
Journal of

© Grace Scientific Publishing Statistical Theory and Practice
Volume 3, No.3, September 2009

Anscombe’s Tests of Fit for the Negative
Binomial Distribution

D. J. Best, School of Mathematical and Physical Sciences,

University of Newcastle, NSW 2308, Australia.

Email: John.Best@newcastle.edu.au

J. C. W. Rayner, School of Mathematical and Physical Sciences,

University of Newcastle, NSW 2308, Australia.

Email: John.Rayner@newcastle.edu.au

O. Thas, Department of Applied Mathematics, Biometrics and

Process Control, Ghent University, B-9000 Gent, Belgium.

Email: olivier.thas@UGent.be

Received: February 27, 2008 Revised: December 05, 2008

Abstract

The negative binomial model is an important and flexible two parameter distribution that models

data from many application areas. Here we re-examine tests of fit for the negative binomial distribution

that were introduced by Anscombe (1950); they are based on a dispersion statistic U and a third

moment statistic T . Small sample power calculations are given for U and T . We are not aware that

such powers have been given previously. We show Anscombe’s tests are smooth tests in the sense of

Rayner and Best (1989). Comparisons are made with an empirical probability generating function test

suggested by Meintanis (2005). We suggest U not be used and that decisions on the fit of data to the

negative binomial be made using bootstrap p-values rather than comparison with standard errors as

suggested by Anscombe (1950). We show that tests based on a fourth moment component of a smooth

test statistic have good power.

AMS Subject Classification: 62F03; 62G07.

Key-words: Bootstrap p-values; Empirical probability generating function test; Fourth moment based

tests; Power study; Smooth tests.

1. Introduction

The negative binomial distribution describes many distributions of counts when the vari-

ance of the counts is greater than the mean. See, for example, Johnson, Kemp and Kotz
∗1559-8608/09-3/$5 + $1pp – see inside front cover
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(2005, Chapter 5, section 10) for many references. One important application is the devel-

opment of pest management sampling schemes for grain crops. Krebs (1998) describes such

sampling schemes assuming a negative binomial distribution applies. Of course, when the

mean and variance are about equal the Poisson model may be more appropriate, and when

the mean of the counts is greater than the variance the binomial model may apply.

The form of the probability function of the negative binomial has been known since the

early 1700s in connection with the number of coin tosses to achieve a fixed number of heads.

If X is the random variable representing the number of independent trials necessary to obtain

k occurrences of an event that has constant probability, p, of occurring at each trial, then

P(X = x) =

(
k + x−1

k−1

)
pkqx for x = 0,1,2, . . . , in which q = 1− p and 0 < p < 1.

These probabilities can be linked to a binomial expansion with a negative index and hence

the name ‘negative binomial’.

Another common genesis of the negative binomial follows from Poisson counts having a

random mean. The probability of a count of x conditional on the value of the parameter λ
being known is

P(X = x|λ ) = e−λ λ x/x! for x = 0,1,2, . . . , in which λ > 0.

If we now assume the Poisson mean is in fact a random variable Λ with probability density

function

f (λ ) = λ α−1e−λ+β /{β α Γ(α)} for 0<λ <∞, zero otherwise, in which α >0 and β >0,

it then follows that the marginal probability function of X is negative binomial, since for

x = 0,1,2, . . .,

P(X = x) =
∫ ∞

0
λ α−1e−λ/β (λ xe−λ /x!)dλ/{β α Γ(α)}

=
Γ(a+ x)

Γ(a)x!

(
β

β +1

)x (
1

β +1

)α

.

In the following we will define the negative binomial probability function πx by

πx =
Γ(k + x)

Γ(k)x!
pkqx for x = 0,1,2, . . . , with q = 1− p,0 < p < 1, and k > 0.

It is common practice to test for goodness of fit of the negative binomial for a set of n data

points by using the test statistic

X2 =
v

∑
j=0

(N j −E[N j])
2/E[N j]

in which N j and E[N j] are respectively the count and expectation under the null hypothesis

for the jth category, j = 0,1, . . . ,v,N0 + . . .+ Nv = n, and in which the number of classes,

v+1, is usually chosen so that the smallest class expectation is commonly 1, 5 or 10. This

may involve pooling counts in either or both the upper and lower tails. To counter losing in-

formation due to this pooling, Anscombe (1950) suggested using tests based on the statistics
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U and T which we define in the next section. Here we show Anscombe’s tests are just spe-

cial cases of smooth tests of fit for the negative binomial. Section 3 gives two examples

while section 4 considers new tests based on the fourth moment. Section 5 gives a small

sample size and power study for Poisson mixture, zero inflated Poisson and Neyman Type

A alternatives. Section 6 is a brief conclusion. We are not aware of previous power studies

for U and T although both statistics are still used in ecological and other applications. See,

for example, Krebs (1998) or Jarvis (1989).

2. Definitions and estimation

Subsequently we confine ourselves to the common case where both k and p = 1−q are

unknown. For the negative binomial the method of moments (MOM) estimators equate sam-

ple and population means and variances respectively, and so, for a random sample X1, . . . ,Xn,

satisfy

X = k̃q̃/ p̃ and S2 = k̃q̃/ p̃2

in which X =
v

∑
j=1

jN j/n =
n

∑
j=1

X j/n and nS2 =
v

∑
j=1

j2N j −nX
2
=

n

∑
j=1

X2
j −nX

2
,

where now for an observed data set x1, . . . ,xn, v = max(x1, . . . ,xn). This gives MOM esti-

mators

k̃ = X
2
/(S2 −X) and p̃ = k̃/(k̃ +X).

The maximum likelihood (ML) estimators k̂ and p̂ satisfy

X = k̂q̂/ p̂ and n log p̂ = −
v

∑
j=1

{
(k̂ + j−1)−1

v

∑
i= j

Ni

}
.

Note that the left side of equation (5.48) of Johnson, Kemp and Kotz (2005, p. 223) is

missing the multiplier n in the equation above giving log p̂. Iterative methods are needed to

solve these equations. Iterative methods are also needed for the zero frequency and mean

estimators suggested by Anscombe (1950).

To emphasise the link between U,T and the smooth tests, we will now define U and T in

terms of the smooth tests. Rayner and Best (1989) and Rayner, Thas and Best (2009) give

further information on smooth tests. To construct smooth test statistics we need polynomials

{gr(x)} orthogonal on {πx}. These can be constructed using a recurrence relation given by

Lancaster (1975) and reported in Rayner and Best (1989, A.2.1). For the negative binomial

case suppose g−1(x) = 0 and g0(x) = 1 for all x; then it may be shown that for r = 0,1,2, . . .

gr+1(t) = {t − r(1+q)/p}gr(t)− (rkq/p2){1+(r−1)/k}gr−1(t)

where t = (x− kq/p). Thus

g1(t) = t,g2(t) = t2 −{(q+1)/p}t − kq/p2
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and

g3(t) = t3 +(3−6/p)t2 +(2+3k/p−6/p−3k/p2 +6/p2)t +2kq(1+q)/p3.

The rth smooth test statistic is

Vr =
n

∑
j=1

gr(X j)/
√

ndr for r = 1,2, . . . ,

where the dr are normalising constants. Appendix A gives d1,d2,d3 and d4. Write Ṽr for Vr

with the unknown parameters estimated by MOM and write V ∗
r to indicate the parameters

are estimated by the zero frequency and mean approach. Similarly µ∗
r and µ̃r denote rth

population moments estimated under these same estimation methods. Then

U = V ∗
2

√
d∗

2/n and T = Ṽ3

√
d̃3/n

in which U = ∑ j

(
X j −X

)2
/n−µ∗

2 and T = ∑ j(X j −X)3/n− µ̃3. Notice that d2 and d3 are

not needed to define U and T , and that U ≡ 0 if MOM estimators are used. We also note

that Anscombe (1950) gave

nvar(U) = 2k(k+1)(q2/p4){1−q2/(−q−log p)}+(q/p)4{(p−k−1−kq)/(−q−log p)2}

and

nvar(T ) = nσ2
T = 2k(k +1)q3(10+3k−4p)/p6.

Writing ρ = q/p, Meintanis (2005) suggested testing the negative binomial assumption

using the statistic

M = n−1

[
X

2
n

∑
j=1

n

∑
k=1

I(X+
jk +5)−2X

n

∑
j=1

n

∑
k=1

X j{(1+ ρ̃)I(X+
jk +4)− ρ̃I(X+

jk +5)}

+
n

∑
j=1

n

∑
k=1

X jXk{[(1+ ρ̃2)I(X+
jk +3)ρ̃2I(X+

jk +5)2ρ̃(1+ ρ̃)I(X+
jk +4)]}

]

with X+
jk = X j +Xk and I(γ) = (1+ γ)−1,γ > −1.

3. Two examples

Black bean aphid data. Krebs (1998, p.130) gives counts of black bean aphid (Aphis fabae)

on bean stems shown in Table 3.1.

We find U takes the value −1.392 with
√

var(U) = 2.303, while T takes the value

−10.812 with
√

var(T ) = 10.430. Assuming U/
√

var(U) and T/
√

var(T ) have approx-

imate standard normal distributions neither U nor T appears to be significant. However

it is shown in section 5 that the N(0,1) approximations are poor and so we recommend

finding p-values using the parametric bootstrap approach described, for example, in Gürtler

and Henze (2000). Some detail of this approach is given in Appendix B. For this example
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Table 3.1. Counts of black bean aphids.

# aphids per stem 0 1 2 3 4 5 6 7 8 9

# stems 6 8 9 6 6 2 5 3 1 4

Table 3.2. Counts of bacterial cells from a milk smear.

# cells per square 0 1 2 3 4 5 6 7 8 9 10 19

frequency 56 104 80 62 42 27 9 9 5 3 2 1

the bootstrap p-values for U and T are 0.15 and 0.16. Notice that Krebs (1998, p.135)

incorrectly calculates both var(T ) and var(U) using ML estimators whereas we have used

the zero frequency/mean estimators for U and the MOM estimators for T . We consider this

example further at the end of section 4.

Bacterial Cells data. Jarvis (1989, p.37) gives the number of bacterial cells per microscope

square from a milk smear. The counts are shown in Table 3.2.

Jarvis (1989, p.58) tests the fit of a negative binomial using a traditional chi squared (X2)
statistic approach where the frequencies for 8 or more cells per square were pooled. He

obtained X2 = 5.38 on 6 degrees of freedom and concluded that the negative binomial is a

good model for the data. Of course, this pooling effectively ignores the one large count of 19

and if either U or T is calculated with this large count included then the negative binomial

model would no longer be considered satisfactory. The microbiologist faced with such a

large count may be advised, for example, to check the experimental protocol. Rayner and

Best (1989) and Rayner, Thas and Best (2009) show that tests based on X2 are often not as

powerful as smooth tests or tests based on smooth test components such as U and T .

We also consider this example further at the end of section 4.

It is possible, using either ML or MOM, that the estimator of k is negative. In such cases

we suggest that the negative binomial model is not suitable and that no test of fit is needed.

4. New tests based on the fourth moment

In this section we argue for testing the fit of the negative binomial distribution with

Anscombe’s T rather than U . However T alone will have poor power for alternatives with

third moments close to that of the negative binomial. See, for example, the powers in Best

and Rayner (2003), who consider testing fit for the geometric distribution when the alter-

native has similar variance to that of the geometric. Further, fourth moment based tests,

such as the well-known kurtosis test of normality, have proved useful in testing for other

distributions. For these reasons we now derive and examine some fourth moment based

tests for the negative binomial.

Let W , our first proposed fourth moment test statistic, be given by

W = m4 −E[m4], or

W = m4 − k̃q̃/p̃2{6/p̃2 −6/ p̃+1}−3k̃2q̃2/p̃4

= m4 −6m3
2/(m′

1)
2 +6m2

2/m′
1 −m2 −3m2

2,

where mr is the rth central sample moment and m′
1 is the sample mean. We see that W is of
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the same form as T = m3 − k̃q̃(1+ q̃)/ p̃3. If we put x = m′
1,y = m2 and z = m4 then

w = f (x,y,z) = z−6y3/x2 +6y2/x− y−3y2

and

var(W ) ≈
(

∂ f

∂x

)2

var(X)+

(
∂ f

∂y

)2

var(Y )+

(
∂ f

∂ z

)2

var(Z)

+2

(
∂ f

∂x

)(
∂ f

∂y

)
cov(X ,Y )+2

(
∂ f

∂x

)(
∂ f

∂ z

)
cov(X ,Z)

+2

(
∂ f

∂y

)(
∂ f

∂ z

)
cov(Y,Z)

using the so-called delta method formula given, for example, in Stuart and Ord (2005, p.350,

equation 10.12). From Stuart and Ord (2005, Chapter 10) we also know that to order n−1

var(X)=µ2/n, var(Y )=(µ4 −µ2
2 )/n, var(Z) = (µ8 −µ2

4 −8µ3µ5 +16µ2µ2
3 )/n,

cov(X ,Y )=µ3/n, cov(X ,Z)=(µ5 −4µ2µ3)/n, and cov(Y,Z)=(µ6 −µ2µ4 −4µ2
3 )/n.

It follows that, to order n−1,

nvar(W ) = 24k(k +1)q3{105+41k + k2 −123p−41kp− k2 p+39p+9kp2 −3p3}/p8.

Subsequently we use W 2/var(W ) with parameters estimated by MOM as a test of fit. In

section 5 size and power properties of this test are assessed.

Suppose we now define a statistic R in an analogous manner to U and T :

R = Ṽ4

√
d̃4/n.

This results in a statistic involving m4 as does W and m3 as does T . Using the recurrence

relation introduced previously we find

g4(t) = t4 +(6−12/p)t3 +(6k/p−6k/p2 +36/p2 −36/p+11)t2

+ (14k/p−42k/p2 +28k/p3 −24/p3 +36/p2 −24/p+6)t

+ (3k2/p4 −6k2/p3 +3k2/p2 −18k/p4 +36k/p3 −24k/p2 +6k/p).

As above, notice that d4 is not needed to calculate R. We find

R = m4 +(6−12/p̃)m3 − k̃q̃(3k̃q̃−5p̃2 −18q̃)/p̃4.

Also, on using the delta method again, we find

nvar(R) = nσ2
R = 24k(k +1)q4(3p2 −6p+ k2 +5k +9)/p8, and

ncov(T,R) = nσT R = −24k(k +1)q5/p7.

Now a smooth test statistic, S̃2 say, can be given as (R,T )L−1(R,T )T where L is the asymp-

totic covariance matrix of (R,T )T . The statistic S̃2 should be approximately χ2
2 distributed.

Note that S̃2 here is a quadratic form with diagonal elements not one, whereas S̃2 as dis-

cussed in Rayner and Best (1989), is an unweighted sum of squares.
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To again have S̃2 as a sum of squares we can use the Cholesky decomposition of the in-

verse of L. The Cholesky components of S̃2 are T 2/var(T ) and, if ∆ =
√

σ2
T σ2

R −σ2
T R,C =

{σT R/∆−σRT T/(σT ∆)}2. An important property of C is that it is asymptotically inde-

pendent of T 2/var(T ), whereas R and T are not asymptotically independent. If T is not

significant and C is significant this suggests that the fourth moment differences between the

data and the fitted negative binomial distribution are important.

We have not considered new fourth moment tests based on ML estimators. Our experience

when testing goodness of fit for other distributions where ML and MOM estimators differ

is that there is little difference in the power of the ML and MOM based tests but the MOM

based tests have far better interpretability. See, for example, Thas and Rayner (2005) and

Meintanis (2005).

In summary, the smooth test based on T 2/var(T ) assesses third moment differences be-

tween the data and the fitted negative binomial distribution after the two negative binomial

parameters have been fitted by MOM estimation, so the first two moments of the data and

the negative binomial distribution agree. The test based on C assesses fourth moment effects

orthogonal to those assessed by T 2/var(T ). The test based on R2/var(R) is not (asymptoti-

cally) independent of the test based on C.

For the aphid data C = 0.704 with p-value 0.25 while for the milk bacteria data C = 5.140

with p-value 0.006. The significance of both T and C suggests third and fourth moment

departures of the data from the negative binomial. With the lone count of 19 deleted from

the milk bacteria data T = −0.045,
√

var(T ) = 1.376 with p-value 0.97 while C = 0.925

with p-value 0.20. The conclusions this analysis entails are consistent with the previous

findings.

5. Size and power study

Table 5.1 examines whether or not the 95% critical values of U2/var(U) and T 2/var(T )
approach the χ2

1 value of 3.841. It appears that both do approach 3.841 slowly, and that

T 2/var(T ) does so more slowly than U2/var(U). We have noted above that U ≡ 0 if MOM

estimators are used. This suggests U measures the difference between MOM and other

estimates as well as deviation from a negative binomial model and it is not clear which of

these possibilities is being examined.

Table 5.2 simulates, for various sample sizes, the 95% critical value of W 2/var(W ) and

R2/var(R) with k = k̃ and p = p̃. As with T 2/var(T ), we see the convergence is extremely

slow. Thus we suggest p-values for all the tests considered here should be found by using

the parametric bootstrap. Our recommendation in regard to T 2/var(T ) is in conflict with the

original suggestion of Anscombe (1950), and more recently in texts such as Jarvis (1989)

and Krebs (1998). Although not shown here, a size study for various (k, p),n = 100 and

nominal size 0.05 verified that actual test sizes calculated using the parametric bootstrap

were close to this nominal size.

Tables 5.3 to 5.5 compare parametric bootstrap powers of the tests based on T,U and

M, along with the other tests introduced in section 4. The parametric bootstrap method

used 1,000 Monte Carlo samples in both the inner and outer loops. For the zero inflated

alternatives of Table 5.5 we took a proportion ω of the zeros and proportion (1−ω) of the

Poisson (λ ) values.
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Table 5.1. Critical values of U2/var(U) and T 2/var(T ) for α = 0.05,n as shown and
10,000 Monte Carlo simulations when p = 2/3 and k = 2.

n U2/var(U) T 2/var(T )

20 2.42 1.07

50 2.83 1.37

100 3.41 1.71

500 3.63 2.71

1,000 3.70 3.05

10,000 3.74 3.69

100,000 3.76 3.75

∞ 3.84 3.84

Table 5.2. Critical values of W 2/var(W ),R2/var(R) and C for α = 0.05,n as shown
and 10,000 Monte Carlo simulations when p = 2/3 and k = 2.

n W 2/var(W ) R2/var(R) C

20 0.30 2.06 2.02

50 0.47 2.10 2.06

100 0.68 2.10 2.08

500 1.65 2.18 2.11

1,000 2.09 2.26 2.16

10,000 3.23 3.22 3.20

100,000 3.64 3.76 3.76

∞ 3.84 3.84 3.84

Some powers for the usual Pearson X2 test using MOM estimation and number of classes

chosen so that all expectations are greater than five are given in Tables 5.3 to 5.5. These

powers, and those for the tests based on U2/var(U) and W 2/var(W ), are not competitive.

The tests based on S̃2 and R2/var(R) assesses third and fourth moment departures from

the negative binomial, while the test based on C assesses fourth moment effects beyond

those assessed by R2/var(R). These three tests had superior power in Tables 5.3 to 5.5. The

tests based on M and T 2/var(T ) were less satisfactory.

6. Conclusion

Anscombe’s statistics U and T have been considered. His test based on T has reasonable

power for testing goodness of fit of the negative binomial but the test based on U does

not. Moreover we suggest that parametric bootstrap p-values should be used rather than

comparison of test statistics with their standard errors. We have noted that Anscombe’s tests

of fit for the negative binomial are special cases of smooth tests of fit and we have given

extensions of Anscombe’s tests involving fourth order smooth tests. In our small simulation

study, apart from the test based on W 2/var(W ), these extensions provide powerful tests of

fit for the negative binomial.
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Table 5.3. Powers of various tests of fit for the negative binomial for
0.5 Poisson (λ1)+0.5 Poisson (λ2) alternatives when n = 100 and size α = 0.05.

λ1 λ2 M U2/var(U) T 2/var(T ) W 2/var(W ) R2/var(R) C S̃2 X2

0.3 3.7 0.89 0.69 0.85 0.55 0.92 0.92 0.90 0.64

0.5 3.5 0.51 0.32 0.57 0.29 0.66 0.65 0.62 0.30

0.7 3.3 0.18 0.11 0.28 0.10 0.31 0.31 0.29 0.12

Table 5.4. Powers of various tests of fit for the negative binomial for
Neyman Type A(λ1,λ2) alternatives when n = 100 and size α = 0.05.

λ1 λ2 M U2/var(U) T 2/var(T ) W 2/var(W ) R2/var(R) C S̃2 X2

2.0 1.0 0.13 0.05 0.15 0.05 0.20 0.19 0.19 0.11

1.5 1.5 0.31 0.21 0.23 0.08 0.35 0.34 0.31 0.24

1.0 2.0 0.51 0.35 0.36 0.12 0.48 0.48 0.43 0.45

Table 5.5. Powers of various tests of fit for the negative binomial for
zero inflated Poisson (λ ,ω) alternatives when n = 100 and size α = 0.05.

λ ω M U2/var(U) T 2/var(T ) W 2/var(W ) R2/var(R) C S̃2 X2

2 0.20 0.33 0.11 0.36 0.12 0.47 0.47 0.46 0.34

2 0.35 0.60 0.48 0.57 0.24 0.72 0.71 0.68 0.58

2 0.50 0.62 0.49 0.62 0.29 0.78 0.77 0.73 0.67

Appendix A. Normalization constants

This appendix gives dr = E[g2
r (T )] for r = 1,2,3 and 4. As before, let µ be the population

mean and µr the rth central population moment. We have g1(t) = t so that d1 = E[T 2] =
E[(X −µ)2] = µ2 and writing g2(t) = t2 +a2t +b2 where a2 and b2 can be read from g2(t)
in section 2

d2 = E[(X −µ)4 +2a2(X −µ)3 +2a2b2(X −µ)+2b2(X −µ)2 +a2
2(X −µ)2 +b2

2]

= µ4 +2a2µ3 +(2b2 +a2
2)µ2 +b2

2.

Similarly

d3 = µ6 +2a3µ5 +(a2
3 +2b3)µ4 +2(a3b3 + c3)µ3 +(b2

3 +2a3c3)µ2 + c2
3 and

d4 = µ8 +2a4µ7 +(a2
4 +2b4)µ6 +2(a4b4 + c4)µ5 +(b2

4 +2a4c4 +2s4)µ4

+2(a4s4 +b4c4)µ3 +(c2
4 +2b4s4)µ2 + s2

4

where g4(t) = t4 + a4t3 + b4t2 + c4t + s4 and a4,b4,c4 and s4 are given by the recurrence

relation in section 2 above. To help calculate the di we list

µ = µ1 = kq/p, µ2 = kq/p2, µ3 = kq(1+q)/p3,

µ4 = (kq/p2)(6/p2 −6/p+1)+3k2q2/p4,
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µ5 = (kq/p2)(24/p3 −36/p2 +14/p−1)+10k2q2(1+q)/p5,

µ6 = (kq/p2)(120/p4 −240/p3 +150/p2 −30/p+1)

+15(k2q2/p4)(6/p2 −6/p+1)+10k2q2(1+q)2/p6 +15k3q3/p6,

µ7 = kq(720+1960kp2 −630kp3 +56kp4 −105k2 p3 +420k2 p2

−2310kp−1800p+924k +62p4 − p5 +1560p2 −540p3

+210k2 −525k2 p)/p7, and

µ8 = kq{5040+1806p4 +24080kp2 −126p5 −11620kp3 −21924kp

+ p6 +7630k2 p2 +2275kp4 −15120p+7308k +16800p2

+2380k2 −8400p3 −7140k2 p−3360k2 p3 −119kp5

+490k2 p4 −315k3 p+315k3 p2 −105k3 p3 +105k3}/p8.

Appendix B. P-values via the parametric bootstrap

Gürtler and Henze (2000, p. 223) suggest p-values can be obtained using an analogue

of the parametric bootstrap. If Wn denotes a test statistic calculate wn := Wn(x1,x2, . . . ,xn)
where x1,x2, . . . ,xn denotes, as usual, the data. Find estimates k̂ and p̂ (not necessarily the

ML estimates) from the data and conditional on those estimates, generate B = 10,000 say

pseudo-random samples of size n, each having the negative binomial (k̂, p̂) distribution. For

j = 1, . . . ,B compute the value W ∗
n, j on each random sample. Then the parametric boot-

strap p-value is the proportion of the W ∗
n, j values that are at least the observed wn, namely

B

∑
j=1

I(W ∗
n, j ≥ wn)/B. To obtain p-values for two-tailed tests proceed as above and find the

p-value, P say. If P≤ 0.5 the two-tailed p-value is 2P. If P > 0.5 then the two-tailed p-value

is 2(1−P).

The above requires random negative binomial (k, p) values, which can be generated as

suggested in the Introduction. If a random gamma (k,q/p) value is taken as a Poisson mean

then a random Poisson with this mean has a negative binomial (k, p) distribution. Many

statistical packages have routines for gamma and Poisson random values. For example, the

statistical package R has routines ‘rpois’ and ‘rgamma’, and these can be used to generate

random negative binomial values.
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