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ABSTRACT

�0 norm based signal recovery is attractive in compressed
sensing as it can facilitate exact recovery of sparse signal
with very high probability. Unfortunately, direct �0 norm
minimization problem is NP-hard. This paper describes
an approximate �0 norm algorithm for sparse representation
which preservesmost of the advantages of �0 norm. The algo-
rithm shows attractive convergence properties, and provides
remarkable performance improvement in noisy environment
compared to other popular algorithms. The sparse repre-
sentation algorithm presented is capable of very fast signal
recovery, thereby reducing retrieval latency when handling
high dimensional signal.

Index Terms— Compressive Sensing, random matrices,
nonconvex optimization, �0 minimization, �1 minimization

1. INTRODUCTION

Consider a real-valued, discrete-time signal z ∈ R
N . Often

there exists a basis {ψk, k = 1, . . . , N}, which provides a so-
called K-sparse representation of z, i.e. z admits a represen-
tation z = ψ1x1+ · · ·ψNxN where onlyK � N elements in
the set {xk, k = 1, . . . , N} are non-zero. This phenomenon
is very common in real-world, e.g. when z represents an im-
age then the wavelets provide a sparse representation. State-
of-the-art compression algorithms exploit this fact as a small
numberK of adaptively chosen transform coefficients xk are
transmitted or stored rather than N � K signal samples [1].
However, in the standard transform coding framework, the
complete set {xk}

N
k=1 of transform coefficients is computed

from z and only a small subset is retained.
This observation has motivates compressed sensing (CS),

where we do not compute all the components of x =
[x1 · · · xN ]

′. Instead we computeM < N inner products be-
tween z and an another collection of vectors θi, i = 1, . . . ,M
form the measurements yi = θ′iz. Then

y := [y1 · · · yM ]
′ = Θ′z = Θ′Ψx = Φx, (1)
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where Θ = [θ1 · · · θM ] and Ψ = [ψ1 · · · ψN ]. Clearly,
y ∈ R

M and Φ ∈ R
M×N . SinceM < N , recovery of z from

y is ill-posed in general. However, when the vectors {θi}
are incoherent with the columns of Ψ, (i.e. none of elements
of the set {θk, k = 1, . . . ,M} admits a sparse representa-
tion with respect to the basis {ψk, k = 1, . . . , N}) andM is
large enough, then it is possible to recover x from y [2, 3].
Furthermore, often the measurement process is nonadaptive,
meaning that Θ is fixed and does not depend z.

While the measurers process is linear, the reconstruction
process is decidedly nonlinear. It requires solving the opti-
mization problem

x = argmin
v

‖v‖0 subject to y = Φv, (2)

where
‖v‖0 := lim

ε→0
{|v1|

ε + · · ·+ |vN |ε},

which is simply the number of nonzero components in v
which is also known as �0 norm of v. Unfortunately, solv-
ing (2) is NP-hard. For that reason, different alternative
approaches are used to approximate the �0 norm [4, 5, 6, 7].
Chartard and W. Yin proposed an regularized IRLS algorithm
which is a modified version of FOCUSS, where they replaced
the �p norm by a weighted �2 norm [4, 8]. Although The
algorithm works better for �0 approximation, it takes a lot of
iteration to converge and is not robust to noise. G.H. Mo-
himani, M. Babaie-Zadeh and C. Jutten approximate the �0
norm by a smooth function [5]. This algorithm works bet-
ter in noisy environment however when the level of sparsity
increases it performs poorly.

Basis Pursuit (BP) is another popular approach where the
�0 norm in (2) is replaced by �1 norm [9]. Although BP is
significantly more approachable than approximate �0 norm,
it performs pitiably in noisy environment. In this paper we
propose an iterative approximate �0 norm (IALZ) algorithm
to reconstruct sparse signal. IALZ differs from previous work
for solving �0 norm and sparse representation in a number of
ways. It uses a fixed point iteration based strategy and enjoys
a significantly improved convergence speed. Finally, the most
attractive feature is that IALZ shows a large performance im-
provement in noisy environment.
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2. THE PROPOSED ALGORITHM IALZ

Our goal is to approximately formulate the objective function
in (2) to which gradient based method can be applied. The
Gaussian functions which seems useful for this purpose. De-
fine

f(α) = exp

(
−
α2

2σ2

)
. (3)

Clearly f(0) = 1. In addition, for any given α > 0 we have

lim
σ→0

f(α) = 0.

Consequently, the function

F (x) =

N∑
k=1

f(xk).

behaves like N − ||x||0 when σ → 0. This motivates the
following approximate way of reformulating (2):

x∗ = argmax
x

F (x) subject to y = Φx. (4)

As described, F (x) looks like �0 norm of x when σ →
0. However, for small value of σ, F (x) contains a lot of
local maxima. Consequently, it is very difficult to directly
maximize this function for very small value of σ. However,
as the value of σ grows, the function become smoother and
smoother, and for a sufficiently large value of σ, the solution
xwill be the minimum-2 norm solution of the systemΦx = y
[5] and there will not exists any local maxima. So, the stan-
dard procedure is taking a large σ initially and maximize the
function by a gradient ascent method. When the change of
x becomes less than some specified value, at that point σ is
reduced by a factor ρ. Since the value of σ changes slowly,
the gradient ascent algorithm is initialize not far from the ac-
tual maximum and it has much less possibility to trap in local
maxima.

2.1. Algorithm Derivation

The Lagrangian L(x, ν) associated with the problem (4) is
given by

L(x, ν) = F (x) + ν′(Φx− y) (5)

where ν ∈ R
M×1 is the vector of Lagrange multipliers. Now

(4) implies that there exists ν∗ such that (x∗, ν∗) is a station-
ary point of L(x, ν), i.e,

∂L(x∗, ν∗)

∂x
=
∂F (x∗)

∂x
+Φ′ν∗ = 0 (6)

∂L(x∗, ν∗)

∂ν
= Φx∗ − y = 0

Also it is readily verified that

∂F (x)

∂xn

= −
xn

σ2
f(xn) ⇒

∂F (x)

∂x
= −

1

σ2
W (x)x. (7)

DefineW (x) = diag{f(x1).....f(xn)}. Then (6)-(7) gives

x∗ = σ2W−1(x∗)Φ
′ν∗ (8)

Substituting for x∗ in the second equation of (6), solving for
ν∗ and substituting this expression for ν∗ in (8) then

x∗ =W−1(x∗)Φ
′
[
ΦW−1(x∗)Φ

′
]−1

y. (9)

Equation (9) is nonlinear, and cannot be solved analytically.
However one possible avenue is to use (9) in a fixed point
iteration, which is the central idea of our algorithm.

Lemma 1 Let us define the map g : RN → R
N such that

g(x) =W−1(x)Φ′
[
ΦW−1(x)Φ′

]−1
y. (10)

Then Φg(x) = y. Let x ∈ R
N such that Φx = y, g(x) �= x,

and [
∂F (x)

∂x

]
�= 0. (11)

Then there exists λ satisfying 0 < λ ≤ 1 such that

F {λg(x) + (1− λ)x} > F (x). (12)

Proof: Pre-multiplying (10) by Φ we verify that Φg(x) = y
for all x ∈ R

N . Now suppose x satisfies Φx = y, and (11)
holds. Then using (7) we get[

∂F (x)

∂x

]
′

{g(x)− x}

=
1

σ2
x′{W (x)− Φ′

[
ΦW−1(x)Φ′

]
−1
Φ }x

=
1

σ2
{W 0.5(x)x}′Π{W 0.5(x)x}. (13)

where

Π = I −W−0.5(x)Φ′
[
ΦW−1(x)Φ′

]−1
ΦW−0.5(x)

is the orthogonal projection operator on the nullspace of
ΦW−0.5(x). From (13) it is clear that[

∂F (x)

∂x

]
′

{g(x)− x} ≥ 0, (14)

with equality is satisfied only ifW 0.5(x)x be in the columnspace
ofW−0.5(x)Φ′, which means

W 0.5(x)x =W−0.5(x)Φ′β ⇒
∂F (x)

∂x
= Φ′

−β

σ2

for some β �= 0. This implies that we have equality in (14)
only if

−β

σ2
=

[
ΦW−1(x)Φ′

]−1
y ⇒ x = g(x).

However x �= g(x) by assumption. Hence we have a strict
inequality in (14). This means the innerproduct between
g(x)− x and the gradient of F (x) is always positive. So, the
value of F (x) increases along the line joining x and g(x) and
there exists some λ such that 0 < λ ≤ 1 for which (12) holds.
�
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Table 1. IALZ Algorithm

- Initialization:

1. Initialize x(0) to the minimum 2-norm solution of Φx = y,

i.e. x(0) = ΦT (ΦΦT )−1y.

2. Set σ = 1 and choose decreasing factors ρ and γ

repeat

1. Set λ = 1

2. Compute x(i+1) = λg(x(i)) + (1− λ)x(i)

3. Backtracking. If F (x(i+1)) < F (x(i))

change λ = γλ and repeat step 2, 3.

4. If τ = ||x(i+1) − x(i)||2 <
σ
ρ

change σ = σ
ρ

until τ < 10−8

2.2. Algorithm

Based on the main idea of the previous section, the final al-
gorithm is given in Table 1. By choosing a proper decreasing
factor γ i.e. 0 < γ < 1, the algorithm can be accelerated to
converge the optimal solution rapidly. In our experiment we
fixed γ to 0.5. The final value of σ depends on the noise level.
For noiseless sparse recovery, ρ was chosen to 10 and σ was
allowed to decreased near to zero. However, in noisy case, it
should be left at some smaller value as the system can not ac-
curately approximate the optimal x and the solution fluctuate
randomly.

3. EXPERIMENTS

This section illustrates experimentally that IALZ is a power-
ful algorithm for signal recovery. Two type of experiments are
presented: exact recovery and approximate recovery. Each set
of experiments is repeated 100 times with different random
signals and randomly select entries ofM ×N matrix Φ from
a mean-zero Gaussian distribution, then scale the columns to
have unite 2-norm. The same Φ and x are used in each algo-
rithm for a fair comparison. In exact recover, for each sparsity
levelK , we randomly choose the support of x, and randomly
setting the peaks to either +1 or −1. The initial value of σ
is 1. The iteration with a fixed σ is run until the change of x
in relative 2-norm from the previous iterate is less than σ/10,
at that point σ is decreased to σ/10. We compare our algo-
rithm with regularized IRLS 1 and Basis Pursuit (�1-Magic2

package). Our simulations are performed in MATLAB7 envi-
ronment using an Intel 2 GHz processor with 1GB of memory.

The first plot, Figure 1 shows the minimum number of
measurements M are necessary to recover a K-sparse sig-

1Source code http://igorcarron.googlepages.com/cscodes
2http://www.acm.caltech.edu/l1magic/
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Fig. 1. The number of measurements (M ) required to exact
recovery of a signal for different sparsity levels Kin signal
size N = 256.

nal in �N with high probability. As expected, in comparison
with regularized IRLS and �1-Magic, IALZ requires much
less measurements to recover signal for a fixed level of spar-
sity. Figure 2 presents another view of the same data. The first
figure shows what percentage (of the 100 trial signals) of full
signal were recovered correctly as a function of K for fixed
M = 100. In this case, both IRLS with p = 0, �1-magic and
IALZ, all performs almost similarly. However, the improve-
ment of IALZ is noted in the second figure which displays
the percentage of signal’s component recovered correctly as a
function of the sparsity level. Here, We assumed that a com-
ponent xn of signal x (N × 1))is recovered exactly if the re-
covered component is xr

n and |xn − xr
n| < μ, where μ is a

small positive constant. It is clear from the figure that IALZ
outperforms compared to regularized IRLS with p = 1 and
p = 0. Moreover, IALZ performed better than Basis Pursuit
for low level of sparsity.

Again, in terms of required iterations and computation
time to reconstruct a signal, IALZ shows excellent perfor-
mance improvement compared to IRLS. Figure 3 shows that
regularized IRLS requires almost 3 times more iteration than
IALZ in all cases for fixed measurements M = 100 with
different sparsity. The computation time also follows same
curves. This result indicate that IALZ is faster than other �0

algorithms.
For approximate recovery, we use the approach of SL03

[5] where sparse sources were generated by using Mixture of
Gaussian (MoG) model:

xi ∼ p.ℵ(0, εon) + (1− p).ℵ(0, εoff) (15)

where p denotes probability of activity of the sources. εon

and εoff are the standard deviations of the sources in ac-

3Source code http://igorcarron.googlepages.com/cscodes

3367

Authorized licensed use limited to: University of Newcastle. Downloaded on October 13, 2009 at 20:46 from IEEE Xplore.  Restrictions apply. 



20 25 30 35 40 45 50
0

20

40

60

80

100

Sparsity level (K)

F
ul

l R
ec

ov
er

y 
fr

eq
ue

nc
y 

(%
) Full signal recovery with N = 256

10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

Sparsity level (K)

C
om

po
ne

nt
 r

ec
ov

er
y 

(%
)

Signal components recovery with N = 256

Reg IRLS, p=1
Reg IRLS, p=0
L1 Magic
IALZ

Reg IRLS, p=1
Reg IRLS, p=0
L1 Magic
IALZ

Fig. 2. The percentage of signals recovered as a function of
the sparsity levelK for fixed number of measurementsM =
100.

tive and inactive mode, respectively. The mixtures are gen-
erated using the noisy model y = Φx + η, where η is an
additive white Gaussian noise with variance εnIm ( Im is the
m ×m identity matrix). The values used for the experiment
are p = 0.1, εon = 1, εoff = 0.01 and εn = 0.01. The
sequence of σ in IALZ was fixed to six different levels i.e.
σ = [1, 0.2, 0.1, 0.05, 0.03, 0.02]. The recovery performance
of different algorithms is shown in Figure 4. As expected,
IALZ shows a massive performance improvement compared
to other two algorithms. Also note that Basis Pursuit has very
poor performance in noisy environment.
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