ΨT
k Ψk

+

2〈!xk,ΨT
k Γk!zk〉 + ‖!zk‖2ΓT

k Γk
. When the quantizer is an ECDQ, we note that the reconstruction is !ξ′k =

!ξk − !νk = !wk + !qk and the perceptual distortion satises ‖!εk‖2 = f !w
k (

!ξ′k) + Ξk(!xk, !zk). Inserting this

into (39) and using that ‖!qk‖2 = ‖!νk‖2 yields (38).

Corollary 1: If the lattice Λ in Fig. 3 is xed, i.e., !ν is i.i.d., and ‖!νk‖2 = σ2,∀k, then

D̄ =
1

N
σ2. (43)

Proof: Follows immediately from Lemma 1 by using the fact that !ν is zero-mean and identically

distributed for all k if Λ is xed.

Theorem 1: Let x be stationary, having nite differential entropy rate, but otherwise arbitrarily dis-

tributed. Then the coding rate for the scheme in Fig. 3 is bounded between:

R̄ ≤ R̄∗ < R̄+ 1.2547, (44)

5We are interested in the situation where the elements of the sequence of output samples {ξj}∞j=0 are encoded separately for

two reasons. First, it leads to a simple low delay design. Second, it guarantees that the encoder and decoder remain �“synchronized�”

also in the case of packet dropouts.
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where R̄ = limk→∞
1
k

∑k−1
i=0 h(ξ′i)− h(νi).

Proof: We rst prove the lower bound. As explained in Section II-E, for P = 0I , the rst element

of !yk is identical to the rst element of !ξk. The marginal distribution pξk
of ξk is therefore identical

to the marginal distribution pyk
of yk. We may therefore proceed by considering ξk instead of yk. The

operational coding rate is lower bounded by the average scalar mutual information between w k and ξ′k.

Specically,

R̄ ≥ lim
k→∞

1

k

k−1∑

i=0

I(wi; ξ
′
i) (45)

= lim
k→∞

1

k

k−1∑

i=0

(
h(ξ′i)− h(ξ′i|wi)

)
(46)

= lim
k→∞

1

k

k−1∑

i=0

(
h(ξ′i)− h(qi)

)
(47)

= lim
k→∞

1

k

k−1∑

i=0

(
h(ξ′i)− h(νi)

)
. (48)

We will now prove the upper bound by using [18, Lemma 2] in order to show that I(w i; ξ
′
i) can be

upper bounded by replacing the variables w i and qi by Gaussian variables w
g
i and qg

i , having the same

second-order statistics. With this, we have that

I(wi; ξ
′
i) = I(wi;wi + qi) (49)

≤ I(wg
i ;w

g
i + qgi ) +D(qk||q

g
k). (50)

It follows that the Divergence term D(qk||q
g
k), only depends upon the marginal distribution of the

rst sample of the quantization noise vector. Since we are using lattice vector quantizers, where the

quantization noise (due to dithering) is uniformly distributed over a Voronoi cell, the resulting marginal

distribution depends only upon the shape of the Voronoi cells. In general, the more spherically shaped

Voronoi cells, the more �“Gaussian�”-like quantization noise [12]. The worst lattice vector quantizer is

obtained by using a sequence of scalar uniform quantizers individually along each dimension of the

source vectors. In this case, D(qk||q
g
k) < 0.2547 [12]. The proof is completed by using the well known

fact, that there exists entropy coders with an average rate, which is strictly less than the output entropy

plus 1 bit/dimension [19].

Remark 1: Theorem 1 provides a sandwich on the operational coding rate. The upper bound is due to

using non-asymptotic quantizers and non-asymptotic entropy coders. As is well known, the 1 bit/sample

�“loss�” of the entropy coder tends to zero at high coding rates or at high vector dimensions [19]. The
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remaining gap, i.e., the 0.2547 bits/sample, is the loss due to not using optimal vector quantizers. Thus,

in the limit where N → ∞ and if optimal vector quantization is used, it can be shown that also this gap

vanishes. Thus, at high rates and large vector quantizer dimension, the lower bound is achievable. In the

simulations section, we show that even without dithering, simple scalar quantization gets very close to

the lower bound.

Remark 2: If the quantizer codebook is designed in the original domain, i.e., if Yk is designed and

then ΨkYk is used, then the performance is inferior as to when the codebook is designed in the transform

domain. However, in this case, using larger horizon lengths can be expected to give additional gains over

that of the space-lling gain of the vector quantizers. Such situations were examined in [8], [11].

We have so far considered the case where the encoder separately encodes the sequence of quantized

variables. It would be interesting to compare this to the gain by allowing the encoder and decoder to

exploit all the memory within the system, when encoding the rst sample of the vector outputs. In this

case, we have the following lower bound on the average entropy R̄ of the process {ξ′j}∞j=0:

Lemma 2: Let x have nite differential entropy rate but otherwise arbitrarily distributed. Moreover,

x the lattice in the ECDQ such that ν is i.i.d., and independent of x. If all memory within the system

is exploited, then the average entropy is lower bound by

R̄ ≥ h̄({ξ′j}∞j=0)− h(ν), (51)

where h̄(·) denotes the differential entropy rate [16].

Proof: Since we have a source coding system within a feedback loop, there is memory in the system

and it follows from [20] (see also Theorem 1 in [21]), that the average entropy is lower bounded by

Massey�’s notion of directed mutual information [22]. Thus,

R̄ ≥ I({wj}∞j=0 → {yj}∞j=0) (52)

! lim
k→∞

1

k

k−1∑

i=0

I(yi; {wj}ij=0|{yj}i−1
j=0). (53)

We now use that !ξ′k = !wk + !qk and recall that yk = ξ′k since P = 0I . This allows us to further lower

bound the rate as follows:

R̄ ≥ I({wj}∞j=0 → {ξ′j}∞j=0) (54)

! lim
k→∞

1

k

k−1∑

i=0

I(ξ′i; {wj}ij=0|{ξ′j}i−1
j=0) (55)

= lim
k→∞

1

k

k−1∑

i=0

h(ξ′i|{ξ′j}i−1
j=0)− h(ξ′i|{ξ′j}i−1

j=0, {wj}ij=0) (56)
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= h̄({ξ′j}∞j=0)− lim
k→∞

1

k

k−1∑

i=0

h(wi + qi|{ξ′j}i−1
j=0, {wj}ij=0) (57)

= h̄({ξ′j}∞j=0)− lim
k→∞

1

k

k−1∑

i=0

h(qi|{ξ′j}i−1
j=0, {wj}ij=0) (58)

= h̄({ξ′j}∞j=0)− h(ν), (59)

where the last equality follows since qk is independent of past and current input and quantization error

samples due to the use of independent dithering. Moreover, qk is distributed as −νk but negation does

not affect the differential entropy.

Remark 3: As expected, the reduction in the lower bound on the average entropy when memory is

utilized is solely given by the difference between the average differential entropy and the differential

entropy rate of {ξ′k}.

B. With Final State Weighting

We will now examine MH quantization with non-zero nal state weighting, i.e., where P -= 0I . We will

assume that the codebook Yk is given and a nearest neighbor vector quantizer is using the transformed

codebook ΦkYk. The average expected distortion is now based on (11), that is

D̄ = lim
k→∞

1

kN

k−1∑

i=0

E
{
‖!εi‖2 + ‖!zi+N‖2P

}
. (60)

Lemma 3: Let !ξk = !wk + !qk, where !qk ∈ RN is an arbitrarily distributed quantization error vector.

Then,

D̄ = lim
k→∞

1

kN

k−1∑

i=0

E
{
‖!qi‖2 + ‖!zi‖ϕT

i ϕi

}
. (61)

where

ϕT
i ϕi ! ΓT

i Γi + (AN )TPAN

− (ΨiΓi +MTPAN )TΦ−1
i Φ−T

i (ΨiΓi +MTPAN ).

Proof: The proof follows along the lines of the proof of Lemma 1.

Unfortunately, we have not been able to obtain non-trivial rate bounds for this harder situation where

P -= 0I . The main reason is that, even if one xes the lattice Yk in the original !yk-domain, the resulting

lattice after the transformation ΦkYk is random since Φk is a random matrix. Moreover, after quantization

the quantized vector !ξk is mapped to the original !yk-domain where the rst sample, i.e., yk, is to be

transmitted. Thus, the inverse mapping Φ−1
k affects the marginal distribution of yk so that it is not

identical to the marginal distribution of ξk.
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IV. MULTIPLE-DESCRIPTION PERCEPTUAL MOVING HORIZON QUANTIZATION

With the results of Sections II and III as background, in this section we will present our main proposal,

namely, the use of MH quantization together with MD coding.

A. Multiple-Description Moving Horizon Quantization

In MD coding a single source vector !xk is mapped to multiple output vectors (!y 0
k , !y

1
k , . . . , !y

n−1
k ),

which are usually referred to as descriptions [2]. In the general case, we have n ≥ 1 descriptions, see

e.g., [23]. Hence, we have n encoders

fj : !xk .→ !y j
k ∈ RN , j = 0, . . . , n− 1, (62)

and 2n decoders

g# : {!y j
k : j ∈ &} .→ !̂y #

k ∈ RN , & ⊆ {0, . . . , n− 1}. (63)

For every time instance k, the rst sample of each of the n current descriptions, i.e. {y 0
k, y

1
k, . . . , y

n−1
k },

are transmitted over n channels so that description j, i.e. y j
k, is transmitted on the jth channel. At any time

k, an arbitrary subset of the channels may break down. Which of the channels are currently working is not

known to the encoder, but it is known to the decoder.6 The problem is then to construct the n descriptions,

so that they provide a certain degree of redundancy, which can be exploited at the decoder during channel

failures. Generally, the descriptions are able to rene each other, and the distortion achieved therefore

depends upon which subset of descriptions was received.

To successfully combine MD coding and MH quantization, one needs to carefully consider several

issues. Firstly, an MD encoder outputs multiple descriptions, whereas the MH quantizer QN
k (·) studied in

Sections II and III gives only a single output. Furthermore, there is a feedback loop at the encoder, since

past decisions affect the current decision through the system state vector !zk, see e.g., (10) and Fig. 2. In

order for this feedback loop to to be well dened at the encoder, we need to form a single output based

on the n descriptions. Towards that end, for some xed set of scalar weights {γ # ∈ R}#⊂{0,...,n−1}, we

dene7

!̃yk !
∑

#⊆{0,...,n−1}

γ#!̂y
#
k (64)

6It is assumed that the decoder can deduce which channels are working e.g. based on the set of received descriptions.
7We note that how to form the vector to be fed back at encoder is a non-trivial problem. This is partly due to the fact that

the encoder does not know in advance which descriptions will be received at the decoder.
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and update the state vector !zk (which was previously given by (10)) by the following rule:

!zk = [xk−1 − ỹk−1, xk−2 − ỹk−2, . . . , xk−K − ỹk−K]T , (65)

where ỹk denotes the rst sample of the vector !̃yk given in (64). The weights {γ#} in (64) may, for

example, reect successful decoding probabilities, i.e. the probability of receiving only the descriptions,

which are indexed by &.

Another issue which should be taken into account when designing an MD coder for MH quantization

is that the cost function JN
k introduced in (1) and extended to include state cost in (17) does not explicitly

take into account the distortion as observed by the decoder. While this might be somewhat curious from

a coding point of view, it is the de facto standard in moving horizon optimization methods (see e.g., [11])

and model predictive control [10]. However, motivated by (64), we propose to rewrite (1) as a weighted

sum over the possible outcomes due to packet dropouts. Specically, in the case of n descriptions, we

propose the following cost function:

JN
k (!xk) !

∑

#⊆{0,...,n−1}

γ#‖!ε #k‖2, (66)

where, for & ⊆ {0, . . . , n− 1}, the perceptually ltered error sample is given by

ε#k ! Ck!zk + (xk − y#k). (67)

Lemma 4: Let the cost function be given by (66). Moreover, let the weights 0 ≤ γ# ∈ R, & ⊆

{0, . . . , n − 1} be given. Then, the optimal set of reconstruction vectors {!y #
k ∈ Y#

k}#⊆{0,...,n−1}, where

Y#
k denotes the codebook for !y #

k , can be found as

arg min
{!ξ !

k∈ΨkY!
k}!⊆{0,...,n−1}

∑

#⊆{0,...,n−1}

γ#f
!w
k (!ξ #

k ), (68)

where f !w
k (!ξ #

k ) is given by (21), by using the relationship !y #
k = Ψ−1

k
!ξ #
k , & ⊆ {0, . . . , n− 1}.

Proof: By adopting a similar approach as when forming (12), it is easy to show that ‖!ε #
k‖2 =

‖Ψk(!xk − !y #
k) + Γk!zk‖2, where !zk is given by (65). Moreover, using (18) �– (22) it follows that

‖Ψk(!xk − !y #
k) + Γk!zk‖2 = f !w

k (!ξ #
k ) + Ξk(!xk, !zk), (69)

where Ξk(!xk, !zk) is independent of !y #
k (at time k). We therefore establish that JN

k (!xk) given by (66) can

be rewritten as

JN
k (!xk) =

∑

#⊆{0,...,n−1}

γ#
(
f !w
k (!ξ #

k ) + Ξk(!xk, !zk)
)
. (70)

The lemma is now proved by recognizing that minimizing (70) is equivalent to solving (68).
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Remark 4: Lemma 4 shows that minimizing the perceptually weighted cost function (66) is equivalent

to solving the weighted MSE minimization problem (68), i.e., solving argmin
∑

# γ#‖!wk − !ξ #
k‖2. Since

this denes a (weighted-Euclidean) nearest-neighbor MD vector quantization problem, we may use

conventional MD quantization techniques. In this work, we will apply the n-description index-assignment

based lattice vector quantization construction of [23], [24].

B. Rate-Distortion Analysis of Perceptual MD MH quantization

The optimum rate-distortion performances of MD problems are generally not known. In fact, it is only

completely solved for two descriptions in the case of MSE distortions and white Gaussian sources [2],

[25] or colored Gaussian sources [26], [27]. In the case of more than two descriptions, even less is known.

In this work, we let the MD quantizer be the simple index-assignment based lattice vector quantizer

presented in [23]. With this MD quantizer, the reconstruction rule is given as the average of the received

descriptions, or in the case all descriptions are received, it is given by the inverse of a xed mapping

function. The MD quantizer consists of a single high-quality quantizer, referred to as a central quantizer,

and n coarser quantizers referred to as side quantizers. The central quantizer has Voronoi cells of volume

νc and the side quantizers have Voronoi cells of volume ν = ρNνc, where ρ > 1 denotes the nesting

factor, which is inversely proportional to the amount of redundancy within the system. Thus, a large

nesting factor yields poor side performance but very good central performance, whereas a small nesting

factor yields good side performance and only slightly better central performance, see [23] for details.

Under high-resolution assumptions, the coding rate per description is given by [23]

R̄∗ .≈ 1

k

k−1∑

i=0

h(wi)−
1

N
log2(ν), (71)

where
.≈ means that the approximation is exact in the limit where the rate diverges to innity and the

distortion tends to zero. In the case of an n-description system, the average distortion D̄0,...,n−1 when

receiving all n descriptions is given by [23]

D̄0,...,n−1
.≈ G(Λ)ν2/Nc , (72)

where G(Λ) denotes the dimensionless normalized second-moment of inertia [28] of the N -dimensional

lattice quantizer Λ being used. On the other hand, since we are here referring to a symmetric 8 setup, the

8Symmetric MD coding refers to the case where: 1) all side descriptions are encoded at the same descriptions rate. 2) the

distortion observed at the decoder depends only upon the number of received descriptions and as such not upon which descriptions

that are received.
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distortion D̄# where & ⊆ {0, . . . , n − 1} and |&| = κ, when receiving any 1 < κ < n descriptions, is

given by [23]

D̄#
.≈
(
n− κ

2nκ

)
G(SN )B2

n,N22(h(ξ)−R̄c)∗2
2n

n−1
(R̄∗

c−R̄∗), (73)

where R̄∗ is given by (71), R̄∗
c = 1

k

∑k−1
i=0 h(wi) − 1

N log2(νc), G(SN ) denotes the dimensionsless

normalized second-moment of inertia of an N -dimensional hypersphere [28], and Bn,N is an expansion

factor. The latter is a function of the number of descriptions n and the vector dimension N , see [23] for

details. With this, the average perceptual cost function (66) can be written as

JN
k (!xk) !

∑

#⊆{0,...,n−1}

γ#‖!ε #k‖2
.≈

∑

#⊆{0,...,n−1}

γ#D̄#, (74)

where D̄# is given by (72) and (73).

V. DESIGN STUDY

In this section, we design and simulate the proposed coding architecture. We rst show how one may

obtain the perceptual weighting lter. We then motivate the use of MH quantization by considering a

single-description setup, and show that by using a simple xed perceptual weighting lter, signicant

gains over linear PCM can be achieved. We nally construct an MD MH quantization based scheme,

and consider a scenario with three descriptions.

A. Obtaining the Perceptual Weighting Filter

Most psychoacoustic models are dened in the frequency domain and are based on a block ofM time-

domain samples. We therefore need to introduce a certain amount of delay in order to achieve sufcient

accuracy of the frequency response. The specic choice of psychoacoustic model is not essential for our

design. We could, for example, choose the model from the MPEG1 layer 1 standard [7], which is based

on a block of M = 512 samples, at a sample rate of 44.1 kHz or one could use the model presented

in [29], which is based on M = 128 time-domain samples. Alternatively, one could simply use a xed

perceptual weighting lter in which case there is no need for a delay.

In order to obtain the perceptual lter !hk of order K, we use an idea suggested by Schuller et al. [30].

Let |θk(f)|2 be the masked threshold as computed by the perceptual model, for the kth block, and notice

that we would like to nd a perceptual weighting lter with a transfer function that saties |Hk(f)|2 ≈

|θk(f)|−2. If we use |θk(f)|2 as a short-term power spectrum, then the symmetric autocorrelation sequence

{rk,i}, i = 0, . . . , M2 , is found simply as the inverse DFT of |θk(f)|
2. The lter coefcients hk,1, . . . , hk,K

are now easily found from {rk,i} by use of the Yule-Walker equations [31].
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In the simulations that follow in the next sequel, we will use a simple xed third-order perceptual

weighting lter. In particular, we use a lter which mimics the threshold in quiet [32]. Let f denote

frequency (in Hz), then the threshold in quiet Tq(f) can be approximated by the following expression [32],

[33]:

Tq(f) = 3.64

(
f

1000

)−0.8

− 6.5 exp

(
− 0.6

(
f

1000
− 3.3

)2)

+ 10−3

(
f

1000

)4

.

(75)

Using the technique described above, we obtain h̄k from (75), i.e., for K = 3, we get

H̄k(z) = 1 + 0.4367z−1 − 0.6407z−2 − 0.5839z−3, ∀k. (76)

Recall that h̄k is used in a noise-shaping process, and that this operation does not introduce a delay.

B. Real-Time Single-Description Perceptual MH quantization

To avoid delay, we will in this rst simulation use simple uniform scalar quantization. Thus, N = 1

and the current sample is encoded and decoded independently of future samples. However, the current

sample is encoded by taking into account previous samples and coded values, as summarized by the

current state vector. With N = 1, and using only a single description, the proposed scheme is akin to

noise-shaping coders.

As a baseline, we rst directly quantize the music signal, using a uniform scalar quantizer, which

corresponds to conventional linear PCM. Under high-resolution assumptions, the resulting discrete entropy

H(ŷ) of the quantized signal can be approximated by [34]:

H(ŷ) ≈ h(x)− log2(∆), (77)

where ∆ denotes the step-size of the quantizer. Moreover, it is well known that the (MSE) distortion

D is approximately D ≈ ∆2/12. It follows from (77), that for a given coding rate R̄∗ ≈ H(ŷ), the

step-size of the quantizer is given by ∆ = 2h(x)−R̄∗ , and knowledge of the differential entropy of the

source signal is required in order to obtain the optimal scaling ∆ of the quantizer. If the signals are

Gaussian distributed, h(x) = 1
2 log2(2πeσ

2), where σ2 denotes the variance of the signal. Thus, in this

case, only knowledge of the source variance is required.

We use three different fragments of music; Jazz, Pop, and Rock, all having a sampling rate of 48

kHz and a duration of 15.0, 6.8, and 13.5 seconds, respectively. We measure their variances, and use

the Gaussian approximation given above, in order to derive the scaling factor ∆. As can be observed
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Fig. 4. Operational rate-distortion curves.

from Fig. 4, the approximation is quite accurate, i.e., the operational rate-distortion function of the linear

PCM encoded signal approximately coincides with that obtained from a truly Gaussian signal. 9 In Fig. 4,

the x-axis describes the MSE distortion in dB, and the y-axis describes the discrete entropy in bits per

sample.10

Also shown in Fig. 4, is the operational MSE rate-distortion performance obtained with the proposed

perceptual MH quantizer, in the simplest case where N = 1, P = 0I , and only a single description is

used. It may be noticed that the performance of MH quantization appears to be up to 5 dB worse than

that of linear PCM. However, it is important to keep in mind, that the MH quantizer is optimized for

a perceptual measure and not for the MSE. To further stress this point, we have shown the objective

difference grades (ODGs) for the linear PCM signal as well as for the MH quantized signal in Table II.11

The ODGs provide an indication of the perceived quality of the coded audio signals and are related to

the standard ITU-R 5-grade impairment scale as shown in Table I.

As can be seen from Table II, the quality of the MH quantized audio is signicantly better than

conventional linear PCM, when ODG rather than MSE is the preferred gure of merit. We have also

9We note that in general such behavior cannot be expected, and one would then need to use an alternative estimate of the

differential entropy in order to obtain ∆.
10The discrete entropy lower bounds the resulting coding rate that one would obtain when using entropy coding on the

quantized signal. At high-resolutions, e.g., at least 2 �– 3 bits/sample, the resulting coding rate will be very close to the discrete

entropy.
11The ODGs scores are obtained by using the Matlab implementation provided by Kabal et al. [35] of the PEAQ standard [36].
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TABLE I

RELATIONSHIP BETWEEN THE ITU-R 5-GRADE IMPAIRMENT SCALE AND ODGS [33].

Impairment ITU-R 5-grade scale ODG

Imperceptible 5.0 0.0

Perceptible, but not annoying 4.0 -1.0

Slightly annoying 3.0 -2.0

Annoying 2.0 -3.0

Very annoying 1.0 -4.0

performed simulations where we replaced the scalar quantizer in the PCM setup by a log-quantizer,

i.e., the signal is rst compressed by the log-function and quantized using a uniform scalar quantizer.

Then, at the decoder, the inverse operation is required, i.e., the exp-function is applied in order to map

the reconstruction from the perceptual domain and back into the Euclidean domain. 12 However, this

companding approach did not give better ODGs than that achieved by standard linear PCM encoding. 13

TABLE II

OBJECTIVE DIFFERENCE GRADES FOR THREE FRAGMENTS OF MUSIC; Jazz, Pop, AND Rock.

Entropy

[bits]

MHQ

(Jazz)

PCM

(Jazz)

MHQ

(Pop)

PCM

(Pop)

MHQ

(Rock)

PCM

(Rock)

4 -3.191 -3.733 -3.808 -3.854 -3.864 -3.882

5 -2.890 -3.440 -3.460 -3.752 -3.779 -3.810

6 -1.568 -2.830 -2.570 -3.299 -3.440 -3.512

7 -0.803 -1.837 -1.200 -1.995 -2.382 -2.654

8 -0.473 -1.206 -0.418 -0.855 -1.027 -1.719

We now compare the numerical performance obtained in this section to the analytical expressions

provided in Section III-A. We will consider the case of R̄∗ = 6 bits/sample and use the Rock music

signal. First, the variance of the music signal is measured to be 0.0385, which results in a differential

entropy of h(x) = −0.3030 bits/sample, when using the Gaussian approximation. From this, the scaling

12Interestingly, no such operation is required at the decoder for the MH quantization approach, since the encoded symbols

are already representing the signal in the original domain.
13The log-companding approach is particular useful for xed-rate coding and when the distortion is the input-weighted mean

squared error, where the weight is given by the reciprocal of the square of the input, cf. [37]. However, we are here using

entropy-constrained coding and a distortion measure which is different from the input-weighted.
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factor is obtained as ∆ = 2−0.3030−6 = 0.0127. The average distortion given by (12) is measured to

be D̄ = 1.3381 · 10−5, which is close to E[‖q‖2] = ∆2/12 = 1.3366 · 10−5 (where the rst equality

is valid under the assumption of uniformly distributed quantization noise q) as follows from Lemma 1.

It is important to note that E[‖x − y‖2] -= ∆2/12, since we are not optimizing for the MSE and as

such Ψk -= [1 0 · · · 0]. Thus, this is not a trivial result, which follows from high-resolution quantization

theory. The discrete entropy of the quantized signal is measured to be R̄∗ = 5.9677 bits/sample, which

is close to the desired target rate of 6 bits/sample. At this point, we replace the scalar quantizer by

an additive white noise, which is uniformly distributed in the interval [−∆/2;−∆/2]. It follows that ξ

is continuous valued and therefore has a density (instead of being discrete due to quantization). Using

a nearest-neighbor entropy estimation approach [38], we numerically measure the average differential

entropy of ξ to be h(ξ) = 1
k

∑k−1
i=0 h(ξi) = −0.3492 bits/sample. Since q is uniformly distributed, it is

easy to show that h(q) = log2(∆) and that R̄∗ = h(ξ) − log2(∆) = 5.9538 bits/sample which is close

to the above measured R̄∗ = 5.9677 bits/sample obtained using a scalar quantizer.

The lossless coding operation is the same for our scheme as for the schemes used for comparison. Thus,

the particular construction is not of importance. In the simulations we tested two different settings. First,

an optimal Huffman lossless coder was designed on the empirical statistics of the quantized output. This

is an ideal situation. Second, a Gaussian codebook was designed using only knowledge of the variance

of the input signal. This is a worst case situation for two reasons: 1) The distribution is not matched to

the source distribution. 2) The Gaussian source is the hardest to code under MSE distortion. Thus, if the

source variance is xed, the rate when using a Gaussian codebook is greater than or equal to the rate

when using the true distribution. This is also interesting from a practical perspective, since by designing

the lossless codebook for a Gaussian distribution (of a xed variance), one makes sure that the operational

coding rate will never exceed that what it would be if the distribution was truly Gaussian. When using

the Jazz signal, we have measured the average empirical discrete entropy of {y k}, as well as the the

coding rate obtained after entropy coding using an optimal codebook (i.e., designed using the empirical

distribution of the actual sequence {yk}). For comparison, we have designed a Gaussian codebook, i.e.,

by using the variance of {yk} and randomly generating Gaussian samples, which are then used to train

a Huffman codebook. Then, we used this unmatched codebook to encode {y k}. The obtained rates (in

bits/sample) are illustrated in Table III. Notice that in both cases, the operational bit rates are close to

the desired discrete entropy of the output, which again is close to the desired target rate.

We next consider an application where nal state weighting and vector quantization is used. Note that

when vector quantization is utilized, it is important that the rst sample of the vector can be decoded
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TABLE III

OPERATIONAL BIT RATES [BITS/SAMPLE] AFTER LOSSLESS CODING USING HUFFMAN CODING.

Target rate Discrete entropy Rate: optimal CB Rate: Gaussian CB

4 3.985 4.021 4.061

5 4.981 5.013 5.053

6 5.979 6.011 6.034

7 6.979 7.010 7.023

8 7.978 8.009 8.054

independently of the remaining subvector. For example, the whole vector may be quantized using entropy-

constrained vector quantization and then the rst coordinate of the vector is separately entropy coded and

transmitted to the decoder. Alternatively, the rst coordinate may be quantized using a scalar quantizer

and the remaining coordinates may be quantized using either a vector quantizer or a sequence of scalar

quantizers applied individually along the remaining dimensions of the input vector.

Let N = 4 so that three future samples are required, and thus there is an inherent delay of three

samples. Furthermore, we use the K = 3 order perceptual weighting lter from (76). We use the D4

(four-dimensional) lattice vector quantizer at a bit-rate of R̄∗ = 6 bits/sample [28].14 We use a simple

state-weighting P = I , i.e., the K×K identity matrix, which results in an ODG of −2.5037 on the Pop

music signal. On the other hand, when no state-weighting is used, i.e., P = 0I , the performance is in

this case −2.7391, which is only slightly worse. It is an interesting topic for further study, to examine the

impact of nal state-weighting on the subjective audio quality and to nd optimal weighting matrices.

C. Real-Time Multiple-Description Perceptual MH quantization

We now propose a design for the MD case and where P = 0I . Recall from Lemma 4 that a (Euclidean)

nearest-neighbor MD quantizer may be used and that we use the index-assignment construction presented

in [23]. This results in n descriptions, which are combined at the encoder as described by (64). In the

following simulations, we will consider N = 1 and n = 3 descriptions. Thus, each sample is encoded

into three descriptions, which are each treated as a separate packet. Let the weights in (64) be given as

γ0 = γ1 = γ2 = (1 − p)p2, γ01 = γ02 = γ12 = (1 − p)2p, and γ012 = (1 − p)3, where p = 0.1, 0.2, 0.3.

Moreover, let the nesting factor be ρ = 9 and let the rates of the side descriptions be identical. Table IV

14Only the rst sample of the vector is entropy coded and transmitted.
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TABLE IV

ODGS FOR DIFFERENT SUBSETS OF DESCRIPTIONS AS A FUNCTION OF THE WEIGHTS. TOP THREE ROWS:R̄∗ = 7 AND

BOTTOM THREE ROWS: R̄∗ = 4 BITS/SAMPLE PER DESCRIPTION.

p y0 y1 y2 y01 y02 y12 y012

0.1 -3.164 -3.191 -3.267 -2.540 -2.038 -2.206 -0.139

0.2 -3.164 -3.212 -3.282 -2.540 -2.068 -2.222 -0.099

0.3 -3.138 -3.204 -3.287 -2.535 -2.044 -2.183 -0.052

0.1 -3.863 -3.803 -3.868 -3.828 -3.751 -3.796 -1.622

0.2 -3.860 -3.806 -3.865 -3.826 -3.745 -3.795 -1.993

0.3 -3.861 -3.794 -3.870 -3.834 -3.741 -3.812 -2.458

shows the ODGs for different subsets of descriptions when the Jazz music signal is encoded. It may

be observed that the performance of the individual descriptions as well as the performance when using

any two descriptions is largely unaffected by the choice of weights. However, the central reconstruction,

i.e., when all descriptions are used, (last column) is highly affected. In fact, at relatively high bit rates

(relatively low bit rates), the central reconstruction improves (becomes worse) with increasing packet loss

rates. The relationship between weights (and how to form the feedback at the encoder), bit rates, and

performance is unfortunately a non-trivial and open problem, see also Footnote 7. Figs. 5(a) �– 5(c) show

the ODGs for all three fragments at different bit rates. Here the weights are based on p = 0.1. It may

be noticed that, the more descriptions used in the reconstruction, the better the performance. Moreover,

as expected, increasing the bit-rate also leads to better performance.

In Table V, we compare the average run-time perceptual distortion given by (74) to the performance

observed at the receiver and obtained by simulations. At this point, we let the weight p denote the the

packet-loss rate, which in the simulations is the range p ∈ [5%; 30%] and is incremented in steps of 5%.

For each packet-loss rate, the numeric results are averaged over 10 different randomly chosen packet-loss

realizations. The shown results are for the Jazz fragment using three descriptions and 5 bits/sample per

description. Also shown is the theoretic performance obtained if one would use single-description (SD)

MH quantization at 15 bits/sample (last row in Table V). From Table V, it is clear that the performance

obtained from simulations is close to that described by theory. As expected, the performance decreases

as the packet-loss rate increases. Interestingly, a three-description system operating at 5 bits/sample per

description and at a packet-loss rate of p = 30%, performs better than a single-description system

operating at 15 bits/sample and at a packet-loss rate of p = 5%. The latter observation strengthens the

relevance of the scheme proposed in the present work. A suboptimal approach to multiple description
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Fig. 5. ODGs when using different subsets of descriptions for reconstructions.

coding is repetition coding, i.e., where the same description in a single-description setup is simply repeated

a number of times. Table V illustrates the situation when allowing one and two repetitions. When allowing

one repetition, the bitrate per description is 7.5 bits/sample, whereas when allowing two repetitions, the

bitrate is 5 bits/sample. Thus, the total rate is 15 bits/sample as in the other simulations presented in the

table. At high loss rates, it is often the case that only a single description is received and the performance

of repetition coding becomes close to that of MD coding.

VI. CONCLUSIONS

In this work, we have proposed a real-time audio coder which uses elements of multiple-description

coding and moving-horizon quantization. In particular, it was shown that MH optimization could be
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TABLE V

AVERAGE PERCEPTUAL DISTORTION D̄ GIVEN BY (74) AND BY SIMULATIONS, FOR THE Jazz FRAGMENT.

p = 0.05 p = 0.10 p = 0.15 p = 0.20 p = 0.25 p = 0.30

MD

(74)

n = 3

−49.420−43.311−38.886−35.494−32.768−30.499

MD

sim.

n = 3

−48.872−43.052−38.869−35.563−33.013−30.982

Rep.

sim

n = 3

−43.314−41.292−38.348−35.344−32.762−30.545

Rep.

sim

n = 2

−41.002−35.080−31.557−29.0633−27.126−25.554

SD

n = 1

−28.083−25.073−23.312−22.063−21.093−20.302

mapped into a domain which allowed the use of existing (Euclidean) nearest-neighbor MD quantization

techniques. The moving-horizon construction allowed us to efciently incorporate perceptual weighting.

In the single-description case and without packet losses, it was shown that signicant gains over linear

PCM could be achieved without introducing delay and without having to change the decoding architecture

of existing systems. By introducing a few samples delay, with the proposed coder the noise shaping could

be improved over what was possible with conventional noise-shaping techniques. It was also shown that

the inclusion of multiple descriptions provided a certain degree of robustness towards packet losses.
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