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Abstract—Half duplex devices are widely used in today’s
wireless networks. These devices can only send or receive, but
not do both at the same time. In this paper, we use cooperative
decode-forward relay strategies to increase the throughput of
half-duplex wireless networks. Due to the half duplex constraint,
relays need to carefully choose their transmission states in order
to maximize the throughput. We show that the transmission
schedule optimization can be formulated as a linear program-
ming problem. Although the number of possible states grows
exponentially as the number of relays increases, only a small
subset of these states needs to be used in the optimal transmission
schedule. This observation allows us to use heuristic algorithms to
solve for near-optimal schedule in large networks. Our numerical
results show that the decode-forward strategy can provide nearly
3 times more throughput than the traditional multi-hop relaying
strategy in half duplex wireless networks.

Index Terms—Multiple relay channel, half-duplex, Optimiza-
tion.

I. INTRODUCTION

New applications in wireless networks, such as video con-
ferences and mobile TV, are demanding higher data rates
over wireless links. Most researchers in wireless networking
assume that packets are transmitted through point-to-point
links in a multi-hop fashion, where concurrent transmitting
links will inevitably interfere with each other [1], [2], [3].
Under the point-to-point wireless link model, interference
between neighboring nodes leads to fundamental limitations
on the achievable throughput of wireless ad hoc networks [1].

Studies in information theory show that nodes in wireless
networks can cooperatively send and receive messages instead
of simply interfering with each other. In the relay channel
studied in information theory [4], relay nodes and the source
node can cooperate with each other by transmitting to the
destination at the same time. The destination then combines
signals received from multiple nodes to decode the original
message. Recent research shows that hierarchical cooperation
can achieve optimal capacity scaling in wireless networks
[5]. Therefore, such cooperative communication could be a
promising way to increase the throughput of wireless net-
works.

On the other hand, cooperation also means higher costs. In
information theory literature, the relay channel [6], [7], [8]
is studied assuming full duplex nodes, i.e., nodes can listen
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and transmit at the same time on the same frequency band.
However, most of the radio frequency transceivers used today
either operate in half-duplex mode or in full duplex mode
with the transmitter and the receiver operating on separate
frequency bands (which can be modeled as orthogonal chan-
nels [9]). Therefore, it is important to consider more practical
half-duplex relays which can either listen or transmit, but not
do both at the same time.

In this paper, we focus on half-duplex relays using the
decode-forward (DF) strategy. Instead of studying the single-
relay channel [10], [11], [12], [13], we consider the multiple-
relay channel (MRC), which has one source/destination pair
and multiple relays. In this case, a relay receives and combines
signals from upstream nodes to decode the source message.
After fully decoding the source message, the relay then sends
out signals to help downstream nodes decode the message.
As the relays cannot transmit and listen at the same time,
they should balance the time fractions spent in listening and
transmitting. Relays should spend enough time in the listening
state in order to decode the message. On the other hand, they
also need to transmit as much as possible to help downstream
nodes. Moreover, the receiving rate of a node depends on the
transmitting/listening states of all upstream nodes on the route.
Therefore, the optimal transmission state for one relay depends
on the transmission states of all other relays on the route.

The transmission state scheduling problem aims to find
an optimal combination of states so that the throughput is
maximized. When there are M relays on the route, the
number of possible combinations of transmission states is 2.
The exponential growth in the number of states makes the
optimization problem formidable at first glance. However, we
show that the optimal schedule only needs to use at most
M +1 states to achieve the maximum rate for the DF strategy.
This observation greatly simplifies the scheduling problem. We
propose a heuristic algorithm which can find schedules that
achieve an average rate within 99.97% of the optimal rate.

The achievable rates of the half-duplex DF scheme are
also compared with rates of the cut-set upper bound and the
multi-hop scheme via intensive numerical experiments. The
numerical results show that the cooperative DF relay scheme
can provide 2.8 times higher rate than conventional multi-hop
scheme in a string topology.
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The rest of this paper is organized as follows. Section II
introduces the channel model for the phase fading Gaussian
relay channel and gives the achievable rate of the half-duplex
DF scheme. We then formulate the transmission state opti-
mization problem as a linear programming problem and solve
it via the cutting plane method in section III. The performance
of the DF scheme is compared with the cut-set bound and the
multi-hop scheme in section IV. Finally, section V concludes
the whole paper.

II. HALF-DUPLEX MULTIPLE-RELAY NETWORKS

A. Multiple-Relay Channel (MRC)

We consider the multiple-relay channel (MRC) with one
source/destination pair and multiple relays in between, which
has been studied by Gupta and Kumar [14], and Xie and
Kumar [6]. It is an extension of the single-relay channel
(SRC) [15] to the case where there are multiple relays helping
the source and destination.

An M-relay MRC has M + 2 nodes {0,1,2,...,M, M +
1} £ M. The message W is generated by the source (node
0) and is to be sent to the destination (node M + 1) with the
helps of M relays (nodes 1 to M). We denote the set of all
relay nodes as R.

In the half-duplex MRC, nodes can only transmit or listen,
but not do both, at any point in time. We assume that the
source node is always transmitting and the destination node is
always listening. To capture the half-duplex scenarios among
the relays, we define the transmission state vector as follows.

Definition 1: For the M-relay MRC where the source al-
ways transmits and the destination always listens, the trans-
mission state vector can be expressed as s = (8182...8Mm),
where s; = 1 when node ¢ transmits and s; = 0 when node i
listens in state s.

The ¢-th position in s indicates whether relay i is listening or
transmitting in state s. Note that the transmission state vectors
are the binary representation for integers from 0 to 2™ — 1.
In the remainder of this paper, we will directly use integers
in [0,2M — 1] to represent the state s. We assume that the
transmission state for all channel uses are known to all nodes
a priori.

Definition 2: For a transmission state s, we define £(s) as
the set of nodes that are listening and 7 (s) as the set of nodes
that are transmitting. This means L£(s) 2 {i € R : s; =
0}U{M +1} and 7(s) = {i € R : s; = 1} U {0}, where
R =1{1,2,...,M} is the set of all relays.

B. Half-Duplex Phase Fading Gaussian MRC

Now we define the half-duplex phase fading M-relay Gaus-
sian MRC. In this paper, we only consider memoryless and
time invariant channels [7]. We use z; to denote an input
from node 4 into the channel and y; denotes an output from
the channel to node i. For nodes that are transmitting, i.e.,
i € T(s), we set y; = 0. For nodes that are listening, i.e.,

i € L(s), we set z; = 0. During state s, the received signal
at node k is given by

Y, = {ZieT(s)\{k} \/Ai,keje(i’k)Xi + 27 ke L(s)

0 ket P

where X, the input to the channel from node i, is a zero-mean
complex random variable. Zj, the receiver noise at node k, is
an i.i.d., zero-mean, complex, Gaussian random variable with
variance E[ZkZ,i] = Ng. A\i i, capturing the path loss from
node i to node k, is defined as

Nk = {“d@’? dnzl @

’ K otherwise

where d; ;, > 0 is the distance between nodes 7 and £, n > 2 is
the path-loss attenuation exponent, and & is a positive constant.
e/9(k) is the phase fading random variable, where (i, k) is
uniformly distributed over [0, 27). 6(i, k) for all ¢ and k are
jointly independent of each other.

We assume that all nodes know « and d; ;. We also assume
that node k& only knows 6(i,k),Vi and does not know any
6(i,l) for | # k. Hence, the transmitted signals of node i
cannot be chosen as a function of 6(i, k) for any k.

In this paper, we consider the following per-symbol power
constraint on individual nodes. With the half duplex con-
straints, x; = 0 for node ¢ in the listening state, we have
the power constraint as

P ieT
Elxixij < B 1€ 3)
0 i€eL(s)
C. Achievable Rates in Phase Fading Gaussian MRC
Define the route as O = {0, 01,...,0,0|—1}, Which is an

ordered set of nodes from the source to the destination [16],
[17]. We always set oy as node O (the source) and ojp|—1
as node M + 1 (the destination). Given the route O and the
transmission state s = j, a node o; with ¢ > 1 on the route
can decode from the signals sent by all nodes in the upstream
of the route which are transmitting in state s = j. Therefore,
in the phase fading Gaussian MRC, a node o; can receive at
a rate of [18]:

, 3 Ako; P ]
log <1+ Zke(og,ol ..... o;\;()l)ﬂT(]) k k) O,L' eﬁ(])

7

Toi,j =

0 0; GT(j)

when transmission state s = j.

Define a transmission schedule @ = {qo,q1,.-.,92m_1},

where 23:0—1 g; = 1. Consider a block coding scheme and
define each m uses of the channel as a block. In a schedule Q,
nodes will use a transmission state s = j for a time fraction
of g; in each block.

A node o; will use all information it received during blocks
n —1i+ 1 to n for decoding the (n — i + 1)th block sent by
the source. For example, when the source is sending block 2,
the first relay o; should be able to decode the information of
block 2. During the same block, the first relay should also send
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information about block 1 to downstream nodes. The second
relay o2, should have received information about block 1 from
both the source oy and the first relay o;. So it can combine
both information to decode block 1. In this way, the message
W can be sent in a pipelined manner through multiple blocks
along the route [18].

In [18], we proved that there exists a coding scheme which
can achieve rates up to

>

0<j<2M —1

in the half-duplex phase fading Gaussian MRC, where [[(M)
is the set of all combinations of routes from the source to
the destination. The achievable DF rate is the maximum rate
over all possible routes and transmission schedule selections.
The third minimization requires that the destination node and
all relay nodes should be able to fully decode the message.
The first maximization, i.e., finding an optimal relay route
O*, has been studied in [17]. In this paper, we focus on
finding the optimal transmission schedule which can achieve
the maximum DF relay rate when the route O is given as
0; =14,Yi € [0,M +1].

max max min

iToi,j 5
OGH(M) Q 01’6(9\{0} qJT 5] ( )

Rpr =

III. OPTIMIZATION ON TRANSMISSION SCHEDULE

In the DF strategy, every relay should be able to fully decode
the message sent by the source. Thus, half-duplex relays must
find the optimal transmission schedule which decides how long
they should listen and in which transmission states they should
listen. As the message is sent in a block coding scheme, it can
be proven that the achievable rate only depends on the time
fraction of transmission states used in the block, but not on
the order of the states [18]. Therefore, the values for g; can
fully describe an optimal transmission schedule in half-duplex
MRC.

A. Linear Programming Solution

The optimization over transmission schedule can be formu-
lated as a linear programming problem as follows:

Maximize u,

oM _q
stu— Y gri; <0 1<i<M+1 (6)
7=0
oM _q
> oa=1 ©
=0
qj > 0. (3

The decision variables in this linear programming are » and
gjs. Constraints (6) require that all relays and the destination
should have a receiving rate, summed over all transmission
states, to be larger than u. Therefore, maximizing u is equiv-
alent to maximizing mini<i<m+1{>_; ¢;7i,5} [19]. In this
way, we can guarantee that node o; can always decode block
n — i+ 1 when the source is sending block n. Constraint (7)
requires the sum of time fractions of all used states should be
equal to one.

In an MRC with M relays, the number of possible trans-
mission states is 2. Therefore, the number of variables in
this linear programming increases exponentially with M and
it is difficult to directly solve this problem in large networks.
However, we observe that there are only M + 2 constraints
in (6) and (7). Consequently, every basic feasible solution for
the linear programming only has M + 2 non-zero variables.
As the variable u in a non-trivial solution is always non-zero,
there are at most M + 1 non-zero time fractions g; in the
optimal schedule. So, among all the 2 possible states, only
M + 1 states will be used in the optimal schedule Q*. As we
only need to pick up M + 1 states among the 2 states, the
optimization process could be greatly simplified.

This observation also shows that the scheduling scheme may
be practical in real networks. Since we only need to use a
small number states in the schedule, the coordination and code
design for multiple relays could also be simplified.

B. Cutting Plane Method

The cutting plane method can use iterative algorithms to
solve the linear optimization problem proposed in last section
[19]. Consider the dual of the linear programming problem in

6) - (®):

Minimize v,
M+1

sto— Y wri; >0 0<j<2M—1 )
i=1
M+1
dwi=1 (10)
i=1
w; > 0. (11

The decision variables in the dual problem are v and w;s. We
see that the dual problem only has M + 2 variables. However,
the number of constraints in (9) is 2M.

In the relaxed dual problem, we only consider a small
subset of the 2™ constraints in (9). It is easy to see that
each constraint in (9) corresponds to one transmission state in
the schedule. Thus, the relaxed dual problem only considers
a subset J C {0,1,...,2M — 1} of all the possible states.
Suppose the optimal solution of the relaxed dual problem is
[v*  w*]. If the v* and w* satisfy constraints (9) for all
states, i.e., v* > Y wir;;, Vi € [0,2M — 1], the solution
of [v* w*] is then a feasible and optimal solution to the
original dual problem. Otherwise, we can always find a state
k where constraint (9) is violated, i.e., v* < >, w;r; k. In this
case, we can include state k into 7 and the optimal v* for the
new relaxed dual problem will be increased. We can iteratively
include new states and solve the relaxed dual problem until
all states has v* > >, w;r; . The resulting v* will be the
optimal solution for the original dual. The detailed algorithm
is shown in Fig. 1.

Define the weighted-sum-rate for state j as ., wir; j. As
removing non-active constraints in (9) will not change the
optimal value of the relaxed dual, we can remove states
with a weighted-sum-rate smaller than v* from the set J
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Iterative Optimization Algorithm

01: Imitialize J = {0}.
02: Find the optimal [v* w?*] of the LP problem in (9) —
(11) with constraints correspond to 7.

03: Search for a state k with v* <)~ wir;.

04: if k exists

05: SetJ ={k}UJ.

06: Set J =J\{j}, forall j € J in which
v > Y Wi .

07:  Go to step 02.

08: else

09:  Optimize the LP in (6) — (8) while setting
ri,; = 0,Vj ¢ J and output the schedule.

10: endif

Fig. 1. Iterative Optimization problem.

after each iteration. In this case, non-active states will be
constantly removed and there will be O(M) active states in
each iteration, so the optimization of the relaxed dual can be
carried out efficiently. As shown in [19], the cutting plane
method is equivalent to the delayed column generation method
on the prime problem. Therefore, the algorithm is guaranteed
to converge and the procedure is essentially a revised Simplex
pivoting process.

C. Separation Problem

The separation problem in the cutting plane method is the
sub-problem of finding a state & with a weighted-sum-rate
larger than v* in step 03 of the iterative optimization algorithm.

One way to solve the separation problem is via exhaustively
searching all the 2 states and find the state k with maximum
value of weighted-sum-rate. Although exhaustive searching
can always find the state with a weighted-sum-rate larger than
v* when such state exists, the computation complexity of this
method is clearly Q(2M).

We can use the knowledge on the relationship between
reception rates and states in the optimization to reduce the
complexity of the searching process. We observe that w; is
the weight for the receiving rate at node :. If the solution of the
relaxed dual problem contains weights w;* which are equal to
zero, then the receiving rate of node [ should not be the bottle-
neck for the relay chain. Suppose node [ listens in some state
k. We can construct a new state k' in which [ is transmitting
and all other nodes’ listening/transmitting modes is the same
as state k. Note that changing the state of node [ to transmitting
will reduce the rate 7, 5/ to zero. However, the rate of all the
other nodes will not decrease, i.e., ryx < Tip,Vi # [, as
the transmitting node set 7 (k') = 7 (k) U {l}. Since we have
w =0, we get Y ,wiryp < Y, w;r k. In other words,
state k' always has a higher weighted-sum-rate than state k.
So, we only need to search states which sets all nodes [ as
transmitting when the corresponding w; = 0.

We can also use local search heuristic algorithm to improve
the search speed. A d-opt local search algorithm only searches
states k¥’ which have at most d nodes change their states from
the original state of k. In our problem, we know states which
correspond to active constraints in the relaxed dual in (9) will
have a weighted-sum-rate equal to v*. Therefore, these states
can serve as the starting states of the local search. If one of
the neighboring states of these states has a weighted-sum-rate
larger than v*, we will move to this new state and search
its neighborhood in order to find a state with even higher
weighted-sum-rate. We will repeat the searching until no state
in the neighborhood has a higher weighted-sum-rate or we
have moved to more than M states. The d-opt local search
algorithm only needs to search O(M?) neighbors of O(M)
states, so the algorithm terminates in polynomial time.

D. Algorithm Evaluation

Although the local search algorithm can be trapped in some
local optimal points, we show in our numerical experiments
that the algorithm can still provide good approximations with
small searching neighborhoods.

We generate randomly deployed networks to evaluate our
algorithm. In the experiments, nodes are placed in a square
network with side length of M + 1. The source node 0 is
placed at the middle point (%’—1, 0) of one side of the square
and the destination node M + 1 is placed at the middle point
(@,M + 1) of the opposite side. M relays are randomly
deployed in the square to relay data from the source to the
destination.

For each network size, we randomly generate 1000 network
topologies and run the iterative algorithm to find the relay
schedule. The number of iterations used by the 2-opt algorithm
is shown in Fig. 2. We see that for a relay network with
moderate size (less than 40 relays), we need about 500
iterations to solve the scheduling problem on average. Via
linear fitting, we find that the number of iterations increases
with M as O(M*87).

We also compare the performance of the d-opt local search
heuristic algorithm with the optimal exhaustive search in ran-
dom topologies. Fig. 3 shows the probability that the heuristic
returns a suboptimal result when using different searching
neighborhood size of d. We see that when using 1-opt local
search, i.e., switching the transmission state of a single node
in the searching process, the chance of returning a suboptimal
result is quite high (up to nearly 80%). When the neighborhood
size increases to 2, the chance of returning a local maximal
point has been greatly reduced.

Define the approximation ratio p as the ratio between the
suboptimal solutions returned by the heuristic to the optimal
solutions. Fig. 4 shows the approximation ratio of the heuristic,
where the approximation ratio is averaged over topologies
where the heuristic returns a suboptimal result. For the 1-opt
local search, the approximation ratio is around 0.9997 for all
network sizes. This shows that the suboptimal results returned
by the heuristic are very close to the optimal one. Unlike the
probability of returning a suboptimal point, which increases
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Fig. 3. Probability that the heuristic returns a suboptimal result.

with the number of relays, the approximation ratio remains
flat as the network size increases. Thus, the 1-opt heuristic
could be a good approximation even for large networks as the
difference between the suboptimal result and optimal result is
only about 0.03%. When the searching neighborhood increases
to 2-opt, we see that the difference between the suboptimal
results and optimal results can be further reduced.

E. Extending to Multiple Source-Destination Pairs

In the previous discussions, we assume that there is only
one source/destination pair in the network. In this section,
we relax this assumption and extend the linear programming
formulation to solve networks with multiple sources and
destinations.

Consider the case that there are K source-destination pairs,
where source nodes are 0,1, ..., K — 1 and destination nodes
are K + MK+ M +1,...,2K + M — 1. Suppose there
are M relays, which are nodes K, K +1,..., K + M — 1,

1E-3

T\!\./

1E-4

1E-5

1E-6 o

1 - Approximation ratio (1 - p)

1E7 ;
5 10 15 20

Number of relays (M)

Fig. 4. The difference between suboptimal results and the optimal value
(confidence interval 95%).

in the area. The route for source-destination pair k is O =
{Ok’o,ok,l, . 70k,|(9k|—1}70 <k <K -1, where o0 = k
is the source of the route and oy |0, |1 = K + M + k is the
destination of the route. In this section, we assume that each
relay only appears once in any route and source/destination
nodes cannot act as relays.

In the multiple source/destination pairs case, concurrent
transmissions in different routes can interfere with each other.
So, the source nodes should also toggle between transmitting
and listening states to avoid interfering with nodes in other
routes. However, we can still let all destinations to be al-
ways listening. Therefore, the transmission state vector can
be defined as s = (spS1...Sk+m—1) and the number of
transmission state is increased to 25+ in this case.

The receiving rate of node oy ; at state j can be written as:

log 1+ ZlE(%,Oww%,i—OﬁT(J') Ao, ;.1 P2
Noy i T2 teT(i)\ 0y, Aok,irt P

Ok, € L(j)

0 ok,i € T(j)

(12)

Tok,id =

To achieve max-min fairness over all source destination
pairs, the optimal rate can be calculated through the following
linear programming problem:

Maximize u (13)
oK+M_q
stou— Y gri; <0 K <i<2K+M—1(14)
7=0
oK+M _q

>, ¢=1 (15)

j=0
g > 0. (16)

Constraint (14) requires all relays and destinations should
receive at a rate not smaller than w. By maximizing u, we
are trying to maximize the minimal rate achieved by all
source/destionation pairs.
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Similar to the single source/destination case, this problem
can be solved via the cutting plane method. Note that when
there are no relays, i.e., M = 0, the problem will be reduced to
throughput optimization problem in wireless networks, which
is NP-complete in general [3].

IV. NUMERICAL RESULTS
A. Performance Comparison

In this section, we compare the performance of the half-
duplex decode-forward strategy with the cut-set upper bound
in information theory [20] and the multi-hop (MH) relay strat-
egy used in conventional wireless networks. The comparison is
based on the numerical method developed in previous sections.

Cut-set bound:

The cut-set upper bound provides an upper bound on the
transmission rate for all possible transmission schemes in a
multi-terminal network [20]. The cut-set bound in the MRC
can be derived as follows. We arbitrarily partition the node
set M into two subsets, B and its complement B°. Suppose
node ¢ can send information at ; ; to node j. Then, the total
information flow across the cut should be bounded by [20]:

> Ri; <I(Xp;V:|Xp:) a7
i€B,jEB"
for all B ¢ M, where I(Xp;Yge|Xp-) is the mutual infor-
mation between the signal sent by nodes in B (denoted as Xp)
and signal received by nodes in B¢ (denoted as Yz-) when the
signal sent by nodes in B¢ (denoted as Xp-) is known.
For the phase fading Gaussian MRC, it can be shown that
the upper bound of the information rate that the source can
send to the destination is [18]:

Ryp = max Bcﬂms.t. Rp, (18)
{0}CB&{M+1}CB°
where
2! > keBnT () Nik Pr
Rp = qulog 1+' > | . (19)
j=0 i€BNL(J)

Similar to the max-min problem in Sec. IIl, the max-min
problem in (18) can be formulated as a linear programming
problem. However, the possible number of cuts with {0} C B
and {M + 1} C B¢ is 2™, Therefore, the linear program-
ming has both O(2M) constraints and variables. The size of
problems that is solvable in this case is thus quite limited.

Multi-hop relay:

In conventional wireless ad hoc networks, relay nodes do
not cooperatively send the information. Packets are sent in a
hop-by-hop manner where each hop is treated as a point-to-
point link [21]. In this strategy, commonly known as the multi-
hop relay strategy (MH), node i only listens to its immediate
neighbor in the upstream, node ¢+ — 1, and all signals from
other relays will be treated as noises.

The maximum achievable rate for this strategy can be
derived in a way similar to the single source/destination

Rate (Bits/Channel use)

T2 vy

Fig. 5. DF rates for the two-relay MRC with varying relay positions.

pair problem in Sec. III. Suppose the source is node O,
destination is node M +1 and node 1,2, ..., M are relays. The
transmission state vector will be defined as s = (sp$1 ... Sm)
and the receiving rate of node 7 at state j can be written as:
Ai1,iPi1
log (1 T N eronin Ak»ipk)
iel(j) & i—-1eT(j)

0 otherwise

(20)

Tij =

In this case, any concurrent transmissions will interfere with
each other. The problem of maximizing the MH rate is also a
max-min problem and can be solved via linear programming.

B. Networks with Two Relays

We first consider a simple case, where the network has two
relays which are placed on a straight line connecting the source
and destination. The node coordinates are: node 0 (0, 0), node
1 (0,y1), node 2 (0, y2), and node 3 (0, 100). The position of
relay nodes can be changed via selecting y1,y2 € [0,100]. As
stated earlier, we assume that the route is fixed as {0, 1,2, 3}.
We find an optimal schedule that maximizes the DF rate for
this route, although it might not be the optimal route for all
topologies. We assume that Kk = 1, n = 2, P, = 10 for i =
0,1,2, and N; = 0.01, for j =1,2,3.

Fig. 5 shows the DF rates for the two-relay half duplex
phase fading Gaussian MRC with varying relay positions.
Fig. 6 shows the capacity upper bound and the difference
between the upper bound and the achievable rates of DF.

The highest DF rate is 0.5956 bits/channel use, when y; =
34,y2 = 56. The optimal schedule for this topology is go =
0.0038, g1 = 0.6585, g5 = 0.3377, g3 = 0. The worst DF rate
is 0.1375 bits/channel use, when y; = 100 (relay 1 at the
destination). The optimal schedule for this topology is gy =
1,1 = q2 = q3 = 0, i.e., nodes 1 and 2 only listen. For the
capacity upper bound, the highest rate is 0.7080 bits/channel
use, when y; = 35,y2 = 65 or y; = 65,y = 35 (note the
symmetry). The lowest rate is 0.3757 bits/channel use, when
y1 = 0,y2 = 0 or y; = 100,y, = 100, i.e., when both relays
are at the source or at the destination.
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Unlike the full duplex case where DF achieves the cut-set
upper bound and hence achieves the capacity when the relays
are within certain distances from the source [7], DF in the
half duplex case does not achieve (though close to) the cut-set
bound if a relay is € away from the source, for any arbitrarily
small distance € > 0.

Fig. 7 shows the rates for MH strategy (Rmpy). The highest
MH rate is 0.4105 bits/channel use, when y; = 29,y = 62
and the worst MH rate is 0.0671 bits/channel use, when y; =
100 and yo = 0. From Fig. 8, which shows the difference
between the DF and MH rates, we observe that the achievable
DF rate is always higher than the MH rate. When both relays
are at the position of the destination, i.e., y; = y2 = 100, DF
and MH have nearly the same performance. Averaged over
the possible positions of relay 1 and 2, the DF rate is 76.35%
higher than the MH rate.

Fig. 9 shows optimal schedules when varying node 2’s
position for the DF scheme, i.e., value of ys, while fixing
the rest of the nodes’ positions (node 1 is fixed at (0, 66)).
State 00 means both relay are listening, state 01 means node
1 is listening and node 2 is transmitting and state 10 means

o
IS

Rate (Bits/Channel use)
o o o
SR e
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Rpr — Rwmn, the gap between Rpp and Rmp.

Fig. 8.
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Fig. 9. Graph showing optimal schedules for y; = 66 and varying node 2’s
position in DF scheme.

node 1 is transmitting and node 2 is listening. We see that as
node 2 moving towards the destination (increasing y3), node
2 tends to spend more time in listening. We also see that at
most 3 states are used in the optimal schedule. This verifies
that the optimal schedule use at most M + 1 states.

C. Networks with a Chain Topology

In this section, we consider networks with M relays on
a straight line. The coordinates of node ¢ are (0,) for ¢ =
0,..., M + 1. Therefore, the distance between the source and
destination will increase as the number of relays increases. We
assume that k =1, n =2, P, =P =10fori =0,...,M,
and Nj=N=1,forj=1,..., M +1.

Fig. 10 shows the rate for a relay chain with different
number of relays. As the source and destination become farther
apart, the rate for DF strategy slightly reduces. However, the
rate will finally converge to some constant when the distance
between source and destination goes to infinity.

The lower bound for the achievable DF rate can be derived
as follows. Assume that we use a schedule with two states. In
the first state, only nodes 2k + 1,k =0,...,| (M +1)/2] are
sending and other nodes are listening. In the second state, only
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Fig. 11. Interference of the relays in a chain topology.

nodes 2k are sending and nodes 2k + 1 are listening. If relays
spend equal times in these two states, we have the rate lower
bound for the half-duplex strategy as log(1 + P/N) x 2 =
1.7297 bits/channel use, as shown in Fig. 10.

Fig. 10 also shows the cut-set rate upper bound. The upper
bound first drops when we add the first relay due to the half
duplex constraints. After that, the upper bound increases as
the number of relays increases. For an infinitely long chain of
relays, we can see that the rate is bounded by the cut between
the source and the reset of nodes, i.e., setting B = {0} and
B¢ ={1,2,...,M+1}. For this cut, the upper bound for rate
Rp can be calculated from (19) when only node O is sending:

M+1 5.9
RB§10g<1+ > P]c >

=1

@n

7_‘_2

when we assume 7 = 2. Using the fact that ) 32, 5 = I,
we see that the cut set upper bound should be smaller than
log (1 + %2% = 4.1251 bits/channel use when M — oo.
This upper bound is about 2.38 times of the achievable DF
rate. However, this cut-set upper bound could be quite loose
and not achievable for any relay strategy.

The end-to-end rate of MH also drops as the distance
between the source and destination increases. The lower bound
for MH strategy can be derived as follows. We can use a
four-state schedule. In the first state, nodes 4k + 1,k =
0,...,[(M + 1)/4] are sending and all other nodes are
listening. Nodes 4k+2, 4k+-3 and 4k sends at the second, third
and fourth state consequently. When we have a long chain of

nodes with M — oo, the receiving node in each state will
have rate of:

P/12
log |1+ , (22)
N+Z;o:1ﬁ+21?;1 (TkiT)?]
see Fig. 11.
We have
o0 o0
P
> +2
—1)2 2
= (4k - 1) Pt (4k + 1)
( > <
(S h-1-Y o)
2 2
il = (2F)
31
=P (z D@ 1)
k=1
2
=P — - 23
(%-1) 23)
Therefore, the achievable end-to-end rate will be:
1 P
-log |1+ —————— 24
1% T NP )} @9

when we spend equal time in the four states. This rate is shown
on Fig. 10 as the lower bound of the MH scheme. It can be
verified that this rate is larger than the rate of using three states
which alternately ask every third node to send.

As the MH rate always decreases when we increase the dis-
tance between source and destination, the optimal rate for MH
under a chain length of M = 12, which is 0.6104 bits/channel
use, can serve as an upper bound for the achievable rate for
a chain with M > 12. Therefore, we can see that the lower
bound for half-duplex DF scheme on an infinity long chain
is nearly 2.8 times larger than the upper bound of the MH
scheme. This shows the benefit of using cooperative relay
schemes in a multi-hop network.

D. Randomly Deployed Networks

The structure of randomly deployed networks used in this
section is same as in Sec. III-D. Relays are randomly deployed
in a square area of side length M + 1 while the source and
the destination are fixed at the middle point of opposite sides.
We assume that k = 1, n = 2, P, = 10 and N; = 1 in this
section.

Fig. 12 shows the rate for DF and MH, averaged over 1000
topologies. Similar to the chain topology, both DF and MH
rates reduce as the network size increases. However, we see
that the rate for randomly deployed networks is much smaller
than the chain topology. This can be explained via Figs. 5
and 7, which show that placing relays with equal space on the
straight line connecting the source and destination is close to
optimal for both DF and MH.

Fig. 12 shows the gap between DF rate and MH rate is
increasing when the number of relays increases. In random
networks, the MH rate is limited by the longest hop, which
increases in larger networks due to the randomness in deploy-
ment. For DF strategy, multiple nodes can help each other to
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Rates in randomly deployed network for half-duplex DF and MH

send message across the gap. So, the MH rate decreases to
nearly zero when the network size increases to 20 while DF
strategy can still maintain a decent rate.

V. CONCLUSION

We studied the transmission schedule optimization problem
for half-duplex multiple relay channels. The schedule opti-
mization problem can be formulated as a linear programming
problem for the phase fading Gaussian MRC. We showed
that only a small amount of transmission states need to be
considered in the optimal schedule. We also proposed a heuris-
tic which can provide good approximations for the schedule
optimization problem. The results presented in this paper
showed that cooperative coding scheme can be a promising
way to increase the throughput of multi-hop wireless networks.
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