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Abstract— We study a state estimation architecture for sensor
networks, where several sensors transmit quantized innovations
to a central estimator. Transmission is via a wireless channel,
which is prone to fading leading to random packet loss. State
estimation is carried out at the gateway via a time-varying
Kalman filter which accounts for packet loss and quantization
effects. To form the innovations at the sensors, the estimator
transmits information regarding its current state estimate to the
sensors. This information could be dedicated to each sensor or
broadcast to all sensors. In addition, the gateway also decides
upon power levels and quantization step-sizes to be used by each
sensor node. Here, we adopt elements of predictive control to
trade off estimation performance versus energy use.

I. INTRODUCTION

The use of wireless sensor networks (WSNs) for estima-

tion and control has attracted significant attention; see, e.g.,

[1], [2]. Clearly, the use of wireless communications has

distinct advantages. For example, installation and mainte-

nance costs are lower than when wired sensors are used.

Furthermore, wireless sensors can be placed where wires

cannot go, or where power sockets are unavailable.

Perhaps, the main drawback of using wireless communi-

cations lies in the fact that wireless channels are inevitably

affected by time-varying fading and interference, which

frequently cause packet-loss with consequent performance

degradation. As in other wireless communications technol-

ogy, such as cellular (or mobile) phone systems, the effects

of time-varying channel fading and interference can be alle-

viated by adjusting power levels. However, the use of high

transmission power is rarely an option for WSNs, since in

most applications, sensors are expected to be operational for

several years without the replacement of batteries. Another

way to diminish packet-loss probabilities lies in reducing the

size of the packets transmitted. This, however, needs to be

done with utmost care to avoid excessive quantization effects.

The main motivation for the present work lies in achieving

enhanced performance versus energy use trade-offs when

performing state estimation via WSNs. For that purpose, we

will consider an LTI nx-dimensional system:

x(k + 1) = Ax(k) + w(k), k ∈ N0 � {0, 1, . . . }, (1)

where the initial system state x(0) ∈ N (0, P0), P0 is nx×nx,

and w = {w(k)}k∈N0
is i.i.d., where each w(k) ∈ N (0, Q).
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To remotely estimate the state sequence x = {x(k)}k∈N0
,

we will study a WSN with M sensor nodes. Each sensor m
takes scalar noisy measurements, say ym = {ym(k)}k∈N0

:

ym(k) = Cmx(k) + vm(k), m ∈ {1, 2, . . . , M}, (2)

where vm = {vm(k)}k∈N0
is i.i.d. with vm(k) ∈ N (0, Rm).

The values in (2) are processed locally and then, if deemed

important, sent to a single gateway (GW). In our approach,

in order to make parsimonious use of the sensor energies,

as much processing as possible is performed at the GW. In

particular, the GW sends predictions of the output values

in (2) to the corresponding sensors. The latter then send

quantized innovations to the GW for state estimation. Sensor

nodes do not communicate with each other.

Optimal state estimation, given quantized innovations,

inherently leads to a difficult nonlinear estimation problem

involving the numerical solution of Chapman-Kolmogorov

equations; see, e.g., [3], [4] and also [5], [6], where estima-

tion with quantized measurements, rather than innovations

is studied. In the present work, we will adopt a powerful

and widely-used design model, where quantization effects are

approximated as additive noise; see, e.g., [7], [8]. State esti-

mates are, thus, provided by a simple time-varying Kalman

Filter (KF), which operates on received data and take into

account quantization noise.

Within the above setting, see also Fig. 1, our contribution

lies in developing a centralized predictive controller for the

design of sensor transmission power levels and sensor quan-

tization schemes. The current paper complements our recent

work documented, for example, in [9], [10], by allowing for

coding of innovations rather than output values. The main

advantage of using coded innovations is that, in general,

the average variances of the innovations are significantly

lower than the variances of the output values. Thus, fewer

bits can be used to represent the changes in the outputs of

the sensors. Fewer bits require less energy, and will result

in fewer packet losses. This in turn gives significant state

estimation performance gains, as will become apparent in

the simulation study documented in Section VI.

II. PROCESSING AT THE SENSOR NODES

As foreshadowed in the introduction, in our formulation,

each of the sensor nodes can adapt to changing operating

conditions by using, at each time instant k, a different

quantizer from within a pre-designed set. Which quantizer

to choose is determined by the GW as described in detail in

Section V. To avoid transmitting redundant data and, hence,

be energy efficient, the sensors only send quantized inno-

vation values to the GW. A key aspect is that, innovations
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Fig. 1. State Estimation Architecture with a WSN having M = 2 sensors.

are computed with respect to a centralized state estimate.

For that purpose, at each time k ∈ N, the GW transmits a

predicted sensor output estimate to each of the sensors.1

To be more specific, at each time k each Sensor m receives

(from the GW) either the state prediction x̂(k|k − 1) or the

corresponding output prediction

ŷm(k|k − 1) � Cmx̂(k|k − 1).

and is also told which quantizer to use. Sensor m then

takes the measurement ym(k) and computes the quantized

innovation value ηm(k) in

ηm(k) = q∆m(k)

(

ỹm(k)
)

, (3)

where:

ỹm(k) � ym(k) − Cmx̂(k|k − 1).

In (3), q∆m(k)(·) is a mid-tread quantizer, i.e., satisfies

q∆m(k)(z) = 0, ∀z ∈ [−∆m(k)/2, ∆m(k)/2)

for some stepsize ∆m(k) > 0; see, e.g., [11]. Stepsizes

and expected bit-rates bm(k) ≥ 0 (after entropy coding)

depend upon each other and can be used interchangeably to

characterize the quantizer. Using smaller stepsizes leads to

smaller quantization effects, but requires larger bitrates than

using larger stepsizes. In the appendix we given more details

about quantizers and also present an iterative algorithm for

their off-line design.

It is worth emphasizing that the quantizer output can be

calculated efficiently by simply setting:

ηm(k) = ∆m(k)
⌊

ỹm(k)
/

∆m(k)
⌉

,

where �·� denotes rounding to the nearest integer.

If ηm(k) in (3) is nonzero, then Sensor m sends this value

(or the associated quantization region index codeword) to the

GW at the desired power level. If ηm(k) = 0, then Sensor m
remains silent.2 The situation is depicted in Fig. 2. It amounts

to a specific type of Lebesgue Sampling [12].

1Alternatively, the GW could also broadcast its predicted state estimate
x̂(k|k − 1) to all M sensors.

2Alternatively, Sensor m could also transmit an associated codeword,
which serves to confirm that the sensor can communicate with the GW.

Sensor m

+

−
ym(k)

ŷm(k|k − 1) bm(k)

q∆m(k)(·)
ηm(k)

Fig. 2. Processing at Sensor m.

Given the above logic, we see that each sensor has the

advantage of using a state estimate, which is built upon

past information regarding measurements made by the other

sensors. It is important to note that, in our scheme, sensors

do not need to communicate with each other. In particular,

no local state estimates are computed or broadcast.

The idea of quantizing the innovation processes ỹm is

certainly not new. It underlies various predictive coding

schemes schemes, see, e.g., [13], and has also been studied

more recently in, e.g., [3], [4], [14]. The method also bears

similarities to the send-on-delta concept explored, e.g., in

[15], [16]. Our contribution lies in using the idea within a

state estimation problem for WSNs over fading channels and

where power levels and bitrates are determined by the GW.

III. COMMUNICATION ISSUES

Transmission of the quantized innovations is through wire-

less links. Thus, transmission errors are likely to occur.3

Following [9], [10], we will model transmission effects by

introducing the M binary stochastic arrival processes γm =
{γm(k)}k∈N0

, m ∈ {1, 2, . . . , M}, where:

γm(k) =

{

1 if ηm(k) arrives error-free at time k,

0 if ηm(k) does not arrive error-free at time k.

The associated success probabilities

λm(k) � P
{

γm(k) = 1
}

, m ∈ {1, . . . , M},

depend on the propagation environment, on bm(k), and on

the transmission power used by the sensor radio power

amplifiers, which we denote by um(k). Indeed, we have:

λm(k) =
(

1 − βm

(

um(k)gm(k)
)

)bm(k)

, (4)

where gm(k) denotes the channel (power) gain4, and

βm(·) : [0,∞) → [0, 1] denotes the bit-error rate (BER). The

latter is a monotonically decreasing function, which depends

on the modulation scheme employed.

Example 1 (AWGN Channel and BPSK): If Binary Phase

Shift Keying is used over an additive white Gaussian noise

3In the present work, we will assume that sensor data is not affected
by delays or multiple access interference. Extensions of our framework to
include these issues, does not present any conceptual difficulties.

4Note that gm(k) is here defined to include also path-loss, power
amplifier efficiency, antenna gain and noise figure.
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channel with constant signal-to-noise ratio SNR, then the

BER is given by fQ

(√
2SNR

)

, where

fQ(z) �
1√
2π

∫ ∞

z

exp (−ζ2/2)dζ

is the Q-function, see [17]. Although the above model is

strictly only valid in the time-invariant case, we shall adopt

it also for time-varying channels, power levels and bitrates.

For that purpose, we introduce the instantaneous signal-to-

noise ratio for each channel m via5

SNRm(k) =
gm(k)um(k)

rkBT
, m ∈ {1, . . . , M},

where kB is the Boltzmann constant, T is the temperature

and r is the channel bit rate. Furthermore, we adopt a block

fading model, where the channel is constant over the duration

of one packet, but may be subject to fading between packets.

Expression (4) then gives:

λm(k) =

(

1 − fQ

(

√

2gm(k)um(k)

rkBT

))bm(k)

. (5)

We will use this model in Section VI. 

It follows from (4), see also (5), that one can improve

transmission reliability and, thus, state estimation accuracy

for a given wireless propagation environment, by transmitting

shorter packets and/or by simply increasing the power used

by the transmitter. Unfortunately, and as already noted in

Section II, smaller values of packet lengths bm(k) will lead

to larger quantization distortion. Furthermore, in WSNs, it

is of fundamental importance to save energy: Sensor nodes

are expected to be operational for several years without

maintenance. This motivates us to use the available energy

resources with care.
Before proceeding, we note that one can quantify the

energy used by each sensor m ∈ {1, . . . , M} at a given

(discrete) time instant, k, via Em(bm(k)um(k)), where

Em(bm(k)um(k)) �

⎧

⎨

⎩

bm(k)um(k)

r
+ EP if um(k) > 0,

0 if um(k) = 0.
(6)

Here, EP denotes the processing cost, i.e., the energy needed

for wake-up, circuitry and sensing.

IV. FORMING THE STATE ESTIMATES

The GW receives quantized innovation values. In the

present work, we will assume that the data transmitted

incorporates error detection coding [17]. Hence, the gateway

knows, whether packets received from the sensors contain er-

rors or not. Faulty packets will be discarded when estimating

the system state.
From a state estimation perspective, the overall system can

be described via the state transition equation (1) together with

the measurement equation:

y(k) = C(k)x(k) + v(k),

5SNRm(k) denotes the signal-to-noise ratio at the receiver, after the
matched filter.

where

y(k) �

⎡

⎢

⎢

⎢

⎣

y1(k)
y2(k)

...

yM (k)

⎤

⎥

⎥

⎥

⎦

, C(k) �

⎡

⎢

⎢

⎢

⎣

γ1(k)C1

γ2(k)C2

...

γM (k)CM

⎤

⎥

⎥

⎥

⎦

, v(k) �

⎡

⎢

⎢

⎢

⎣

v1(k)
v2(k)

...

vM (k)

⎤

⎥

⎥

⎥

⎦

.

To achieve mean square optimality, one would like to find

the expected value of the state x(k) conditioned upon the re-

ceived quantized data. Unfortunately, due to the quantization

aspect, a difficult nonlinear estimation problem needs to be

solved, see, e.g., [3], [6]. In the present work, we will use

a simple, though powerful, estimation strategy. It is based

upon an additive noise model for the quantizers, which we

describe next.

A. Quantization model

We will model quantization effects via (recall (3)):

ηm(k) = ỹm(k)+nm(k) = ym(k)−Cmx̂(k|k−1)+nm(k),
(7)

where nm(k) is the quantization noise at Sensor m, which

we assume independent and with variance Dm(k). The

latter depends upon the associated bitrate bm(k) and is

proportional to the variance of ỹm and not the variance

of ym. This illustrates the performance gain achieved when

quantizing output innovations rather than output values.

If we now introduce the overall quantization noise n via:

n(k) =
[

n1(k) . . . nM (k)
]T

,

then (7) can be re-written as

η(k) = C(k)x(k) + v(k) + n(k) − ŷ(k|k − 1),

where

η(k) �
[

q∆1(k)(ỹ1(k)) . . . q∆M (k)(ỹM (k))
]T

(8)

contains the quantized innovations, see (3).

We conclude that the effect of quantization is captured by

the equivalent observation noise process

ν(k) � v(k) + n(k), ∀k ∈ N0,

whose variance is given by

R(k) = diag
(

R1 + D1(k), . . . , RM + DM (k)
)

. (9)

B. Kalman Filter with Intermittent Innovations

Within the quantization model adopted, the KF with inter-

mittent output innovations described below gives the linear

minimum variance estimate of the system state; see also [18],

[19] which study KF with intermittent output observations.

In our formulation, the updated state estimate, which uses

the prediction

x̂(k|k − 1) = Ax̂(k − 1|k − 1)

and the received quantized innovation ηm(k), satisfies

x̂(k|k) = x̂(k|k − 1) + K(k)η(k),
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where:

K(k) � P (k)C(k)T
(

C(k)P (k)C(k)T + R(k)
)−1

(10)

and where

P (k + 1) � AP (k)AT + Q − AK(k)C(k)P (k)AT

is the associated (posterior) covariance matrix. In (10), R(k)
is the equivalent noise covariance given in (9), with

Dm(k) =
(πe

6
2−2bm(k)

)

Σm(k), Σm(k) = CmP (k)CT
m .

(11)

By using high-rate approximations, i.e. by replacing

Σm(k) with a constant matrix Σm, we can avoid quantization

to be performed at the sensors. Instead the quantizers can be

designed off-line, for efficient implementation as a table in

the sensor memories, see the appendix. The recursion in (10)

is initialized with values P (0) = P0 and x̂(0) = 0.

It is important to note that the estimator referred to above

operates utilizing only received data. This gives a degree of

robustness with respect to sensors not being able to transmit

due to, e.g., being damaged or out of battery power.

V. PREDICTIVE CONTROL OF TRANSMISSION POWER

LEVELS AND QUANTIZATION STEPSIZES

As we have seen, the design of sensor power signals {um}
and quantizer bitrates {bm} involves a trade-off between

transmission error probabilities (and state estimation accu-

racy) and energy consumption at the sensor nodes. We will

next present a predictive control strategy which minimizes

a cost function, which quantifies this trade-off over a future

prediction horizon. To keep processing at the sensors to a

minimum, the controller is located at the GW, see Fig. 1.

A. Constraints

In order to save energy required to process the received

command signal at the sensors, we would like to keep the

signaling from the GW to the sensors as low as possible.

In particular, the control signal will contain the bitrates and

information on the power levels. Here, and arguing as in

[9], [10], we will use coding ideas frequently used in power

control architectures for cellular networks, see, e.g., [20]

(and compare also to work on Networked Control in [6]).

We, thus, send coarsely quantized power increments, say

δum(k), rather than actual power values, to each sensor

m ∈ {1, 2, . . . , M}. All signals {δum} are constrained

according to:

δum(k) ∈ Um, ∀k ∈ N0, ∀m ∈ {1, 2, . . . , M}, (12)

where {Um} are given finite sets, each having a small

number of elements.

Upon reception of the pair (δum(k), bm(k)), each sensor

m chooses the associated quantizer and reconstructs the

power level to be used by its radio power amplifier by simply

setting

um(k) = um(k − 1) + δum(k). (13)

The quantization constraint (12) imposes

δu(k) ∈ U � U1 × U2 × · · · × UM , ∀k ∈ N0,

where

δu(k) �
[

δu1(k) . . . δuM (k)
]T

, k ∈ N0. (14)

In addition, due to physical limitations of the radio power

amplifiers, the actual sensor power levels are constrained in

magnitude according to:

0 ≤ um(k) ≤ umax
m , ∀k ∈ N0, ∀m ∈ {1, . . . , M},

for given values {umax
m }.

B. Cost Function

We will quantify state estimation accuracy via the trace of

the matrix P̄ (k) defined as:

P̄ (k) = P (k) − K(k)C(k)P (k),

which, if n(k) was Gaussian, would correspond to the

posterior covariance of the estimation error.

At each time instant k ∈ N0, the predictive controller first

calculates the value of P̄ (k), which results from iterating the

KF equations of Section IV-B for the (known) past realiza-

tions of reconstruction outcomes, say γk. It also uses channel

gain predictions over a finite horizon of fixed length N .

With this information, the controller minimizes the finite-

set constrained cost function

V (δU, B) � EΓ(k) {V1(Γ(k), δU, B)} + ρV2(δU), (15)

where ρ ≥ 0 is a parameter which allows the designer to

trade estimation accuracy for energy consumption.

The stochastic aspect of the power and bitrate control

problem, namely the possibility of packet-loss, is captured

in (15) by the discrete stochastic matrix

Γ(k) �

⎡

⎢

⎢

⎢

⎣

γ1(k + 1) γ1(k + 2) . . . γ1(k + N)
γ2(k + 1) γ2(k + 2) . . . γ2(k + N)

...
...

. . .
...

γM (k + 1) γM (k + 2) . . . γM (k + N)

⎤

⎥

⎥

⎥

⎦

.

Accordingly, EΓ(k) denotes expectation taken with respect

to the probability mass distribution of Γ(k).6 Note that

as summarized in (5), this distribution depends upon the

power levels, bitrates, and channel gains. Thus, Γ(k) can be

regarded as a controlled stochastic disturbance to the system.

The cost function in (15) measures estimation quality and

energy use respectively via the terms

V1(Γ(k), δU, B) �

k+N
∑

�=k+1

trace
(

P̄ ′(�)
)

,

V2(δU, B) �

k+N
∑

�=k+1

M
∑

m=1

Em(b′m(�)u′
m(�)).

(16)

6Compare to the scenario based approach taken in [21].
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The decision variables are collected in7

δU = {δu′(k + 1), δu′(k + 2), . . . , δu′(k + N)}
B = {b′(k + 1), b′(k + 2), . . . , b′(k + N)},

where δu′(�) is as in (14) and:

b′(�) �
[

b′1(�) b′2(�) . . . b′M (�)
]T

.

In accordance with (13), δU yields the tentative future

power levels {u′
m(�)} in (16) via

u′
m(�) = u′

m(� − 1) + δu′
m(�),

� ∈ {k + 1, k + 2, . . . , k + N}, m ∈ {1, 2, . . . , M}
starting from the current levels, i.e., u′

m(k) = um(k). The

term Em(b′m(k)u′
m(�)) is the energy function (6) evaluated

for the tentative values u′
m(�) and b′m(�). For a given

realization of Γ(k), trace
(

P̄ ′(�)
)

is obtained from (16) after

iterating the KF equations of Section IV-B with initial value

P (k + 1).

C. The Resultant Controller

At each time instant k ∈ N0, and given channel gain

predictions, the controller finds the optimizing sequences

(δU opt, Bopt) � arg min V (δU, B), (17)

subject to the constraints:

δU ∈ U
N , B ∈ BN

0 ≤ u′
m(�) ≤ umax

m , ∀� ∈ {k + 1, . . . , k + N}, ∀m,

where U
N � U × U × · · · × U, and B is a given (finite)

constraint set for the bitrates of all sensors.
Following the moving horizon principle, see, e.g., [22],

at each time k, the proposed controller sends only the M
bitrates and power updates contained in8

δu(k + 1)opt �
[

IM 0M . . . 0M

]

δU opt

b(k + 1)opt �
[

IM 0M . . . 0M

]

Bopt

to the corresponding sensors. At the next time instant, namely

k + 1, the optimization procedure is repeated, giving rise to

power control increments δu(k+2)opt and bitrates b(k+2)opt.

This procedure is repeated ad infinitum.
The proposed controller optimizes the resulting perfor-

mance via dynamic selection of power levels and bitrates.

Note that to calculate future success probabilities, one re-

quires channel gain predictions. For that purpose one can

use techniques described, e.g., in [23], [24].
It is worth emphasizing that minimization of V (δU,B)

in (17) is carried out on-line at the GW, where computational

issues play less of a role than at the sensors. Interestingly,

despite the fact that we are dealing with a stochastic non-

linear optimization problem, solving (17) in real-time is

surprisingly simple. In particular, due to the finite-set nature

of Γ(k), B, and δU , taking expectation in (15) reduces to

evaluating a finite sum.

7In the sequel, primed variables refer to tentative values of the corre-
sponding physical variables.

8IM denotes the M ×M identity matrix and 0M the all zeros M ×M

matrix.

VI. SIMULATION STUDY

In the simulations we will consider the system model (1)

with

A =

[

1.6718 −0.9948
1 0

]

, (18)

Q = 1/2I and P0 = 0.3I . We simulate a WSN having

M = 2 sensors with C1 = [1, 0], C2 = [0, 1], and variances

R1 = R2 = 1/100. We use power levels in the range 0 ≤
um(k) ≤ 3 · 10−4 with increments of δum(k) ∈ {0,±3 ·
10−5} and the bit-rates satisfy bm(k) ∈ {2, . . . , 7}.
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Fig. 3. Simulation results when sending quantized innovations.

At each time instant we minimize the weighted cost given

by (15) with ρ = 106. The minimization is carried out as a

brute-force search over all possible combinations of bit-rates

and power increments for the two sensors. The complete

simulation, running through 5000 data samples, is shown in

Fig. 3. In Fig. 3 the top diagram depicts the channel gains

for the wireless communication channels between the sensors

and the GW. The graph starting at the highest gain at t = 0
refers to Sensor 1 and the other one to Sensor 2. The second

diagram shows the chosen power levels. Here Sensor 2 starts

with a saturated power level caused by the corresponding

channel fading dip, cf the top diagram, whereas the power

level of Sensor 1 is more cautious since the corresponding

channel gain is relatively good. Notice that whenever the

sensor channel gains are dropping, the corresponding power

levels are increased.

The third and forth diagrams from the top, illustrate the

chosen bit-rates for Sensor 1 and Sensor 2, respectively.

Finally, in the bottom diagram the two graphs show the

variances of the respective sensor innovation sequences.

From the different diagrams of Fig. 3 we observe the

following: When the channel gains are dropping the power

levels are frequently saturating. If the allocated power does

not manage to lift the gain to an acceptable level, then the

corresponding bit-rate is decreased. See. for example, b2 at

the time instances 900 and 1250, or, b1 at time instances 3950
and 4750, respectively. The reason why the power control

algorithm decreases the bit-rate is that the low channel gain
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makes packet loss likely to occur, and therefore it is better

not to waist energy.

From the two graphs of the bottom diagram we observe

that whenever there is a dip in any of the channel gains, see

the top diagram, the variance of innovations for Sensor 1

increases (uppermost graph of the bottom diagram). The

deeper the fade, the higher the variance. This is due to the

strong coupling between x1(k + 1) and x1(k), x2(k), see

(18). It is only at the deep fades of Channel 1, at the time

instances 3950 and 4750, respectively, that the innovation

variance of Sensor 2 is increasing.

In order to compare the benefits of sending coded versions

of the innovations ỹ we compare the simulation depicted

in Fig. 3 with the situation where we encode the output

values y. The results are summarized in Table I. From

Table I we note a significant improvement in both state

estimation accuracy and energy expenditure, as measured by

V1 and V2, respectively, see (16). The gain in total cost by

using coded innovations, as measured by V , is a noteworthy

(0.1219−0.0948)/0.1219 = 22.23%.9 This gain is primarily

due to the reduction in variances, which is, on average, about

a factor of 40.

TABLE I

PERFORMANCE COMPARISON BETWEEN USING CODED INNOVATIONS

AND CODED OUTPUT VALUES.

Avg. variances V1 V2 V

y σ2
y1

= 21.49 σ2
y2

= 21.93 0.0692 0.0527 0.1219

ỹ Σ1 = 0.5492 Σ2 = 0.5104 0.0521 0.0426 0.0948

VII. CONCLUSIONS

We have studied state estimation via sensor networks over

fading wireless channels where sensors send coded innova-

tions instead of output values. A model predictive controller

at the gateway allocate the power levels and bit-rates to

be used by each sensor to optimize a cost function which

trades off state estimation accuracy for energy expenditure.

A simulation study shows that a performance gain of a

noteworthy 22% can be attained if coded innovations are

used instead of coded outputs. The performance gain is due

to a lower average variance of the innovations as compared

to the outputs.

APPENDIX

QUANTIZER DESIGN

In the WSN architecture under consideration, the GW

commands the sensors to use quantizers from a pre-designed

set. These quantizers are designed off-line and stored at the

sensors. Our designs are based upon high-rate approxima-

tions, as detailed below:

9It should be remarked that we have neglected the processing cost at
the sensors, which is caused by receiving the output predictions ŷ(k|k−1)
from the GW. This cost will, however, be small for high path losses, or long
distances, as the transmission cost will then dominate over the processing
cost.

A. Linear Quantization Model

It is well known that given a stationary input process ỹm

with variance Σm and under high-resolution assumptions, the

expected distortion of an entropy-constrained scalar uniform

quantizer satisfies10:

Dm(k) ≈
(πe

6
2−2bm(k)

)

Σm. (19)

The expected bitrates bm(k) are related to the stepsizes

∆m(k) according to [7], [25]:

bm(k) ≈ H(ηm(k)) ≈ h(ỹm(k)) − log2(∆m(k)),

where H(ηm(k)) denotes the discrete entropy of ηm(k), and

h(ỹm(k)) denotes the differential entropy of ỹm(k). Under

Gaussian assumptions, the latter is given by:11

h(ỹm(k)) =
(

1/2
)

log2(2πeΣm). (20)

Consequently, bitrates and step-sizes are related via:
(

∆m(k)
)2

=
(

2πeΣm

)

2−2bm(k). (21)

In the situation at hand, due to random packet loss and

variable bitrates, the quantizer inputs in (3) will, in general,

not be stationary. This makes deriving expressions which

relate the quantizer parameters a formidable task.

B. Iterative Algorithm

To obtain the variances Σm, which are needed in the

quantizer design equations included in the previous section,

we will neglect the effect of packet-dropouts and assume

stationarity. This gives

Σm = CmP̃CT
m,

where P̃ solves:

P̃ = AP̃AT +Q−AP̃CT
(

CP̃CT +R(k)
)−1

CP̃AT (22)

with

C �
[

(C1)
T (C2)

T . . . (CM )T
]T

.

We note that in (22), the equivalent noise covariance matrix

R(k) is as in (9) and, thus, depends on Σm, see (19). This

makes solving for Σm difficult.

To overcome this problem, we adopt an iterative method

for finding Σm whereby bitrates are fixed at representative

values, say b̄m. Thus, (19) reduces to:

Dm(k) ≈
(πe

6
2−2b̄m

)

CmP̃CT
m. (23)

In the first iteration, we set R(k) = diag
(

R1, . . . , RM

)

and

solve for P̃ in (22). Equations (23) and (9) then give the

value of R(k) to be used in the next iteration, etc.

10Expressions (19) and (21) are valid under high-resolution conditions for
any smooth source, i.e., any source with finite variance and finite differential
entropy.

11In addition, Expression (20) constitutes an upper bound for all smooth
sources with the same variance Σm. Thus, if (20) is used for other sources,
then one slightly over-estimates the actual bit-rate for a given distortion or,
vice-versa, if one fixes bm, then the given ∆m(k) will yield a slightly
smaller distortion Dm(k) than what is predicted by (23).
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The values {Σm}m∈{1,2,...,M} obtained after a few itera-

tions are then replaced in expression (21) to characterize the

quantizers for any set of bitrates. The values are then used

for off-line quantizer design. Extensive simulations suggest

that the algorithm converges quickly. We note that, for any

fixed value of R(k), expression (22) amounts to an algebraic

Riccati Equation, for which efficient solvers exist.
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