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Abstract— Given the current financial crisis, there is renewed
interest in modelling how the price of commodities change in
the market. Traditionally, such models have assumed constant
parameters. However, large and sudden changes in the pa-
rameters can also be anticipated due to market shocks. This
paper is aimed at addressing this issue. We first describe a
bias-variance trade-off in parameter estimation when sudden
changes are considered. We then propose a mechanism to
achieve a compromise between the observed bias and variance.
A key ingredient of this mechanism is to use an estimator having
a variable memory length.

I. INTRODUCTION

Many companies are interested in predicting (or, at least,

understanding) how the price of commodities change in

the market. For example, in mining, knowledge (or under-

standing) of this phenomena is important since it underpins

key decisions such as opening or closing of mine sites,

annual extraction targets for the metal of interest, and others.

Consequently, there is substantial interest in the modelling

of commodity prices.

A standard model used for the price of commodities is

that of [1], in which the parameters are assumed to be

fixed. Hence, standard estimation algorithms can be used to

obtain the value of the parameters [2], [3], [4]. This works

well for certain systems. Also, the assumption of constant

parameters is the basis for many key concepts in system

identification including the analysis of asymptotic properties

[3, chap.9] and convergence results in adaptive control, see

for example [5]. However, in practice, the commodity price

market can suffer shocks which will lead to a change in the

parameters in the model, and in these cases, some form of

on-line estimation is desirable [5, chap.7]. If the parameter

changes are slow, then there exist strategies aimed at this

case, e.g. modelling the parameters as stationary stochastic

process or as (slowing varying) random walks. The Kalman

Filter can then be used to design the associated estimator [6].

This approach leads to a fixed trade-off between sensitivity

to parameter variations, on the one hand, and sensitivity to

noise, on the other.

There are many other related ideas in the literature to

track time-varying parameters. For example, the use of an

exponential data forgetting factor. This effectively fixes the

memory length of the estimator [7, pp.151]. However, it has

the disadvantage that if the parameter is not changing, it

may lead to numerical problems in the covariance matrix [7,
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pp.154]. Another idea is to hypothesize a hidden Markov

model for jump parameters. The parameters of the Markov

model can then be estimated [8, chap.2] e.g. by using the

Expectation Maximization algorithm [9], [10], [11], [12].

Other approaches can be seen in [13], [14]. There also exists

a substantial literature on asymptotic properties of change

detection methods [15], [16].

A key point to note, in the context of the current paper,

is that each of the above procedures is based on the ex-

plicit, or implicit, assumption that the parameter variations

are precisely known in a probabilistic sense. However, in

practice the nature of parameter changes can be highly non-

stationary i.e. there may exist periods where the parameters

change frequently and there may be periods in which the

parameters remain essentially constant. To deal with this kind

of situation one should ideally have a variable memory length

in the estimator, see e.g. [17].

The current paper combines two ideas: (i) detection of step

like parameter changes in commodity price models, and (ii) a

mechanism to estimate parameters when these step changes

occur. The present paper differs from [2] in that we now

consider the detection of infrequent step like changes in the

parameters. The present paper also extends our earlier work

in [17] by formalizing the bias-variance trade-off argument

and propose a mechanism that selects the estimator’s memory

length as a compromise between bias and variance.

The main contributions of the current paper are:

(i) We use a variable estimator memory length to achieve

smooth transitions between the present estimate and

the following one. The algorithm sometimes chooses

a shorter memory length for the estimator (to deal with

rapidly changing parameters) and, at other times, a

long memory length for the estimator (to give greater

immunity to noise).

(ii) This idea is combined with a hypothesis testing proce-

dure see e.g. [16, chap.6] to estimate when a change in

the parameters has occurred. In addition, via simulation

studies using commodity price models described in [1],

we show that using a variable memory length estimator

gives better performance than is achieved with fixed

memory estimators when there are step like changes in

the parameters.

The remainder of the paper is organized as follows: In

Section II, we present an analysis of bias-variance trade-

offs using the Least Squares (LS) estimator. In Section III,

we introduce a mechanism that achieves a bias-variance

compromise. In Section IV, we analyze the detection in

the change of parameter. In Section V, we show a simple

example. In Section VI, we describe a typical commodity
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price model for the spot price. Simulation results follow

in Section VII and we conclude with final remarks on the

current work in Section VIII.

II. ANALYSIS OF BIAS-VARIANCE TRADE-OFF

In the present section we study bias-variance trade-offs for

a simple system so as to motivate the subsequent develop-

ment. The system is subject to infrequent step like changes

in a parameter vector θ. The LS estimator is used to illustrate

the ideas.

We notice that the study of the trade-offs in variance and

bias can also be related to a deficient structure of the model.

Here, we focus on the bias induced by a parameter change.

For the sake of discussion, we consider θ to be a vector

θ =
[
θo, · · · θm−1

]T
and the available data yk ∈ R

defined as a function of a measured deterministic exogenous

signal xk as follows:

yk = ϕ(xk)T θ + wk, (1)

where ϕ(xk)T is the regressor vector and where wk is zero

mean Gaussian white noise and variance Q = σ2. Least

Squares leads to the following estimate of θ:

θ̂N =

{

1

N

N∑

k=1

[
ϕ(xk)ϕ(xk)T

]

}−1

1

N

N∑

k=1

ϕ(xk)yk, (2)

where N is the data length. This estimate is known to be

unbiased and efficient in the case when θ is constant and wk

is Gaussian white noise. Here, however, we are interested in

cases where θ is time varying. One frequently used model

for time variations is that of a random walk i.e.

θk = θk−1 + vk, (3)

where vk is white noise of variance S.

It is then well known (see e.g. [4, chap.7]) that the

estimation problem can be solved by using a Kalman filter:

θ̂k+1 = θ̂k + Jk

[

yk − ϕ(xk)T θ̂k

]

. (4)

In steady state Jk will converge to a fixed value depending

on the ratio of S and Q [18, pp.703–704]. The resulting

steady state estimator has a memory determined by Jss =
limk→∞ Jk.

Here we wish to examine a different scenario in which

θk makes infrequent step like changes. These could be

approximately modelled as in (3) with a small variance for

vk. However, this generically leads to a filter having long

memory. We will argue below that a better approach is to

explicitly take into account the trade-off between bias and

variance in the parameter estimates. We then aim to achieve

a compromise, in terms of memory length, between the two.

To develop the idea, we assume that the system is de-

scribed by

yk =

{
ϕT

k θa + wk, if k < k0

ϕT
k θb + wk, if k ≥ k0 + 1.

(5)

thus the parameter θ takes two values during the period

[0, N ], namely θa and θb. Before continuing, we define the

following terms

R =
1

N

N∑

k=1

ϕkϕT
k ,

R0 =
1

k0

k0∑

k=1

ϕkϕT
k , ǫ =

1

N

N∑

k=1

ϕkwk

Ra =
1

N

k0∑

k=1

ϕkϕT
k , Rb =

1

N

N∑

k=k0+1

ϕkϕT
k .

(6)

Hence, using (2), we can write

θ̂N = R−1Raθa + R−1Rbθb + R−1ǫ. (7)

Taking the expected value in (7) we obtain

θ̄ = E{θ̂N} = R−1Raθa + R−1Rbθb. (8)

If we define Λ = R−1Ra, we can write (8) as

θ̄ = Λθa + (I − Λ)θb, (9)

where Λ and I are matrices with appropriate dimensions

(the latter represents the identity matrix). We then have the

following result:

Lemma 1: The covariance of the estimate resulting from

the LS estimation problem for the model (5) is given by

cov{θ̂N} = σ2KN

N
, where KN = R−1.

Proof: The covariance of θ̂N can be obtained as

cov{θ̂N} = E{(θ̂N − θ̄)(θ̂N − θ̄)T }

= E{(R−1ǫ)(R−1ǫ)T }

=
R−1

N

1

N

∑

k

∑

j

ϕkϕT
j E

{
wkwT

j

}
R−1,

(10)

Finally, using ideas from [19], we can re-write (10) as

cov{θ̂N} =
σ2R−1

N
=

σ2KN

N
(11)

with KN = R−1.

Lemma 2: The expected value of the squared distance

between the estimate θ̂N and the new value θb for the

parameter vector is given by:

E{(θ̂N − θb)
T (θ̂N − θb)} =

(

1 −
Nb

N

)2

∆T MT M∆ +
σ2tr{KN}

N
, (12)

where ∆ = θb − θa, M = R−1R0, and Nb = N − ko .

Proof:

E{(θ̂N − θb)
T (θ̂N − θb)} = E{[(θ̂N − θ̄)T + (θ̄ − θb)

T ]

[(θ̂N − θ̄) + (θ̄ − θb)]}

= E{(θ̂N − θ̄)T (θ̂N − θ̄)} + (θ̄ − θb)
T (θ̄ − θb)

=
σ2tr{KN}

N
+ (∆)T ΛT Λ(∆),

(13)
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Next we observe that the term Λ can be written as

Λ = R−1Ra =
k0

N

(

1

N

N∑

k=1

ϕkϕT
k

)−1(

1

k0

k0∑

k=1

ϕkϕT
k

)

=
k0

N
R−1R0 =

k0

N
M =

(

1 −
Nb

N

)

M,

(14)

where Nb represents the number of samples that have been

collected since the true parameter changed to θb. Substituting

(14) into (13), we obtain the expression given in (12).

Remark 1: In the subsequent analysis we utilize the fact

that

KN =

(

1

N

N∑

k=1

ϕkϕT
k

)−1

→ K∗, (15)

for N sufficiently large. ▽▽▽
Lemma 3: Under the conditions given in Lemma 1 and 2

and using (15), we see that the estimator memory length, No,
which gives the best trade-off between bias and variances is:

N
o(Nb) =

8

>

<

>

:

g
“

N−,N+,
2N2

b
∆T MT M∆

2Nb∆T MT M∆−σ2tr{K∗}

”

for Nb>
σ2tr{K∗}

2∆T MT M∆

∞ for Nb≤
σ2tr{K∗}

2∆T MT M∆

(16)

where the function g(x, y, z) denotes the nearest value of
{x, y} to z. The terms N− and N+ denote the immediately
inferior integer value of N∗ and the immediate superior
integer value of N∗, respectively, where

N
∗ =

2N2

b ∆T MT M∆

2Nb∆T MT M∆ − σ2tr{K∗}
, for Nb >

σ2tr{K∗}

2∆T MT M∆
.

(17)

Proof: Equation 17 follows by differentiating (12) with

respect to N and setting the result equal to zero. Also, since

the functional is quadratic in N−1 the critical point is the

global minimum. Finally, we obtain the closest integer that

minimizes the cost function.

Remark 2: The key conclusion from Lemma 3 is that, in

order to achieve the best trade-off between bias and variance,

one needs to use an estimator memory length which is

a function of Nb (i.e. how many samples that have been

collected since the parameter change occurred) the size of

the change in parameter, ∆, and a term that depends on the

noise level, σ2tr{K∗}. ▽▽▽

Remark 3: We observe that Equation (17) can be rewritten

as

N∗ =
Nb

1 − σ2tr{K∗}
2Nb∆T MT M∆

, for Nb >
σ2tr{K∗}

2∆T MT M∆
.

(18)

We see from Equation (18) that the optimal estimator mem-

ory length N∗ is always greater than Nb. This means that one

should always use data containing some information prior to

the change. ▽▽▽

N

Na Nb

θa θb

kk0

Fig. 1. Illustration of the overall time framework for Section III.

III. A MECHANISM TO ACHIEVE AN OPTIMAL

BIAS-VARIANCE TRADE-OFF

In Section II we have shown that there is an optimal

estimator memory length No that achieves the best trade-off

between bias and variance when there is a step change in the

parameters. We have also shown that No is neither N , the

complete data set, nor Nb. In the present section, we suggest

a mechanism to implement the choice of memory length

given in (16). Notice that the main difficulty in calculating

N∗ (and thus No) is that one has to estimate (i) the time the

change occurs, k0, and (ii) the size of change, ∆.

We assume that we have a good estimate, θ̂a, for θa, see

Figure 1, and that hypothesis tests (such as, for example, a

χ2 test) are run on a set of estimators with different memory

length, refer to Figure 2.

If an hypothesis test for a particular estimator reports a

parameter change, as suggested in Figure 2, we then have

that the associated estimator memory length is a rough

estimate for Nb. If multiple hypothesis tests report a param-

eter change, we choose Nb as the minimal memory length

between all estimators which detect a change. Notice that

once an estimate for Nb is known, then an estimate for k0

is available since k0 = k − Nb.

Next, we need to obtain a rough estimate for ∆. We can

always say that equation (7) applies for any N , in particular,

for Nj . Hence, from (7) we have that

E{θ̂Nj
} − θa = (I − Λ)(θb − θa). (19)

Therefore, from (19) we have

∆ = (I − Λ)−1[E{θ̂Nj
} − θa], (20)

and from (20) it follows that

∆ = (I − Λ)−1[E{θ̂Nj
} − θa]

≈ (I − Λ)−1[θ̂Nj
− θa]

=

(

I −
Na

Nj

M

)−1

[θ̂Nj
− θa].

A crude estimate of ∆ is then given by

∆̂ ≈
Nj

Nb

[θ̂Nj
− θa]. (21)

Utilizing the rough estimates of Nb and ∆̂ found as described

above, we can then obtain N∗ from (18) and thus No from

(16). The current parameter estimate is finally chosen to be

θ̂o, the linear regression estimate with memory length No.

This process is repeated iteratively, updating k = k + 1 and
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kk0

N1

N2

N3

N4

.

.

.

Fig. 2. Illustration of the set of available memory lengths involved in the
estimate of Nb.

kk0 k + 1

Nb

(No)k

Fig. 3. Illustration of the proposed mechanism update.

(Nb)k+1 = (Nb)k + 1 (notice that Nb is now explicitly

a function of time). In pseudo-code, the algorithm can be

written as follows:

• Run an hypothesis test for a set of estimators having

different memory lengths.

• If an hypothesis test reports a parameter change then

assign Nb to be that particular estimator memory length

(if more than one hypothesis test reports a parameter

change, choose the minimum between the different

estimator memory lengths that report the change).

• Update ∆̂ by using (21) with Nj = (No)k−1.

• Calculate (No)k by using the rough estimate for Nb

and ∆̂.

• Select the current estimate to be (θ̂o)k, the linear

regression estimate with memory length (No)k.

• Update time k = k + 1, set (Nb)k+1 = (Nb)k + 1 and

recalculate the optimal memory length , see Figure 3.

Remark 4: As time evolves, and provided that no further

change is detected, we see from (18) that (No)k → Nb.

▽▽▽

Remark 5: Notice that the above proposed mechanism is

by no means unique. For example other choice could be used

to determine the best bias-variance trade-off. ▽▽▽

IV. PARAMETER CHANGE DETECTION

A key aspect in the general strategy proposed in this

paper is to know when a change in the parameters has

occurred. There are many options, but to be definite we use

the following hypothesis test:

H0 : ∆ = 0, that is, the parameters are unchanged,

H1 : ∆ 6= 0, that is, the parameters have changed,
(22)

where ∆ = (θ̂b
s)k − (θ̂a

s )k. For a particular estimator of

memory length Ns < N , we calculate ∆ considering the

following data:

data :

(θ̂a
s )k

︷ ︸︸ ︷
y1, y2, . . . , yk−Ns

,

(θ̂b
s)k

︷ ︸︸ ︷
yk−Ns+1, . . . , yk .

Many tests are available in the literature, e.g. Wald test,

Likelihood Ratio test and others (see e.g. [20]). However,

for this specific problem where the loss function (Vs)k for

each iteration k is defined as in (23), a suitable test is a

χ2(m) test [16, pp.206-207], where m is the degrees of

freedom (corresponding to the dimension of the parameter

vector m = dim(θ)). We test the following function:

(Vs)k =
(

(θ̂b
s)k − (θ̂a

s )k

)T

P−1
(

(θ̂b
s)k − (θ̂a

s )k

)

, (23)

where P = cov[(θ̂b
s)k].

A standard table can be used to design a threshold hα to

test

(Vs)k ≶ hα. (24)

The hypotheses test is applied to each parallel estimator

having different memory lengths. The threshold is problem

specific, depending on how much sensitivity we want to

have in the ’parameter change detector’. In summary, the

hypothesis test can be implemented as follows

• Select from a χ2 table the desired probability.

• Select the number of degrees of freedom, m.

• Compare the value of (Vs)k with the one obtained from

a χ2 table with α probability of false alarm, hα .

• If (Vs)k > hα then the null hypothesis H0 can be

rejected. On the other hand, if (Vs)k ≤ hα the null

hypothesis H0 is accepted.

V. A SIMPLE EXAMPLE

We investigate the application of our proposed algorithm

to the system given in (1), with θa = [1 0.2]T , θb =
[1 0.3]T , and then another change from θb back to θa, and

covariance for the noise Q = 0.1. We change the parameter

at k0 = 1000, and then at k0 = 2000. We choose to

have two windows to detect changes, namely N1 = 100
and N2 = 500. We arbitrarily initialize the algorithm for

N∗ = 500. Using the χ2 test, we detect a change at time

kc = 1075, and kc = 2100. These changes are flagged by the

shortest memory length estimator. From Figure 4 (upper plot)

we observe that our algorithm achieves a trade-off between

noise suppression and bias in the estimation of the parameter.

We compare this estimation to the one obtained by adding

one data point each time step (sequential algorithm). The

estimation of ∆ and N∗ over time is also given in the lower

plots.

VI. APPLICATION TO COMMODITY PRICE MODELLING

We next consider the continuous-time two-factor model

proposed in [1]. In this model, the logarithm of the spot

price is separated into two components

log St = ξt + χt. (25)

The first component ξt (short-term component) represents the

difference between the spot and the equilibrium price. The
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Fig. 4. Estimation of the second component of θb using the proposed
algorithm compared to sequential algorithm (upper plot), and the estimation
of ∆ and N∗ in the two lower plots. Change detection at kc = 1050 and
kc = 2100.

second component χt (long-term component) is a geometric

Brownian motion that models the behaviour of the equilib-

rium price. Hence, the dynamic models associated with the

different components can be expressed as follows:

dχt = −κχtdt + σχdzχ,

dξt = µξdt + σξdzξ,
(26)

where dzχ, dzξ are correlated increments of Brownian mo-

tion and dχdξ = ρχξdt. The parameters in the model are

(i) κ—rate of mean reversion

(ii) µξ—trend

(iii) σξ—short term volatility

(iv) σχ—long term volatility

In the current paper we will work with spot prices only.

Then, using spectral factorization the model can be reduced

to the form [2]

A(q)∆yk = B(q)uk + C(q)ek, (27)

where ek is white Gaussian white noise and

A(q) = 1 − αq−1, B(q) = (1 − α)β

C(q) = 1 + (k1 + k2 − α − 1)q−1 + (k1 + α + k2α)q−2,

with α = exp(−κh), β = µξ h, and h the sampling time. The

values for k1 and k2 correspond to the steady-state Kalman

Filter gains. For more details see [2].

Remark 6: We note that the model in (27) is not precisely

of the form proposed in (1) because the latter considers

past values of yk. However, the extension of the analysis

proposed in Section II for the model used in (1) can be done

straightforward to a more general case. ▽▽▽

The identification of the parameters in the model for

commodity prices can be carried out using the three-step

approach proposed in [2]. However, since we are not includ-

ing future contract prices in the analysis in the current work,

Parameters Value

κ 13.8087
µξ -1.25%
h 1/48
σξ 14.5%
σχ 28.6%
ρξχ 0.3
σv 0.5

TABLE I

VALUE FOR THE PARAMETERS IN THE SCHWARTZ-SMITH MODEL USED

TO GENERATE THE OIL SIMULATED DATA. THIS CORRESPONDS

ROUGHLY TO THE OIL DATA IN [1].

the model estimate is based on the first step described in [2],

which uses information about the spot price only. This first

step is briefly describe as follows:

The model using the spot price only is converted into an

input-output representation to find initial values for κ and

µξ. These initial conditions are found using the Prediction

Error Method (PEM) applied to the ARMAX model given

in (27).

A detailed explanation of all this step can be found in [2].

VII. APPLICATION OF THE SUGGESTED ALGORITHM TO

SIMULATED DATA

Here, we apply the idea developed in the previous sections.

We use a variable length estimator and simulated commodity

price data. To illustrate the ideas, we begin by choosing

estimator memory lengths of 150, 250, 350 samples (weeks)

for the parameter change detection stage. This selection

is, of course, problem specific. In particular, we note that

the minimum data necessary to obtain reasonably parameter

estimates is given, in this case, by 50 samples.

In the present example, the results obtained using an

estimator with memory length (No)k (as explained in Sec-

tion III) is compared against the estimate obtained by adding

new available data, but without discarding any of the older

data (which we call ’sequential algorithm’).

We use the model in (27) with the nominal parameter

values given in Table I. We simulate the system for approx-

imately 28 years (1500 weeks). We use the values of µξ

given in Table I for the first 20 years (1000 weeks). We

then change this parameter to the new value µξ = 2.50%.

The true value of µξ is shown in Figure 5 by the red-dotted

line. Note that data is collected for a further 10 years (500

weeks) after the parameter change occurs. Also shown in

Figure 5 is the estimate provided by the sequential algorithm.

Note that 2 years (i.e. 100 weeks) after the change, the

sequential estimator is still essentially giving the old (and

now incorrect) value of µξ. Moreover, after a further 10 years

(i.e. 500 weeks) the estimator has only changed by about half

of the true parameter step change.

This suggests that the sequential algorithm would give

incorrect (and misleading) information if used, say, for asset

valuation.
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Fig. 5. Change in the parameter µξ .

Figure 6 (upper plot) shows the results obtained using the

estimator with memory length (No)k. It can be seen from

Figure 6 (upper plot) that this estimator responds quicker to

the change and also has good noise immunity. In Figure 6

(upper plot), we notice that there is a delay when responding

to the change. This delay is due to the change detector

algorithm, which takes about 200 [weeks] to respond. Notice

that in Figure 6 (lower plot), we observe that the estimation

of ∆ is zero most of the time. This is because the change

has not been detected yet. Comparing the results in Figure 6

(upper plot) with those in Figure 5, we see the merits of

using an estimator with memory length (No)k.
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Fig. 6. Estimation of µξ (upper plot) and ∆ (lower plot) using the algorithm
proposed in Section III.

VIII. CONCLUSION

In this paper we have studied the issue of bias-variance

trade-offs associated with parameter estimation when param-

eters undergo infrequent step changes. We have shown that

the bias-variance trade-off can be dealt with by using parallel

estimators having different memory length.

This study has been motivated by commodity price models

and the reasonable assumption that they undergo parameter

changes in response to market shocks. Within this context,

we have shown the impact of such changes on parameter

estimation for the Schwartz-Smith commodity price model.

We have observed that, whilst sequential estimation

schemes will eventually respond to parameter changes, the

response time can be slow. This means that predictions

(or valuations) based on the current parameter estimates

may be in error. As an alternative, we have proposed an

algorithm having a variable memory length. We have shown

that this algorithm is capable of forming a better trade-

off between parameter change detection and immunity to

noise. Predictions (or valuations) provided by this kind of

scheme are believed to be more reliable than those obtained

by standard sequential parameter estimation schemes.

Our next step in this research will be to apply these ideas

to multiple time series, to account for possible coupling

between the value of different commodities (such as for

example copper and gold).
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