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Variance Error Quantifications That Are Exact
for Finite-Model Order

Brett Ninness and Håkan Hjalmarsson

Abstract—This paper is concerned with the frequency do-
main quantification of noise induced errors in dynamic system
estimates. Preceding and seminal work on this problem has
suggested general expressions that are approximations whose
accuracy increases with observed data length and model order.
In the interests of improved accuracy, this paper provides new
expressions whose accuracy depends only on data length. They are
therefore “exact” for arbitrarily small true model order. Other
authors have recognized the importance of such expressions and
have derived them for the case of finite-impulse response-like
model structures in which denominators are fixed at true values
and only numerator terms are estimated. This paper progresses
beyond this situation to address the more general output-error
and Box–Jenkins structures in which full dynamics models (both
numerator and denominator terms) and noise models may be
estimated. A key aspect of the work here is that it establishes
that the variance quantification problem is equivalent to that of
deriving the reproducing kernel for a subspace that depends on
the model structure being employed.

Index Terms—Orthonormal bases, parameter estimation,
system identification, vaiance error.

I. INTRODUCTION

WHEN identifying a system model on the basis of ob-
served data, it is essential to quantify the likely error

in that estimated model. Typically, this consists of two compo-
nents. The first, a so-called “bias error,” is the result of the model
structure being less complex than the system being estimated.
The second, called “variance error,” is caused by corruption of
the input–output data measurements.

Furthermore, when the corruption can be modeled as an ad-
ditive stochastic process, and the underlying system is linear,
then it is arguable that the total error in any identified model
that passes a validation test is dominated by variance error [1].

In this common case, or when the model structure is rich
enough to encompass the true underlying dynamics, the quan-
tification of the total estimation error then becomes a question
of assessing variance error. In relation to this, if the widely used
prediction-error method with a quadratic criterion is employed
[2], [3], then a seminal result is that under open-loop conditions
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the noise-induced error, as measured by the variability of the en-
suing frequency response estimate , obeys [4], [5],
[2], [6]

(1)

Here, and are, respectively, the measurement noise and
input excitation power spectral densities, and is the predic-
tion error estimate based on observed data points of a vector

that parameterises a model structure for
which (essentially) the model order where

is the number of denominator polynomials to be estimated in
the model structure.

Although this result is asymptotic in both data length and
model order , it suggests the very well-known approximation
for finite data and model order of

(2)

Apart from its simplicity, a key factor underlying the importance
and popularity of the quantification (2) is that, according to
its derivation [4], [5], [2], [6], the expression (1) applies for a
very wide class of so-called ‘shift invariant’ model structures.
For example, all the well known finite-impulse response (FIR),
ARX, ARMAX, output-error, and Box–Jenkins structures are
shift invariant [4]. Additionally, as shown in [2], the result (1)
also applies when nonparametric (spectral based) estimation
methods [7], [2] are employed provided that the term in
(2) is replaced by one dependent on the number of data points
(and the windowing function) used.

However, a fundamental aspect of the approximation (2) is
that (since it is derived from (1) which is asymptotic in model
order ) its accuracy for realistic finite model orders is not guar-
anteed [8], [9].

In relation to this, [10] has also recognized the importance
of this question by choosing to address the specific case of a
model structure in which only a polynomial numerator term

is estimated, while the denominator is fixed according
to the true underlying pole positions, and a fixed but arbi-
trary moving average (MA) noise model is included. With these
caveats, together with further ones that the input is an autore-
gressive order process, and that the numerator
order is so that it overmodels the underlying true
dynamics, then the work [10] establishes the following result:

(3)
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Here, the are the combined poles of the true underlying
dynamics, and the process which is the observed input.
Furthermore, the expression (3) assumes that the true and fixed
MA noise models are equal, although the full work in [10] does
consider more general cases; as will be discussed in more detail
in Section V-B.

More importantly though, the expression (3) is exact for fi-
nite-model order , and therefore it is clear, as
observed in [10], that the associated quantification

(4)

should be more accurate than (2), and this is demonstrated em-
pirically in [10].

Furthermore, again as observed in [10], the quantification (4)
is significantly different to the widely used pre-existing one (2)
in that a frequency independent term of in (2)
is replaced by a frequency dependent sum over com-
ponents in (4), which can clearly exhibit orders of magnitude
variation as varies.

Therefore, although it is reasonable to expect that the expres-
sion (2) is a compromise that sacrifices accuracy for simplicity,
in some cases this tradeoff can lead to very misleading expres-
sions and, hence, [10] establishes that further study is clearly
warranted.

With this pre-existing work [10] as motivation, the work here
extends the results of it and related contributions [11]–[14]
from the fixed denominator FIR-like model class considered
there to the much more general situations of output-error and
Box–Jenkins modeling. In all cases, and in the interests of
accuracy, expressions are derived here that hold exactly for
finite model orders.

A key conclusion arising from these new results is that, while
the recent work [10] suggests that when substantial errors occur
in the quantification (2) they are due to special factors such as
‘erroneous noise models, colored inputs and fixed poles’, the
new expressions developed here establish that these substantial
errors in (2) are a much more general phenomenon that are not
predicated on these special factors.

For example, reference [15], which builds on the work here,
establishes that the convergence result (1) underpinning (2) is
dominated by a choice of a regularization point which is com-
pletely arbitrary, and it is only the specific regularization choice
that fixes excess pole/zero cancellations at the origin that leads
to (2). Other choices can lead to results arbitrarily different to
(1) and (2) and, hence, it is rather problematic to draw conclu-
sions about fundamental aspects of an estimation problem from
approximate quantifications such as (2).

Underpinning the work here is a new approach to the variance
quantification problem that involves the use of what is known
as a “reproducing kernel.” This kernel is quantified via a partic-
ular orthonormal basis which has been used in previous works
[10], [14]. However, it was employed there in a manner that is
fundamentally different to that used in this paper. Here, via the
reproducing kernel interpretation, a geometric interpretation of
the variance quantification problem is exposed. This minimizes
the arithmetic required to derive variance quantifications, while

also allowing for exact quantifications not provided in previous
works.

This paper now proceeds in Section II to provide a very brief
simulation example that illustrates the need for the new anal-
ysis pursued here by establishing how misleading the quantifi-
cation (2) may be. The following Section III then embarks on
a discussion of the reproducing kernel ideas underpinning this
work, and establishes several key technical results, while Sec-
tion IV establishes the model structures, estimation method and
data collection scenarios that are addressed here.

The main results of the paper are provided in Section V, fol-
lowed by a concluding section which reinforces certain issues
and points to related papers that build on the work presented
here.

II. MOTIVATION

In the interests of illustrating the practical (and theoretical)
significance of the analysis undertaken here, we provide a brief
illustrative simulation example in which the following simple
system:

(5)

is used to generate an sample input-output data
record where the output is corrupted by white Gaussian
noise of variance , and where the input is a real-
ization of a stationary, zero mean, unit variance white Gaussian
process.

On the basis of this observed data, a first-order output-error
model structure is estimated, and the sample mean
square error in this estimate over 1000 estimation experiments
with different input and noise realizations is used as an estimate
of which is plotted as a solid line in Fig. 1(a).

The “classical” approximation (2) is shown as the flat and
straight dash–dot line in that same figure, and is clearly a poor
approximation to the true variability. For example, it is qual-
itatively misleading by not eliciting the “low pass” nature of

, and instead suggesting that it is “all pass.”
More importantly though, it is quantitatively misleading in a

rather dramatic way, in that it is inaccurate at low and high fre-
quencies by orders of magnitude. If it were used to perform the
very common procedure of judging the radius of error bounds
on estimated Nyquist plots, then those radii would be approx-
imately one hundred times too small near zero frequency, and
more than ten times too large at the folding frequency.

In recognition of this, a main contribution of this paper is to
establish that under certain assumptions on the input and mea-
surement noise, then in the output-error case considered in this
section

(6)
where the are the poles of the underlying true system (i.e.,
the input–output dynamics). Note that, like the recent results
in [10], where more restrictive model structures with fixed
denominator were considered, the expression (6) also applies
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Fig. 1. Variability of output-error estimates. (a) True variability versus theoretically derived approximations. The solid line is the Monte Carlo estimate of the
true variability, the dash–dot line is the pre-existing approximation (2) which does not account for system poles or model structure. The dashed line is the new
approximation presented in (6) whereby estimated system pole positions f� ; . . . ; � g and the fact that an output–error structure is employed are both accounted
for. (b) First 50 (of 1000) estimate realizations to give a sense of the scale of the variability being quantified in (a).

for finite-model order and, hence, the ensuing approximation
suggested in this paper of

(7)

does not depend on the model order being large. This is in
contrast to the work underlying the well-known pre-existing
approximation (2).

In a sense then, the right-hand side of (7) is “exact” for fi-
nite model order , as illustrated by the dashed line in Fig. 1(a)
which is the expression (7), and exactly matches the true vari-
ability shown as the solid line. Therefore, in the sequel, when
referring to an “exact quantification of variance,” it will be to
avoid more cumbersome (but more accurate) descriptions such
as “exact quantification of the asymptotic in variance.” The
point to be made is that expressions such as (7) to be derived
here will not depend on the model order being large.

Finally, Fig. 1(b) illustrates the first 50 (of 1,000) estimate
realizations (represented via the corresponding Nyquist plot of

) that are averaged to produce an estimate of the true
variability shown as the solid line in Fig. 1(a). This is shown
to emphasise the possible large scale of the error that can be
accurately quantified by the results of this paper. That is, the
results here are not restricted to the evaluation of minor effects.

III. TECHNICAL PRELIMINARIES

In this paper, the idea of what is called a “reproducing kernel”
for a space will prove to be a vital tool that allows for the direct
simplification of complicated quantities via what is essentially

a geometric principle. In presenting these underlying ideas, the
following notation will be employed.

• : Respectively, the fields of complex and real
numbers, and the complex unit circle .

• : Respectively, for arbitrary , the complex conju-
gate transpose and the inverse of the complex conjugate
transpose.

• : The ’th element of a vector , or the ’th row of a
matrix .

• : The inner product, defined for arbitrary functions
by

(8)

• : The space of functions
such that

(9)

• : The positive real part of a function, say
, which if the latter has Laurent expansion

(10)

is defined as

(11)

so that is analytic on and
.
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A. Reproducing Kernels

Consider a subspace of defined by a sequence of
elements of as

(12)

The so-called “reproducing kernel”
for this space of valued functions is

an entity such that for any [16], [17]

(13)

and for any

(14)

Here and in the sequel, for inner product expressions like (14),
the implied integration according to (8) will be over the common
argument (in the aforementioned case indicated by ).

Since the mapping is a (bounded) linear functional
, then it is a consequence of the Riesz Representation

Theorem [18] that a function satisfying (13) and (14)
exists. Furthermore, is “Hermitian symmetric” in that
for any

This implies that is the unique element that has the
property (14) and also satisfies for any

, since if another function also had these properties
then it would hold that for arbitrary

(15)

This last uniqueness property will be particularly vital in later
developments. Despite this fact, there may (of course) be several
different ways of expressing the unique reproducing kernel, two
of which are particularly important in later developments.

Lemma 3.1 (Expressions for the Reproducing
Kernel): Consider the subspace defined via
(12) with alternative basis

(16)

which is orthonormal in that where the latter
is the Kronecker delta function. Then the reproducing kernel

on may be expressed as

(17)

Furthermore, define the matrix valued function
and the matrix according to

(18)

Then, the reproducing kernel on may also be ex-
pressed as

(19)

Proof: To prove (17) we proceed as follows. Suppose that
for some constants . Then, for

arbitrary

(20)

which establishes (17). To prove (19), denote by
the vector of all zeros save for a 1 in the ’th position so that

. Then, using (19) and for arbitrary

(21)

In what follows, we will mainly be concerned with func-
tions that arise as the restriction of

to the domain . As such,
this paper will alternate between notation , and

as convenient.
Furthermore, in the case that will be exclusively considered

in this paper where all the in (18) have real valued Laurent
expansion co-efficients (corresponding to dynamic systems with
real valued impulse responses), then defined by (18) has all
real valued entries and, hence

(22)

is an alternate formulation of (19) that will sometimes prove
useful.

The relevance of these reproducing kernel ideas to the
problem of quantification of variance error for frequency func-
tion estimates will be seen to stem from the formulation (19)
and (22) since, as will be shown, when the prediction errors
are white, then the associated variance error in the frequency
domain can be expressed (modulo a known scalar factor) as the
quadratic form in (19) and (22) for some particular choice of
elements of which depends on the model structure.

Therefore, since the preceding lemma also establishes that the
reproducing kernel, which is unique, can be expressed as (17),
then this provides a means for exact quantification of variance
error provided that an explicit expression for the orthonormal
basis spanned by the elements of can be found.
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With this is in mind, in the scalar case , the following
lemma details an important situation in which an explicit for-
mulation of the necessary orthonormal basis is available.

Lemma 3.2 (Orthonormal Basis for Fixed Denominator
Spaces): Consider the space

(23)

where

(24)

for some set of specified poles and where .
Then, it holds that

(25)

where

(26)

and with for . Furthermore, the func-
tions defined in (26) satisfy and,
hence, form an orthonormal basis for .

Proof: See [19].
In this special but important situation when the space

is defined by (23), there exists yet another characterization of
the reproducing kernel which will be of great utility in later
developments.

Lemma 3.3 (Christoffel–Darboux Formula [20]): The repro-
ducing kernel for in (23) is given by

(27)

Proof: See [21].
Finally, in the multidimensional situation, one example with

will be especially important for later applications.
Lemma 3.4: Let be the subspace

(28)

where and with all the
being scalar valued. Suppose that and

are the reproducing kernels for

(29)

respectively. Then, the reproducing kernel for is

(30)

Proof: Follows by inspection.

B. Functions Associated With the Reproducing Kernel

In this section, we will only be concerned with the scalar case
, in which case a natural generalization of the reproducing

kernel expressed as the quadratic form (22) is the as-
sociated quadratic form

(31)

where

(32)

for some function . As the next lemma shows, the quantity
(31) can also be expressed in terms of the reproducing kernel

. In the sequel, the utility of (32) and the following
quantification will arise when considering variance errors with
fixed and incorrect noise models.

Lemma 3.5: Consider the case of defined by (18) with
(all the scalar valued) and with being

the reproducing kernel for the space defined in (12). Then,
under the assumptions of Lemma 3.1 and for any with
associated matrix defined in (32) it holds that

(33)

with the implied integration in the norm being with respect to
while is fixed.

Proof: From Lemma 3.1, we have that the reproducing
kernel for the space spanned by the elements of is given
by

(34)

Hence

Furthermore as the following lemma establishes, when the
functions defining the underlying space via (12)
are of the form given in (24) for which Lemma 3.2 provides an
orthonormalized form, then in this case it is possible to give a
more explicit expression for the norm that
quantifies the quadratic form (31).

Lemma 3.6: Let be the reproducing kernel for the
space defined in (23). Then, for any function with
all poles strictly inside a disk for some

(35)
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where denotes the positive real part of which
is the unique function that is analytic outside the unit disk such
that

(36)

Furthermore

(37)

Here, is the Blaschke product defined in (26) and
is chosen such that the region does not include any
of the poles or any of the poles of .

Proof: See Appendix A.
In several important applications, it is important to realize that

by virtue of the term being zero, the quantification (35)
can be simplified, as made explicit in the following final result
of this section.

Corollary 3.1: The function in (35) vanishes under
the restriction that with being polynomials in ,
then with all the zeros of taken
(without replacement) from the set defining the
space via (23), (24), and the order of being no greater
than .

Proof: Via (36), any pole of is also a pole of ,
which by the assumptions of the lemma are contained within the
zeros of . Therefore, in this case the integrand in (37) is
analytic within the contour of integration and, hence, the integral
and, hence, is zero.

IV. PROBLEM FORMULATION

With the necessary technical tools now established, the
paper proceeds to precisely define the format of the estimation
problem considered here and to provide the links between it
and the preceding material.

In what follows, it is assumed that the relationship between
an observed input data record and output data record
is modeled according to

(38)

where the “dynamics model” and the “noise model”
are jointly parametrized by a vector and are

of the rational forms ( are all polynomials
in the backward shift operator )

(39)

while in (38) is a zero-mean white noise sequence that
satisfies E E .

The postulated relationship (38) can encompass a range of
model structures such as FIR, ARMAX, “output–error,” and
“Box–Jenkins” [2], [22], [3]. For all these cases, since
is also constrained to be monic (i.e., ),

then the mean-square optimal one-step ahead predictor
based on the model structure (38) is [2]

(40)

with associated prediction error

(41)

Using this, a quadratic estimation criterion may be defined as

(42)

and then used to construct the prediction error estimate of
as

(43)

where is compact. Forming system estimates via the
formulation (38)–(43) has become quite standard, in large part
due to the availability of sophisticated software tools imple-
menting the method [23], but also due to considerations such
as statistical efficiency, and further extensive understanding of
the theoretical properties of such an approach [24], [2], [22].

For example, as has been established in [25] and [2], under
certain mild assumptions on the nature of the input , the
estimate converges with increasing according to

E (44)

and in what follows, it will be assumed that defined by (44)
is unique. As well, it also holds that as increases, the estimate

converges in law to a Normally distributed random variable
with mean value according to [26], [22], [2]

as (45)

and, furthermore, under the added assumption of E
then as established in [2, App. 9B]

(46)

The matrix , which gives a measure of parameter space es-
timation error, is of central importance to this paper. Its formu-
lation is, in general, problem specific, but in the particular case
of the model structure (38) being rich enough to encompass any
true underlying dynamics [2]

E (47)

where for some matrix of transfer functions , and some
quasistationary (possibly vector valued) signal

(48)

Unfortunately, while this explicit formulation of exists, in
general it does not provide significant insight into how various
design variables affect the accuracy of the estimated frequency
functions and . In response to this, the
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seminal work [27], [4], [5], [2], [6] has used an approach of
investigating how (45) manifests itself in the variability
of and ; the result being approximations
such as (2).

Central to the contribution of this paper is the novel approach
of recognising that the problem of quantifying is closely
related to the problem of quantifying the reproducing kernel for
a certain space which is defined via the rows of the matrix
( is assumed to be a column vector)

(49)

according to

(50)

and where, in (49), the term is a spectral factor (under
mild assumptions, this factor will be unique) associated with the
process .

To make this more concrete, and for future use in the fol-
lowing sections, the space for certain important model struc-
tures is provided in the following lemmas.

Lemma 4.1 (Characterization of Space: Box–Jenkins Struc-
ture): Suppose that the model structure (38) is parametrized
with polynomials of the form

(51)

(52)

(53)

(54)

for some integers . Then, (48) holds with

(55)

and, therefore, with being a spectral factor of the input
spectrum of , and in the case where , the space

defined in (50), (49) may be expressed as

(56)

where

(57)

Proof: See Appendix B.1.
Lemma 4.2 (Characterization of Space: Output-Error Struc-

ture): Suppose that the model structure (38) is parametrized
with the numerator and denominator polynomials of the form
(51), (52), and

(58)

for some integers . Then, (48) holds with

(59)

and, therefore, with being a spectral factor of the input
spectrum of , the space defined in (50), (49) may be
expressed as

(60)

Proof: See Appendix B.2.
Lemma 4.3 (Characterization of Space—ARMAX Struc-

ture): Suppose that the model structure (38) is parametrized
with the numerator and denominator polynomials of the form
(51), (52), and

(61)

(62)

for some integer . Then, (48) holds with

(63)

and, therefore, with being a spectral factor of the input
spectrum of , in the case where the space
defined in (50), (49) may be expressed as

(64)

where

(65)

Proof: See Appendix B.3.
Note that the requirement in the Box–Jenkins and ARMAX

cases that is satisfied whenever data is collected under
open loop conditions. Note also that no requirement on is
stated for the case of output-error structure and, hence, the re-
sults to follow for this case will hold under arbitrary closed loop
operating conditions.

Finally, in what follows it will also be important to consider
the relationship between the true underlying system given as

(66)

and the model structure defined by (38).



1282 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 49, NO. 8, AUGUST 2004

In particular, when it is assumed that , then under
the assumptions to follow it will hold that and that

, in which case the latter
shorter notation will often be used together with

(67)

representing the power spectral density of the process .

V. MAIN RESULTS

With the necessary technical tools and problem formulation
now established, the paper now proceeds to present the main re-
sults which are new quantifications such as (4) that are “exact”
for finite-model order and permit analysis of the phenomenon
illustrated in Fig. 1. In organizing this material, it will be con-
venient to discriminate whether the true system is in the model
class or not.

A. True System Contained in Model Structure

The central result to be employed here finally makes com-
pletely explicit the link between variance error and reproducing
kernels, as hinted at in the previous sections. It applies for all
cases encompassed by the model structure (38), including those
of FIR, ARMAX, OE, and Box–Jenkins type.

Theorem 5.1 (Frequency Domain Variability— ): Sup-
pose that is calculated via (43) using the model structure (38)
and that the following assumptions are satisfied.

1) where is a zero mean i.i.d. process that
satisfies E .
2) The relationship (48) holds for some , and some

quasistationary (possibly vector valued) signal and
for which the power spectral density of sat-
isfies .
3) Neither of or contain any pole-zero

cancellations.
Then denoting as a spectral factor of the power spectral
density of

(68)

where

(69)

with being the reproducing kernel for the space
defined via (49) and (50).

Proof: See Appendix C.
The problem of deriving an expression for the es-

timate covariance in the frequency domain is therefore estab-
lished as being equivalent to the problem of quantifying the
reproducing kernel for a certain space which is that spanned
by the rows of defined in (49).

According to Lemmas 4.1–4.3 this space and, hence, the re-
producing kernel , depends on the model structure em-
ployed. Therefore the covariance of the dynamic system
estimate, will also depend on the model structure as will now be
made explicit via the following corollaries to this main theorem.

Corollary 5.1 (Variability of Box–Jenkins Model
): Suppose that all the conditions of Lemma 4.1

are satisfied and, hence, that a Box–Jenkins model structure is
employed. Suppose further that the conditions of Theorem 5.1
are satisfied and that

(70)

is a polynomial in of degree at most . Define the
zeros and according to

(71)

and use these to define the functions and according
to

(72)

Then

(73)

Furthermore, regardless of whether (70) is satisfied for some
polynomial

(74)

Proof: Since the conditions of Theorem 5.1 are satisfied,
then the asymptotic in variance is given by (69). Fur-
thermore, since the assumptions of Lemma 4.1 are also satisfied,
then the quantity in (69) is the reproducing kernel for
the space defined in (56) and (57). However, since assump-
tion (70) holds, then this space can be reformulated as

(75)

(76)

Therefore, by Lemma 3.4, the multivariable reproducing
kernel for is of the form (30). In this case, (17) may be
used to quantify the associated scalar reproducing kernels

via the formulation (26), and then setting
completes the proof.
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Corollary 5.2 (Variability of Output-Error Model ):
Suppose that all the conditions of Lemma 4.2 are satisfied and,
hence, that an output-error model structure is employed. Sup-
pose further that the conditions of Theorem 5.1 are satisfied and
that

(77)

is a polynomial in of degree at most . Define the
zeros and the function according to

(78)

Then

(79)

Proof: Since the conditions of Theorem 5.1 are satisfied,
then the asymptotic in variance is given by (69). Fur-
thermore, since the assumptions of Lemma 4.2 are also satisfied,
then the quantity in (69) is the reproducing kernel for
the space defined in (60). However, since assumption (70)
holds, then this space can be reformulated as

(80)

Therefore, by Lemma 3.1, the reproducing kernel for
is of the form (17) with the associated orthonormal basis

given by Lemma 3.2. Setting then
completes the proof.

The essential implication of these corollaries are that al-
though the equality in the variance expressions (73), (79)
depends on being infinitely large, it could be expected that
for finite the left- and right-hand sides of (73), (79) should
be approximately equal with the limiting operations removed,
so that the following quantifications are useful:

E

(81)

E

(82)

where

(83)

There are some important facets of, and conclusions to be drawn
from these quantifications.

• First, and most importantly, the expressions (81) and (82)
are “exact”for finite-model order in the sense that, unlike
most pre-existing results such as (2), they are not derived
from an asymptotic in model order argument. As such,
they are likely to be far more accurate for practical cases
of finite, and indeed low model order as has already been
illustrated in Fig. 1.

• Second, these results in Theorem 5.1 and Corollary 5.1
represent an extension of those given in [10]. There, model
structures with poles fixed at those of the true underlying
system, and fixed noise model were considered. Here, we
consider the more general case where the poles and the
noise model are unknown and, hence, estimated.

• Third, note that a key point is that the quantification (81)
resolves an outstanding paradox in the theory of system
identification. Namely, a consequence of the existing
quantification (2) is that, since it applies for any shift in-
variant structure which includes the FIR and Box–Jenkins
cases, then (as explained in [10]) it suggests that there
is no variance penalty to be paid for estimating pole
locations in the Box–Jenkins model structure (38), as
opposed to fixing those pole locations and estimating just
a numerator term via an FIR structure.

This is counterintuitive, and indeed the expression (81)
indicates that it is in fact untrue. Specifically, consider
the case of white input and white noise, i.e.,

. Then, in the case of the denominator order
equalling the numerator order , the results of [10]

applying for the case of fixed denominator modeling with
poles at (as well as Theorem 5.1) give an exact quan-
tification for finite numerator order of

E

(84)

whereas when the denominator is estimated,
and Corol-

lary 5.1 then asserts that

E

(85)

Therefore, via (84) and (85), the new quantification (81)
of this paper is an expression that, as well as being exact
for finite model orders , is exactly double that per-
taining to the case examined in [10] were poles are fixed.
Since, roughly speaking, twice as much information (i.e.,
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a numerator and a denominator) is being estimated, this
new result now corroborates intuitive belief and resolves
the aforementioned paradox.

Finally, note that if the underlying system is, in fact, of
FIR type so that all the poles are at the origin, then
(85) implies

E

Therefore, modulo a factor of 2, there is a rapprochement
in the FIR modeling case between the new quantifications
derived here, and the pre-existing one (2).

In relation to this last point where was assumed white, there
are a range of nontrivial possibilities of input spectrum for which
exact variance quantification is possible, as illustrated by the
further corollary to Theorem 5.1.

Corollary 5.3 (Box–Jenkins Model, Colored Input Spectrum,
): Suppose that all the conditions of Lemma 4.1 and

Theorem 5.1 are satisfied, and that the spectral factor of
and the limiting noise model are of the form

(86)

Then, if

(87)

where, with the being chosen as the zeros of

(88)

and is defined in (72) of Theorem 5.1.
Proof: Clearly is

a polynomial in of degree which is
less than under the given assumptions. Therefore,
the corollary is established as an application of Theorem
5.1 upon noticing that has zeros at the
origin with the remainder being the same as the zeros of

.
The preceding corollary shows that when and the

input is of type with noise of type, then provided

that more “lags” are modeled in the numerator
than the denominator , then the quantification

E

(89)

is “exact” for finite-model order. This is a direct extension of the
results of [10] from the fixed-and-correct denominator and noise
model case considered there, to the more general Box–Jenkins
modeling situation in which the denominator and noise model
are both estimated.

Furthermore, comparing (89) to the quantification presented
in [10] establishes that the effect of modeling the denominator is
to double the size of the component
(which depends on the poles of ) in the variance
of the dynamics estimate, and as mentioned in the introduction
and previous discussion, this makes intuitive sense.

An important special case of the model structure (38) is the
so-called output-error structure in which so that

. The exact in model order variance quantifica-
tions for this modeling choice are worth stating separately for
the sake of clarity.

Corollary 5.4 (Output-Error, Colored Input Spectrum
): Suppose that all the conditions of Lemma 4.2 and The-

orem 5.1 are satisfied and, hence, that an Output Error model
structure is employed. Suppose further that a spectral factor

of is of the form given in (86). Then, if
the model structure (38) is used with and

(90)

where the are the zeros of .
Proof: For the output-error case, and,

hence, under the assumptions on

(91)

is a polynomial of order that satisfies the order
condition in Theorem 5.1. Furthermore, since the assumptions
of Lemma 4.2 are also satisfied, then the quantity in
(69) is the reproducing kernel for the space defined in (60).
However, since (91) holds, then this space can be reformulated
as

(92)
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Furthermore, (17) may be used to quantify the associated
reproducing kernel via the formulation (26). Sub-
stituting this in (69) and observing that has

zeros at the origin, with the remainder being the zeros of
then completes the proof.

B. True System Not in Model Class

There is an important further situation to be considered, in
which the noise model is fixed at a possibly incorrect value and,
hence, . In this case, the results of Theorem 5.1 are no
longer valid, but exact (for finite model order) expressions for
the frequency domain variability can also be established
for this extended situation according to the following theorem.

Theorem 5.2 (Frequency Domain Variability
): Suppose that is calculated via (43) using the model

structure (38) with the modification that the noise model is
fixed at which is not necessarily equal to
any true underlying one. Suppose further that Assumption 2 of
Theorem 5.1 holds together with the following conditions.

1) The observed data obeys a model
for some stable and inversely stable monic transfer function

and some with being a zero
mean i.i.d. process that satisfies E .
2) and are jointly quasistationary with cross-spectrum

.
3) does not contain any pole-zero cancellations.

Then

(93)

where is the reproducing kernel for the space de-
fined by (50) with the specification (49) for replaced
by

(94)

Proof: See Appendix D.
This theorem then has two corollaries that quantify frequency

domain variability for the case of fixed, possibly incorrect noise
model. The first corollary provides a quantification (again, exact
for finite-model order) that applies under certain assumptions
on the relationship between the fixed noise model and
the input spectral factor .

Corollary 5.5 (Frequency Domain Variability—Fixed Noise
Model, ): Suppose that the assumptions of Theorem
5.2 hold. Suppose further that

(95)

is a polynomial in of degree at most , which is
then used to define the zeros according to (71), and the

functions and (with ) according to
(72), (26). Then

(96)

where is the positive real part of
that is analytic on

and where is the positively oriented curve
where is such that and

have all their poles inside the open disk
.

Proof: The preceding Theorem 5.5 quantifies the asymp-
totic variability via (93) which involves the reproducing kernel

for the space spanned by the rows of de-
fined by (94). Via Lemma 4.2, this space can be expressed as

(97)

However, since (95) holds, then this space can be reformulated
as

(98)

Using this definition of in combination with Lemma 3.6 then
completes the proof.

The second corollary to Theorem 5.2 provides a more ex-
plicit expression for the variability that applies under greater re-
strictions on the fixed noise model, the input spectrum and the
chosen model order.

Corollary 5.6 (Frequency Domain Variability—Fixed MA
Noise Model With AR Input): Suppose that all the assumptions
of Corollary 5.5 hold. Suppose further that a spectral factor

of the input spectrum is of the autoregressive form

(99)

and that and are both of moving average type

(100)

Finally, suppose also that .
Then

(101)
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where now

(102)

and where is the positive real part of
that is analytic on

.
Proof: Under the assumptions of the corollary, (95) yields

(103)

which is a polynomial of order which, again
under the assumptions of the corollary, is of order .
Consequently, Corollary 5.5 applies with given by (85),
which being defined by the zeros of is, in this
case, defined by the zeros of together with

zeros at the origin and, hence, is given by (102). Further-
more, under the MA assumptions on noise models, the poles
of are a subset, taken without replacement, of the
zeros of and, hence, by Corollary 3.1, the last
term in (96) involving integration around the contour is equal
to zero.

There are some important remarks to be made in relation to
these results.

• Corollary 5.6 extends the results of [10] where, for the case
of a model with fixed and correct denominator and then
with estimation of only a numerator polynomial, the work
there derived an equivalent expression to (101) with the
second term replaced by

(104)

However, using the positive real decomposition (36) (with
), the change of variable , and recog-

nising that since is assumed analytic within a disk
of radius this term (104) can be rewritten using
Cauchy’s Residue Theorem as

(105)

which is identical to the last term in our expression (101).

• In relation to this previous comment, suppose that all the
conditions of Corollary 5.6 hold, and that furthermore
the model structure is restricted to be that of (38) with

where is fixed and not
dependent on . This is the ‘generalized’ FIR model (it
is exactly FIR if ) that [10] studies,
and for which the underlying space defined by (94) is
clearly given as

(106)
Therefore, provided that the fixed is equal to the de-
nominator of the true underlying dynamics , and that
the numerator order ,
then applying Theorem 5.2 along the lines of the proof of
Corollary 5.6 delivers the quantification (101) with

(107)

as being the variance quantification for this model struc-
ture. This result is identical to [10, Th. 3.1], and thus the
reproducing kernel methods of this paper provide a com-
plementary means for addressing the problems considered
in [10].

• The last term in (101) encapsulates the variance increasing
effect of a fixed and incorrect noise model. Notice that
when then the last term in (101) is zero. Fur-
thermore, since the
last term in (101) very clearly indicates that the variance
increase due to mismatch between and is directly
proportional to the smoothness (as measured by the deriva-
tive) of .

This observation reinforces remarks in the work [10]
which, via an examination of the nature of the integrand
component in (104), argues that this term
is likely to be large if zeros of are placed near the
unit circle, and not cancelled by equivalent zeros in .

In particular, as remarked in [10] in the case of fixed
denominator structures, but as now shown here to apply
for a much wider class of structures, fixed noise model
zeros should only be included when the user is rather sure
of their actual existence and location.

• Finally, it is important to note that there are other situa-
tions, beyond those stated in Corollary 5.6 for which the
exact quantification in Corollary 5.5 holds. For example,
when performing indirect identification of closed-loop
systems, the noise model and closed-loop dynamics share
common poles and, hence, the condition (95) may be
satisfied. The consequences of this are taken up in another
work [28], but the point is that for certain applications,
it is important that Corollaries 5.5 and 5.6 are stated
separately.
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VI. CONCLUSION

This paper has established the new principle that the problem
of quantifying variance error is equivalent to that of quantifying
the reproducing kernel for a certain subspace of . Since this
subspace was shown to depend on the model structure being
employed, this exposes the important result that the variance
error is also dependent on the model structure, and this fact is
counter to what is suggested by pre-existing quantifications such
as (2) which depend on an asymptotic in model order argument.

Furthermore, for certain important special cases, it was shown
how the reproducing kernel and, hence, the variance error, could
be expressed in closed form, and for a finite model order of
interest. These results, since they apply for the very general
Box–Jenkins and output-error model structures, are an exten-
sion and generalization of previous results that have applied
only for FIR-type model structures with fixed denominators.

A point of rapprochement between the new results here and
the well known pre-existing one (2) is provided in the com-
panion paper [15] which addresses the case of over-modeling
and regularised cost criterion. There, it is established that a
choice of regularization point that forces poles at the origin
implies a finite-model order variance that approaches the quan-
tification (2) as the model order extends beyond the underlying
true one. However, as shown in [15], with different choice of
regularization point, this rapprochement is lost.

Another companion paper [28] illustrates how the new ex-
pressions derived in this work may be applied to the study of
the relative performance of various direct and indirect identifi-
cation strategies in the context of estimation from data collected
under closed-loop conditions, while a further work [29] exam-
ines implications of the results here to power spectral density
estimation.

Finally, additional work is needed to extend the results here to
cover cases of more general input spectrum, and further model
classes (such as ARMAX). The authors are currently engaged
in the pursuit of these goals.

APPENDIX A
PROOF OF LEMMA 3.6

Proof: Using the result of Lemma 3.3 and noting that
implies the following:

It is worth noting at this point that the last term in this expres-
sion does not possess a singularity at . Therefore, since

(A.1)

Now, concentrate on the second integral, which can be written
in contour form using the positive real decomposition of

as

(A.2)

(A.3)

The last equality follows since when is on the unit circle, then
by (27)

(A.4)

and, hence, the term involving which vanishes between
(A.2) and (A.3) does so since it is analytic within the unit circle.
Furthermore, since by the assumptions of the theorem the inte-
grand has no singularities in a neighborhood of the unit circle,
then the contour of integration can be changed from to

for some without changing the value of the
integral. Furthermore, by the change of variable

(A.5)

By recognizing that

(A.6)

then, substituting (A.5) into (A.3) and then (A.1) implies that

(A.7)
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Furthermore, again using (27)

(A.8)

Now using the change of variable

(A.9)

Therefore, using (A.9) and (A.8) in (A.7) leads to

(A.10)

APPENDIX B
SPACES INDUCED BY MODEL STRUCTURES

A. Proof of Lemma 4.1

Proof: First, according to (40)

(B.1)

Substituting (41) into (B.1) then establishes that (55) satisfies
(48). Furthermore, since for any in the appropriate range

(B.2)

(B.3)

(B.4)

Therefore, since under the assumption of

(B.5)

and then according to (50) and (49)

which can be alternatively expressed as (56) and (57).

B. Proof of Lemma 4.2

Proof: Since in this case, then
. Substituting this into (B.1) then es-

tablishes that (59) satisfies (48). Furthermore, the expression
(B.2) holds again in this case, and therefore, the space is
given as

(B.6)

which can be alternatively expressed as (60).

C. Proof of Lemma 4.3

Proof: The expression (B.2) hold again in this case, and
furthermore, for any

(B.7)

Therefore, since (B.5) again holds, then according to (50) and
(49)
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(B.8)

which can be alternatively expressed as (64) and (57).

APPENDIX C
PROOF OF THEOREM 5.1

Proof: From [2], we have that the parameter covariance
matrix in (45) is defined in terms of two other matrices
and as

(C.1)

which themselves are specified as

E

E (C.2)

and

E

(C.3)

The quantity in the preceding expressions is the predic-
tion error gradient given by (48). Therefore, under the assump-
tions of the theorem that and using Parseval’s The-
orem

E

(C.4)

E (C.5)

where is defined in (49). Therefore, the matrix
quantifying the parameter space variability of is given as

(C.6)

where the inverse is guaranteed to exist by the assumptions
of the theorem and Lemma E.1. Furthermore, according to a
first-order Taylor expansion, the relationship between frequency
domain and parameter space estimation errors is given as

(C.7)

Therefore, a consequence of (45) is that

as (C.8)

where

(C.9)

Furthermore, according to (49)

(C.10)

This expression and (C.6), substituted into (C.9), implies

(C.11)

Finally, by Lemma 3.2
, which is the reproducing kernel for the subspace

spanned by the rows of , which completes the proof.

APPENDIX D
PROOF OF THEOREM 5.2

Proof: Under the conditions of the Theorem
and, hence, according to (49) and with being the spectral
factor of

(D.1)

Furthermore, the parameter space covariance matrix is
again given as (C.1), but since now is assumed so that

, then using the same Taylor expansion argument
as used in the previous Appendix C (where is
expressed via (D.1)) the asymptotic in frequency domain
variability is given by

(D.2)

Now, note that under the assumptions of the lemma

(D.3)

so that under the assumption of then

E (D.4)



1290 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 49, NO. 8, AUGUST 2004

and, hence, is given by (D.4). Also, since by assumption
, then is uncorrelated with and,

therefore, by [14, Lemma A.1]

(D.5)

An application of Lemma 3.5 then implies that

(D.6)

where is the reproducing kernel for the subspace
spanned by the rows of defined in (D.1).

APPENDIX E
TECHNICAL LEMMA

Lemma E.1: Suppose that the spectral density matrix
for all , and that with being

defined in (49), the conditions of Lemma 4.1 hold with the
model structure (38) being employed having dynamics model

and noise model independently parame-
trized. Then, the matrix

(E.1)

is positive definite and, hence, invertible, if and only if there are
no pole zero cancellations in both of and .

Proof: Suppose that the matrix (E.1) is rank deficient.
Then by the definition (49) there exists a nonzero such
that

Now, since for all , then the aforemen-
tioned integrand is strictly nonnegative. Therefore, the integral
is equal to zero if, and only if

and (E.2)

for all . Now, consider the first equality concerning
. First

(E.3)

for some polynomials of the form

(E.4)

Furthermore, since the lowest powers of in
are and , respectively, then

(E.5)

is only possible if the co-efficient of the term in
is set to zero. In this case, there are degrees of
freedom remaining in the choice of the coefficients of
and to satisfy (E.5), which may be expressed as

...
...

...
. . .

...
. . .

. . .
...

. . .
...

...

...

(E.6)

The determinant of the previous matrix is known as the
Sylvester resultant, which is guaranteed nonzero provided that

and are relatively prime [30], in which case
the only solution for (E.6) and, hence, the left-hand side of
(E.2), is the zero one.

On the other hand, if there are nontrivial common factors be-
tween and , then (E.5) represents

equality constraints, but with degrees of
freedom in the choice of and . Consequently, if

, then a nonzero and/or exists that satisfies
(E.5).

Via an identical argument, the right hand side equality is
achievable for some nonzero vector if, and only if there are
pole-zero cancellations in . Furthermore, if the noise
model is parametrized independently of ,
then nonzero rows of correspond to zero rows
of and vice versa. Therefore, the matrix (E.1)
is positive definite if, and only if, there are no pole zero cancel-
lations in both of and .
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