
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 37, NO. 3, MAY 2007 297

Machine Learning With AIBO Robots in the
Four-Legged League of RoboCup
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Abstract—Robot learning is a growing area of research at the
intersection of robotics and machine learning. The main contribu-
tions of this paper include a review of how machine learning has
been used on Sony AIBO robots and at RoboCup, with a focus
on the four-legged league during the years 1998–2004. The review
shows that the application-oriented use of machine learning in the
four-legged league was still conservative and restricted to a few
well-known and easy-to-use methods such as standard decision
trees, evolutionary hill climbing, and support vector machines.
Method-oriented spin-off studies emerged more frequently and
increasingly addressed new and advanced machine learning tech-
niques. Further, the paper presents some details about the growing
impact of machine learning in the software system developed by
the authors’ robot soccer team—the NUbots.

Index Terms—Learning systems, legged locomotion, machine
learning, RoboCup, robot soccer, robot vision systems, Sony AIBO.

I. INTRODUCTION

THE ROBOT competition and symposium, RoboCup, is a
premier annual event in adaptive multiagent systems. In

1997, it was held for the first time: “RoboCup is an attempt
to promote AI and robotics research by providing a common
task for evaluation of various theories, algorithms, and agent
architectures” [61]. Research toward RoboCup’s ultimate aim
“to build a team of robot soccer players, which can beat a hu-
man World Cup champion team” [58]—“is expected to generate
multiple spin-off technologies [60].” Another long-term vision
of many robotics researchers is to have a team of sophisticated,
autonomous, adaptive robots that can explore natural environ-
ments and efficiently perform tasks such as search and rescue.
This is reflected by the fact that RoboCup has two leagues that
address search and rescue, one in simulation and one for real-
world robots. However, the majority of the leagues of RoboCup
(simulation, f-2000 middle size, f-180 small size, humanoid,
four-legged) are soccer leagues (see www.robocup.org).

In the soccer simulation league, matches can be run rapidly
to generate a large amount of data necessary for many machine
learning algorithms. Therefore, machine learning is frequently
used and the simulation league has significantly contributed to
the development of reinforcement learning in multiagent do-
mains [4], [98], [109].
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Among the real robot soccer leagues, the middle size and the
small size [15] leagues are more easily accessible to machine
learning approaches than is the four-legged league with its fully
autonomous Sony AIBO1 robots and their limited memory and
processing power. For example, in the middle size league, each
robot can carry a laptop computer, and therefore, has enough
power to process sophisticated machine learning techniques.
This has led to the development of interesting new methods and
spin-off projects [121].

The four-legged league differs in several respects from the
other (soccer) leagues of RoboCup. In contrast to the simula-
tion league and the small size league, it is set in a real-world
laboratory environment with fully autonomous soccer agents.
All teams in the four-legged league must use the same hard-
ware, which is the AIBO robot of Sony Corporation [1], [33],
[34], [36]. The four-legged league emphasizes the comparison
and development of intelligent software systems rather than
the hardware development, although not all teams may use
the latest AIBO model. Due to the limited processing power,
robot control and team play had to overcome significant chal-
lenges during the first years of the four-legged league. How-
ever, at the latest competitions, the top teams demonstrated ex-
citing game play. The AIBO’s smart dog-like design exhibits
characteristic artificial creature features that trigger human ob-
servers to emotionally connect with the robots. Recent pub-
lic performances of “dog teams” attracted cheering crowds of
excited robot soccer fans. Currently, the robot soccer teams
at RoboCup are probably among the most advanced imple-
mentations of machine intelligence on robots known to the
public.

Machine learning research has developed models, algorithms,
and techniques that have shown excellent results and significant
improvements in many application areas such as data mining,
pattern recognition, signal processing, and robot control (see,
for example, the book by Mitchell [76] or various relevant ap-
plication papers at the Neural Information Processing Systems
(NIPS) conferences [84]).

Machine learning methods not only have the potential to be
useful but also, in our opinion, are necessary to solve some
of the more challenging robotics tasks and, in particular, for
the above-cited long-term goals and visions of RoboCup. It
is, therefore, relevant to investigate whether RoboCup teams
have successfully applied machine learning methods and gained
some advantage from incorporating them into their systems. It
would also be interesting to know whether machine leaning
research has gained some advancements through RoboCup as

1AIBO is a trademark of Sony Corporation.
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predicted by the inventors of RoboCup [61], or whether the
competitive character of RoboCup eventually inhibits machine
learning research in projects associated with the competition
[100], [107].

Publications associated with RoboCup have appeared in the
RoboCup Symposium proceedings, since 1997, in individual
team reports, and in many different journals and conference pro-
ceedings related to robotics or machine learning. In the present
paper, we extend our pilot study from 2004 [18] and approach
the above questions by focusing on the four-legged league since
it started in 1998.

There is a similar body of literature covering machine learn-
ing in the other leagues of RoboCup. Previous surveys on mul-
tiagent systems included links to the history of RoboCup and
emphasized the involvement of machine learning [4], [110],
[111].

The present paper is intended for the researchers in interdis-
ciplinary fields that combine machine learning and robotics and
areas associated with RoboCup [3] or the Federation Interna-
tional Robosoccer Association (FIRA) [2]. Due to the growing
impact of these initiatives, the paper could also be helpful for
researchers with a more general interest in current developments
in artificial intelligence or cybernetics.

The structure of this paper is as follows. First, in Section II,
some general issues of the relationship between robotics and
machine learning are discussed. In Section III, the soccer envi-
ronment and robot platforms are described. Then, in Section IV,
main machine learning tasks that occur in the four-legged
league are explained. The NUbots’ approaches are addressed in
Section V. The remainder of the paper presents a survey de-
scribing how machine learning has been used in the four-legged
league (Section VI) and on AIBO robots in general (Sec-
tion VII). Finally, in Section VIII, possible answers to some
of the above questions are discussed.

II. ROBOT LEARNING

To describe how a robot can acquire skills to perform tasks
such as motor coordination, collision detection, and color clas-
sification, three general approaches can be distinguished. In the
black box approach, a robot automatically and autonomously
acquires the desired skills without any prior assumptions on
the environment using machine learning methods that are part
of its software system. The robot researcher does not need to
provide the robot with a partial solution. To indicate the con-
verse of black box, we use the term “white box.” That is, for
a white box approach, a complete mathematical model of the
robot and its environment can be developed and no machine
learning is required. The robot is explicitly programmed to per-
form the desired task. All parameters are “set by hand,” that is,
the robotics researcher determines them individually using em-
pirical tests and intuition. In the intermediate situation, the gray
box approach, a partial model of the environment and the desired
action sequence is available. A machine learning algorithm is
employed to fine-tune the parameters of the sequence and to
refine or optimize the robot’s behavior [36]. The gray and black
box approaches describe what is meant by robot learning—the

application of machine learning methods to robotics [22], [29],
[32]. In practice, at RoboCup, all machine learning approaches
belong to the gray box category.

There are a number of practical reasons that make the applica-
tion of machine learning methods to robotics challenging [22],
[71], [73]:

1) High noise levels: Hardware limitations (for example, low
camera resolution) often lead to high levels of noise in the
data.

2) Stochastic actions: Interaction with the real world requires
that robots cope with situations for which they are not
prepared. This can lead to unexpected actions.

3) Time and material constraints: Learning must be achieved
in a relatively small number of training epochs that depend
on how fast the real-world robot can act.

4) Real-world real-time requirements: Many real-world situ-
ations require that the robot acts/reacts quickly, i.e., it must
be able to process data in real-time. Suitable learning or
adaptive methods must take this into account.

5) Task complexity: Depending on the complexity of the task
(e.g., a quadruped walk is extremely complex), simula-
tions or exact (white box) control models are, in many
cases, not possible or inefficient, that is, online training
must be conducted with the real robot.

The complexity of many real-world robotics tasks has natu-
rally led to the use of complicated white box models. Through
extensive empirical testing, robotics researchers try to un-
derstand the system and gain some insight into the parame-
ters of the algorithms used. Parameters may, then, be chosen
by hand.

Only recently, the robotics community has become more open
to the suggestions from machine learning researchers to em-
ploy learning algorithms (gray box approach) so that robots
could be trained on selected aspects of a task and certain
parameter sets could be automatically tuned [28], [62], [98].
This allows for larger parameter spaces and better fine-tuning.
The potential improvements and advantages that robotics re-
search can gain by incorporating suitable machine technology
are huge.

If robotics and machine learning wish to marry, then there are
not only the above-mentioned challenges on the robotics side,
which machine learning has to cope with, but there are also
typical characteristics of the machine learning methodology that
are not easy to deal with for robotics:

1) Bias and parameter tuning: Many sophisticated machine
learning methods (for example, reinforcement learning)
are themselves not understood well enough to be al-
ways optimally applicable in the first trial on a real-world
robotics platform. They often require setting and tuning of
critical learning parameters (“magic numbers”) and biases
without which the algorithms typically would not perform
optimally or would not converge in acceptable time. Often
only, experts with sufficient experience in using a particu-
lar type of model or algorithm have a chance to gain some
immediate advantage from its application.

2) Long training times and poor convergence rates: A real-
world robotics research project typically cannot afford to
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investigate an algorithm’s behavior in long training and
evaluation runs. To be of interest for robotics, the al-
gorithms must come with practically useful estimates of
convergence rates and training times. Research into reduc-
ing the training times has become a hot topic for real-world
robotics, and recently, methods such as model-based re-
inforcement learning, learning by imitation, or behavioral
cloning have been proposed and tested on tasks such as
learning helicopter and fixed-wing aircraft control [17],
[53], [83].

3) Transparency and interpretability of learning parameters:
Diligent robotics researchers must be very careful about
the transparency and control of the tools and methods em-
ployed. Only then can they keep a tight control over the
behavior of a complex robotics system that is necessary to
avoid the hardware damage. For efficient robot learning,
the researchers would have to build domain knowledge
into a gray box approach, and to facilitate this, the learn-
ing method, its parameters, and biases should have an
interpretable meaning.

For a successful and an efficient use of machine learning
technology in robotics, future research is, therefore, advised to
address explicitly the practicability of machine learning algo-
rithms for robotics.

III. ENVIRONMENT OF THE FOUR-LEGGED LEAGUE

AND THE AIBO ROBOT PLATFORM

In the four-legged league, teams must use a hardware platform
that is fixed by the rules. This is in contrast to the other robot
leagues of RoboCup in which the teams construct their own
robots. Essentially, this means that the four-legged league be-
comes a software-based competition, and therefore, this league
also provides a stable and comparable platform for implement-
ing machine learning on physical robots. The currently allowed
hardware consists of several different models of Sony AIBO
robots: the ERS-210, ERS-210a, and the newer ERS-7 models.
All allowed models have 64-bit MIPS processors with clock
speeds of 192 MHz (ERS-210), 384 MHz (ERS-210a), and
576 MHz (ERS-7). Note that the ERS-210 and ERS-210a are
identical apart from their processors, so we will only describe the
physical specifications of the latter. The robots are programmed
in C++ using Sony’s OPEN-R software development kit (see
the OPEN-R website, openr.aibo.com) [35], [59]. The ERS-
210a measures (width × height × length) 154 mm × 266 mm
× 274 mm, while the ERS-7 is slightly larger at 180 mm ×
278 mm × 310 mm. The ERS-210a weighs approximately
1.4 kg, while the ERS-7 is 1.7 kg. The robots are autonomous,
but can communicate through wireless LAN (IEEE 802.11b)
with the other robots on their team. Wireless communication
was introduced into the competition in 2002.

Approximate specifications of different AIBO models used
at RoboCup during the years 2000–2004 are summarized in
Table I. Please note that the details collected from different
team reports, Sony’s webpages, and our own experience, did
not always coincide. Information regarding the robot hardware
used in the first few years of the league is not readily avail-

TABLE I
SPECIFICATIONS OF DIFFERENT MODELS OF THE SONY AIBO ROBOT

AS USED IN THE FOUR-LEGGED LEAGUE OF ROBOCUP

able, and the teams seem to interpret hardware parameters in
different ways. We have also not included specifications about
any prototype robots (for example, DRX-720 or MUTANT) that
were used before 2000 [33], [34], [36]. The soccer rules in the
four-legged league of RoboCup are only loosely based on real
soccer, but the objective of the game is identical. Before 2002, a
team consisted of three robots playing on a field of size 180 cm
× 280 cm surrounded by white walls. In 2002, the field size was
increased to 270 cm × 420 cm and each team could, now, have
four robots including the goalkeeper. The green playing surface
itself is carpeted to protect the robots and allow a better grip.
The ball is orange in color. Colored goals and corner beacons
facilitate localization via the robot’s color camera. More de-
tailed rules and specifications of the environment are available
at the RoboCup Legged League website www.tzi.de/4legged/.
For RoboCup 2005, the field was further enlarged to 4 m × 6 m,
the field boundaries were removed, and several other smaller
rule changes were introduced.

IV. PRINCIPAL MACHINE LEARNING TASKS

IN THE FOUR-LEGGED LEAGUE

Machine learning methods can potentially be applied to many
tasks in the four-legged league, including vision, localization,
locomotion, and behavior. So far, however, machine learning
has been used primarily for color classification in vision and to
improve locomotion.

A. Color Classification

Robot vision systems are often required to identify landmarks
relevant to the operation of the robot. In some cases, color
alone can be used to identify landmarks. For other objects and
landmarks, edge detection and shape recognition techniques can
be used.

Currently, color is the primary criterion used to identify land-
marks and objects on the four-legged league soccer field. Color
classification is, therefore, a critically important part of the vi-
sion system. Generally speaking, color classification on AIBO
robots [16], [92] is performed by using a precomputed table
(a color table) that maps raw color information from the YUV
color space into a small set of colors of interest to the robot.
Colors of interest to the robot are often termed classified colors.
Typically, clumps of classified color in the image are formed into
“blobs.” These steps are illustrated in Fig. 2. Blobs are, then,
processed by various ad hoc techniques to determine which
objects appear in the image.
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Fig. 1. (Left) Dark gray robot is the Sony ERS-210 model first introduced in 2001. (Middle) White robot is the newer Sony ERS-7 robot that has been in use
since 2004. Both robots are shown wearing a blue uniform. (Right) Robots preparing for a kick-off in a game at RoboCup 2004.

Fig. 2. Color classification process on a Sony AIBO robot. (Left) Original, unprocessed image obtained from the robot’s camera. (Middle) Same image after
color classification has been performed. (Right) Colored blobs that have been formed based on the color classified image. (For printing, colors have been converted
into grayscale.)

Since the robot is extremely reliant on color for object detec-
tion, a new color table has to be generated after any change in the
lighting conditions. This is usually a manual task that requires
a human to capture hundreds of images and assign a color label
on a pixel-by-pixel basis. It takes several hours to construct a
new color table using this manual method, yet the table will
still contain holes—unmarked points that are surrounded (or
almost surrounded) by marked points of a particular color—
and classification errors. Several machine learning algorithms
are currently in use by RoboCup teams in order to reduce the
classification errors and speed up the process. We address these
further in Section VI.

B. Walk Optimization

The majority of teams in the legged league use an omni-
directional parameterized walk inspired by the work of Hengst
et al. [46]. This original walk was commonly known as “PWalk”
and some of its characteristics had been adopted by other teams
when they developed their own walk engine. In all these walks,
the end of each paw is commanded to follow a trajectory with
inverse kinematics used to calculate the joint angles required to
achieve the positions.

The optimization of the vector of walk parameters has be-
come one of the primary applications areas of machine learning
in the four-legged league. Table II gives descriptions of 17 sim-
ilar parameters, as they were used in PWalk. Eight of these
parameters affect the stance of the robot (front and back are

TABLE II
DESCRIPTION OF PWALK PARAMETERS (LOOSELY BASED ON [46])

shown together), five parameters control the type, size, direc-
tion, and speed of each step, and four parameters control the
movement and position of the head.

C. Learning of Team Behavior

In contrast to some of the other leagues, for example, the
simulation league, there is a lack of machine learning applied to
team behavior in the four-legged league. This is surprising, since
many researchers in this league come from a machine learning
background. One possible reason for this is that against common
sense (soccer expert) intuition, team behavior was rarely of
critical importance in match play: low-level skills were still the
main differentiating factor between most teams in the league.
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Fig. 3. Maximum margin classifier. Separating hyperplane where the empha-
sized inputs are support vectors.

It may be feasible for four-legged league teams to employ al-
gorithms from other leagues (particularly simulation [109] and
small size [14], [15]), although it is somewhat questionable as
to whether these methods will transfer to the four-legged envi-
ronment. In particular, the complexity of the construction of the
four-legged league robots makes a sufficiently accurate simu-
lation of the robots and their interaction with the environment
difficult.

D. Localization and World Modeling

In the four-legged league, the primary sensor information
comes from color vision that is very noisy. For localization, the
robots can use estimates of the location of the colored corner
beacons, the colored goals, and eventually, the white field lines.
Kalman filters and particle filters are, so far, the dominating
techniques for localization and are used by most teams of the
four-legged league; see, for example, [66] and [74].

V. HOW THE NUBOTS HAVE EMPLOYED MACHINE LEARNING

Machine learning methods were incorporated into the
NUbots’ software system only if there were strong indications
that it would have advantages over a direct (white box) approach.
We describe two examples.

A. One-Class Classification With Support
Vector Machines (SVMs)

SVMs emerged from the field of statistical learning the-
ory [13], [23], [89], [115], [116]. They are, now, commonly
employed for tasks such as classification of handwriting and
faces [101]. In their simplest version, SVMs can be described
as maximum margin classifiers for binary classification (Fig. 3).
This version works only on linearly separable data by selecting
the hyperplane that separates the two classes by the largest mar-
gin [25]. A natural extension of the SVM algorithm to unlabeled
data was proposed by Schölkopf et al. [102], who further noted
that the new method should have abundant practical applications
and could be regarded as an easy-to-use black box method as
soon as questions like the selection of kernel parameters have
been solved. In the one-class SVM approach, the data is im-

plicitly mapped into a high-dimensional feature space where a
separating hyperplane is calculated via a kernel and quadratic
programming. The hyperplane is optimized to separate the train-
ing data with maximal distance from the origin while the number
of outliers is bounded by some parameter 0< ν ≤ 1.

Quinlan et al. [96], [97] applied SVMs to the task of color
classification with AIBO robots. An individual one-class SVM
was created for each color label. Scalable, tight-fitting cluster
boundaries were obtained for each color cloud in YUV space
(see Fig. 4). The results of this approach were superior to a
previous approach using ellipse fitting [97]. The technique was
also applied to the task of collision detection [95], where the
one-class SVM is employed as a novelty detection mechanism.
In this implementation, each training point is a vector containing
13 elements. These include five walk parameters, along with a
sensor reading from the abductor and rotator joints on each of
the four legs. The training set is generated by having the robot
behave normally (takes approximately 10 min) on the field but
with the stipulation that all collisions are avoided. Upon training,
the SVMs decision function will return +1 for all values that
relate to a “normal” step, and −1 for all steps that contain a
fault. A trained classifier analyzes the online stream of joint
data measurements in samples of ten consecutive data points.
If more than two points in one sample are classified as −1, a
collision is declared to be detected.

B. Evolutionary Hill Climbing for Speed Optimization

Each of the robot’s legs follow a trajectory (or locus) in three-
dimensional coordinate space. The model includes PID values
and allows independent loci for the front and back legs. Each
locus is parameterized so that a large variety of suitable shapes
are possible. Since quadruped locomotion has complex dynam-
ics, the interpretation and tuning of 20–100 walk parameters
was impossible by hand and a modified version of a (1 + 1)-
evolution strategy was applied to optimize the walk parameters
for speed [96].

For our walk engine, the parameters to be tuned are defined
by a vector θ consisting of 11 walk parameters (turn and strafe
are excluded from the learning) and the critical points defining
an arbitrary locus shape (40 parameters). Each parameter is
randomly set to an initial value; for our task, we make sure this
initial vector is feasible (i.e., it is the one that will cause the
robot to move in the required direction).

After a few hours of training, the learning approach resulted in
an about 20% increase in walking speed over the speed achieved
in 2002. At that particular time, walks with speeds up to almost
30 cm/s were the fastest walks ever obtained for the AIBO
ERS-210(A) within the four-legged league [64]. Upon receiving
the ERS-7, we ran the learning algorithm on the new robot
from a set of parameters that were developed on the ERS-210
robot. We managed to learn walks with an approximate speed
of 41 cm/s (the initial speed was below 25 cm/s). An example
learning curve of this speed optimization process can be seen
in Fig. 5.



302 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 37, NO. 3, MAY 2007

Fig. 4. Color classification. (a) Points manually classified at white. (b) Ellipsoid fitted to these white points. (c) Loose fit with one-class SVM technique,
ν = 0.025 and γ = 10. (d) Tight fit with one-class SVM technique, ν = 0.025 and γ = 250.

Fig. 5. Example of speed improvement obtained during approximately 1 h of
training.

VI. MACHINE LEARNING IN THE FOUR-LEGGED LEAGUE

The following review includes publications that contain in-
formation about the use of machine learning techniques in the
Sony four-legged league of RoboCup 1998–2004. We primarily
focus on the RoboCup Symposium proceedings [8], [12], [54],
[82], [90], [105], [117]. However, in cases when we are aware of

the use of machine learning methods in the four-legged league
and the results have been published, for example, in the team re-
ports, the team description papers (TDPs), or other publications,
then we included them as well. As a symptom of the interdisci-
plinary character of RoboCup, many of the relevant publications
are not specialized on machine learning. They often only briefly
indicate when a machine learning method was applied without
giving details of the algorithms, performance results, or com-
parisons with alternative approaches. Consequently, large parts
of the following survey had to remain restricted to showing
chronologically how the application of machine learning de-
veloped within the four legged league from 1998 to 2004 and
only for selected publications some details and discussion of the
approach could be included.

A. Paris 1998

In 1998, the four-legged league was an exhibition league by
Sony and was composed of three teams from Carnegie Mellon
University (CMU), Osaka, and Paris. At this early stage, ex-
pectations into robot learning were high and machine learning
approaches were implemented for critical areas such as color
classification, localization, and behavior acquisition [118].

The team from CMU used supervised learning on 20 train-
ing images based on a conjugate gradient descent technique
to determine thresholds for classification in YUV color space
[119]. For localization, they employed a Bayesian probabilistic
approach [118].
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The team from Osaka University utilized a behavior training
mechanism: a human controlled the robot playing soccer, while
all of the sensory data and the corresponding action performed
by the human trainer were recorded. The C4.5 algorithm [94]
was, then, used to extract the rule sets for performing various
actions such as shooting.

However, it soon became clear that these tasks were extremely
challenging and more research into robot learning would be
required before satisfactory results could be expected.

B. Stockholm 1999

The year 1999 saw the four-legged league become an official
RoboCup league. The number of teams increased to nine.

The University of Tokyo’s team attempted to use a self-
organizing map to “kick the ball where the robot wants to.”
They also investigated how to train two neural networks with
backpropagation to calculate ideal head pan and tilts depending
on the position of the ball [63].

Instead of performing the complex calculations of a global
self-localization method, the team from Osaka University [80]
developed a technique for using decision trees and prediction
trees to observe the beacons, the goals, and the ball efficiently,
and then, without calculating explicit positions, to decide di-
rectly which actions to take. They restricted the action space to
a small number of elementary actions. The decision and predic-
tion trees of their probabilistic action selection used the ID3 [93]
information criterion [77].

The University of New South Wales’ (UNSW) entry used a
2-D polygon growing algorithm to learn how to classify colors
in a 2-D color space [27], [68].

C. Melbourne 2000

In Melbourne, the four-legged league expanded to include 12
teams. The team from UNSW showed superior performance in
all its matches. Its success was partially due to a new and fast
localization method that employed a stochastic gradient descent
learning algorithm for incremental position updates [88]. Given
the robot’s position and heading in the current world model and
a newly perceived position, the algorithm updated the current
position and heading variables by moving them in small steps
in direction toward a newly perceived position. For the method
to calculate the perceived position and to perform its updates, it
was sufficient if only one landmark at a time was visible. This is
important because the AIBOs have a very narrow field of view.
The update rate can be as high as the frame rate. With each frame,
the learning algorithm’s step size was varied depending on the
landmark-associated decaying confidence parameters [27]. For
color classification, the UNSW team extended their polygon
growing algorithm from previous year to account for all three
dimensions of the color space [45].

The team from McGill University employed a nearest neigh-
bor interpolation method in YUV color space to assist in color
table generation for color classification [72]. This approach al-
lowed them to limit the necessary sample size for “color train-
ing” to 30 pictures that reduced the time required for vision
calibration.

D. Seattle 2001

In 2001, the number of four-legged league teams increased
from 12 to 16. The Essex Rovers team from the U.K. developed
an evolutionary approach to allow their fuzzy-logic-based be-
havior controller to learn [39]. They also investigated [49]–[51]
the use of neural networks for color detection tables. Their
aim was to adapt to changing lighting conditions through
variable threshold prediction in YUV space. Their approach
was based on a method presented previously by the UNSW
team.

In 2001, the UNSW team changed its method for color clas-
sification [19], and switched from the previously used polygon
growing algorithm to the C4.5 decision tree algorithm [94].

The team of Osaka University mentions [79] that they made
use of a genetic algorithm for tuning certain motion parame-
ters. Team Cerberus (a joint team from Bulgaria and Turkey)
implemented both decision trees and multilayer perceptrons for
color classification as well as a genetically trained fuzzy neural
network for behavior control [6].

E. Fukuoka 2002

At Fukuoka, Japan, the number of teams in the four-legged
league increased to 19. The UNSW team discontinued their
use of C4.5 generated decision trees for color classification and
switched to a nearest neighbor learning technique [120].

The University of Washington team [24] mentioned they had
adopted decision trees for color cluster generation in YUV
space. Their main focus, however, was on state estimation and
world modeling, where they used particle filters to estimate the
robots’ positions and Kalman filters to trace the ball [42]. They
were able to track the position of the robot using only 30 sam-
ples with an accuracy of the position estimates of about 10 cm
on average. After the robot was picked up and placed back onto
the field at a new location, it took them less than 2 s to relocalize
the robot [24].

The Essex team continued its earlier experiments on behavior
learning with fuzzy logic controllers, which allowed the robot
to use the information from the camera to approach the ball
and shoot at the goal. Gu and Hu [40] employed a combination
of reinforcement learning [10] and evolutionary computation to
learn refinements of the initially handcrafted parameters of their
fuzzy logic controller architecture.

Dahm and Ziegler [26] from the German Team envisioned
how evolutionary computation could improve localization. Ge-
netic programming allowed them to increase the robots’ walking
speed to over 20 cm/s. They proposed that robustness and re-
liability of the walk could be improved using a multiobjective
fitness function. The resulting more reliable odometry together
with the improved vision and inter robot communication would
lead to an increased accuracy within their Bayesian probabilistic
approach to localization.

F. Padova 2003

At RoboCup 2003, in Italy, the league expanded to 24 teams.
For the task of color classification, a variety of machine learning
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techniques were used by different teams. In 2003, Team Cer-
berus [5] and the UNSW team [20] both decided to employ stan-
dard decision tree approaches using the C4.5 algorithm [94].
The University of Texas at Austin team made use of a basic
nearest neighbor scheme to learn how to classify colors [106].
The team from Griffith University implemented covering algo-
rithms to learn decision lists to perform color classification [7].
The NUbots demonstrated, for the first time, that SVMs [13],
[89], [101], [115] can be implemented on AIBOs to achieve
refined clustering results in color space [96], [97]. Although
the teams employed a variety of different methods, and ac-
cordingly, obtained classification results of different quality,
it became clear that sophisticated object recognition with the
AIBO camera not only depended on good color classification but
other components of the vision system needed to be improved
as well.

Researchers associated with the team from Essex, U.K., pro-
posed an adaptive color segmentation algorithm with the aim to
be able to adjust to different lighting conditions. In their pilot
experiments [70], they employed self-organizing maps for color
segmentation, and similar to that in previous years, an artifi-
cial neural net with supervised learning for adaptive threshold
selection.

The team from the University of Chile (UChile) applied ma-
chine learning to a slightly different but an important aspect of
the object recognition task. They developed a system for au-
tomated selection and tuning of rules for the detection of the
ball, the landmarks, and the goals [125]. The system employed
a genetic algorithm, a specifically adapted fitness function, and
supervised learning on a set of about 180 preclassified images
to evolve successful recognition rules.

The rUNSWift team began using a multidimensional opti-
mization method to improve their straight-line walking speed
[20], [57], [100]. Their walk engine implemented, similar to
that in the previous year [46], a trot gait where diagonally
opposite legs were synchronized and the two pairs of syn-
chronized legs were 180◦ out-of-phase. Each of the robot’s
feet followed a trapezoidal trajectory that was defined by its
four corner points each of which could be displaced in three
dimensions. Two independent trajectories were used, one for
the front legs and one for the back legs. With these con-
straints, the problem could be represented as minimization over a
24-dimensional search space. Starting from a well-selected set
of search directions [57], the rUNSWift team employed Powell’s
multidimensional directional set optimization method [91] that
searches along each of these 24 directions separately. UNSW’s
researchers demonstrated, on the soccer fields in Padova, how
to evaluate the different-walk-parameter settings by measuring
the time required by the physical AIBO robot to run across
the field between two opposite beacons at the sidelines. Al-
though the speed achieved by UNSW’s initial experiments was
limited to 27 cm/s, it was demonstrated that the problems of
hardware exhaustion, suboptimal results, and low efficiency,
as reported in the early studies of Hornby et al. [47], [48]
(cf., Section VII), could be overcome by narrowing down the
search space, using a good walk engine and well-selected initial
walk parameters.

G. Lisbon 2004

Impressed by the practicality of UNSW’s walk learning ex-
periments in 2003, the teams from the University of Texas
at Austin [64], [65], [108], the University of Newcastle in
Australia [96], Carnegie Mellon University [21], Kyushu Uni-
versity [52], and the German Team [99] developed their own
walk optimization techniques. Some of the teams pushed the
ERS-210s to walk with speeds of about 30 cm/s and the
new ERS-7s with speeds of about 40 cm/s. The preferred al-
gorithm was simple reinforcement learning based on evolu-
tionary algorithms. Most teams adopted a method for fitness
evaluation as previously used by Hornby et al. [47], [48] or
UNSW [20], [57], [100], which measured the time required
by the robot to walk across a fixed distance between two col-
ored landmarks. The German team [99] employed a differ-
ent fitness evaluation that incorporated the robot paws’ touch
sensors to determine the time for which the robot’s paws had
ground contact while making a step as well as readings from
the robot’s acceleration sensors to minimize vibrations of the
robot while walking. As documented by Kohl and Stone [64],
most teams achieved comparable results and improved clearly
over the maximum speed achieved by UNSW in the previous
year [20], [57], [100].

Fidelman and Stone [31] built on the experience from walk
learning and approached the task to let the ERS-7 learn grasp
the ball. The robot had to learn to approach the ball and to con-
trol it under its chin to have it ready for a kick. Signals from
the infrared range sensor on the robot’s chest were used to pro-
vide the learning algorithms with a binary reward signal (ball
capture = 1; failure = 0). Fidelman and Stone employed algo-
rithms that had been previously used for walk learning and found
that hill climbing, the amoeba algorithm, and policy gradient re-
inforcement learning led to comparable results. They reported
that it took the robot about 3 h, or roughly, 672 trials to increase
an initial ball acquisition success rate from 36% to 64%. This
study was a fully autonomous robot learning experiment where
all training was done on the physical robot [31].

In contrast to some of the previously discussed studies that
aimed at fully autonomous learning on the robot, the UChile
team developed a new AIBO simulator [124] that they used for
learning the ball kicking behavior [123] and walking [126]. In
their “Back to Reality” paradigm, they combined and co-evolved
their learning systems in the simulator and on the physical robot.
By minimizing the differences between fitness values obtained
in the real and the virtual environment, the simulator was ad-
justed to match the real environment as much as possible. In
pilot experiments [126], improvements in walking speed could
be achieved by using a combination of genetic search for the
simulator parameters and policy gradient reinforcement learn-
ing for associated learning on the physical robot. The fastest
learned walk had a speed close to 25 cm/s, which is clearly less
than the fastest walks achieved by some of the other teams in
2004. Zagal and Ruiz-del-Solar [124] claimed that the reason
for this suboptimal result may have been the restrictive design
of their walk engine.

While ball, goal, and beacon recognition are essential skills
for a successful soccer play, the task of opponent and team
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player recognition was neglected by many teams during the early
years of the league. Members of the German team [122] imple-
mented, for test purposes, a robot recognition method based
on C4.5 decision tree learning [94]. Their approach consisted
of image segmentation, attribute calculation, classification, and
analysis. One complete processing cycle took only 27 ms and
could be run on the AIBO. The most time-consuming step was
attribute calculation that involved a slow iterative end-point al-
gorithm [30]. The classification using decision trees was the
fastest component [122].

VII. MACHINE LEARNING ON AIBOS IN GENERAL

Several universities and other research groups conducted
studies involving machine learning on AIBOs that may not have
been used in the competition code of the four-legged league but
have value from a research point of view.

Among the first machine learning applications on the AIBO
robots were studies by researchers from Sony Corporation who
employed an evolutionary algorithm with crossover and mu-
tation to develop gaits for a prototype of AIBO [47] and for
the first consumer versions of AIBO [48]. Their walk engine
had about 20 parameters that were evolved to obtain nonfalling
gaits, which followed either a crawl, trot, or pace pattern. The
experiments started from a hand-developed crawl gait of about
6 cm/s and reached 17 cm/s for a pace and 10.8 cm/s for a trot.
The evolutionary algorithm had a population size of 30 and ran
for 11 generations, where each generation took about 1 h to be
processed on the physical robot [47]. Later, experiments [48]
extended the search space to find gaits that were effective on
different types of surfaces. Hornby et al. [47] reported that sev-
eral parts of the robot had to be replaced repeatedly throughout
the long walk learning experiments. This was possible because
the researchers at Sony had sufficient access to new robot parts.
However, the high hardware demands acted as a deterrent for re-
searchers outside Sony and it would take about three years until
the evolution of walk parameters for walking speed optimiza-
tion was successfully attempted by teams within the four-legged
league (cf., Sections V-B, VI-F, and VI-G).

In 2002, Hardt and von Stryk [44] employed iterative nu-
merical optimization methods to minimize various performance
and stability objectives for gait generation using a model of the
AIBO robot based on kinematic and kinetic data provided by
Sony. The model consisted of a nine-link tree-structure multi-
body system with central torso, a head at a fixed position, and
four two-link legs. Hardt and von Stryk [44] mentioned that
some of their simulations initially aimed at speeds of 67 cm/s
and possibly an implementation on the real robot at RoboCup
2002. However, as later developments on this topic would show,
robust walking with speeds of that magnitude were not realistic
on the physical AIBO robot.

In the same year, researchers at Essex [38] conducted a study
on evolutionary gait generation on a physical AIBO robot. A
genetic algorithm was employed to optimize 13 parameters of
their locomotion module in 50 generations with a population size
of 20. An overhead camera determined the extent of the robot’s
movement over five steps. Gyro sensor readings to determine

walk stability were included with the movement measure into
a fuzzy-logic-based fitness evaluation. The very low number of
steps that were used for movement measurements protected the
hardware, but it was not a precise speed measure. This, their
large parameter space, and possible constraints of their walk
engine may explain why they only achieved a maximum speed
of 11.7 cm/s [38], which is slow compared to other approaches
at the same time (cf., Sections V-B, VI-F, and VI-G).

In the initial years of the four-legged league, another impor-
tant task was to implement a vision system that achieved good
results under constant and defined lighting conditions. After
several teams had implemented vision systems with satisfactory
performance, it became apparent that most of them required long
calibration times because they heavily relied on color recogni-
tion and were extremely sensitive to small changes in lighting
conditions. The task of color constancy or illumination invari-
ance, that is, to be able to compensate for changes in lighting
conditions was recently approached by several groups associ-
ated with the four-legged league.

Schulz and Fox [103] proposed a two-level Gaussian model
where a switching Kalman filter estimated lighting conditions at
the upper level. Different filters were initialized using Gaussian
priors. The latter were learned independently on collections
of training images where images with similar lighting condi-
tions were clustered using k-means clustering. Further, a Rao–
Blackwellized particle filter was employed to take the robot’s
location in account by maintaining a joint posterior over robot
positions and lighting conditions.

Sridharan and Stone [104] approached the color constancy
task by proposing a nearest neighbor algorithm where a set of
hand-labeled images is used to train color cubes to map arrays of
1283 pixel values to one of the ten relevant colors. With the KL-
divergence as a measure for comparing image distributions, they
proposed a method that allows the robot to recognize and adapt
to three discrete illumination conditions: bright, intermediate,
and dark.

Among the labs that installed an additional overhead camera
for research purposes above the four-legged league soccer field
was the group associated with the UChile four-legged team.
The UChile group employed a delta-rule-based online learning
algorithm for behavior learning with an AIBO robot [85]. The
learned task was to move three randomly placed plastic cylinders
to new positions on the soccer field until they formed the shape
of a triangle.

In addition to the studies mentioned so far, there were several
other projects which demonstrated that machine learning on AI-
BOs was employed for a large variety of tasks outside the four-
legged league competition. For example, Mitsunaga and Asada
[78] employed decision trees for sensor space segmentation.
Dynamic programming [113] was adopted for motion planning
by Fukase et al. [37]. Learning of simple sensorimotor tasks us-
ing a convolutional neural network that automatically combines
color, luminance, motion, and auditory information was pre-
sented by Lee and Seung [69]. Gu et al. [41] from Essex aimed
at using a genetic algorithm and transfer from a simulation envi-
ronment to learn ball-chasing and position-reaching behaviors.
An unsupervised technique for the autonomous simultaneous
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TABLE III
OVERVIEW OF PUBLICATIONS THAT REPORT ON THE USE OF DECISION TREES (DT), NEURAL NETWORKS AND SVMS (NN/SVM), EVOLUTIONARY

COMPUTATION AND REINFORCEMENT LEARNING (EC/RL), OR OTHER MACHINE LEARNING METHODS ON AIBO ROBOTS

calibration of action and sensor models was implemented on
the ERS-7 by Stronger and Stone [112]. Vail and Veloso [114]
used C4.5 for surface prediction and employed accelerometer
data for velocity prediction using the k-nearest neighbor algo-
rithm [75]. Kwok and Fox [67] employed least square policy
iteration for learning sensing strategies that led to an improved
goal scoring behavior in the four-legged league domain. Some
possibilities of using nonlinear dimensionality reduction meth-
ods in the legged league domain were explored by Murch [81].

AIBOs became a popular platform for research in new aspects
of robotics such as human–robot, animal–robot, or robot–robot
interaction. Several of these projects have involved machine
learning. Examples are robotic clicker training [56], experiments
on neural learning for pointing gestures between two robots
[43], or studies in curiosity-driven developmental robotics [55],
[86], [87]. Researchers at Sony implemented AIBO’s behavior
control architecture using probabilistic state machines whose
probabilities are modified using reinforcement learning through
interaction with the user [34].

VIII. DISCUSSION

The survey of Section VI revealed that the use of machine
learning in the four-legged league was limited but growing.
Table III presents a combined chronological overview of
projects using machine learning on AIBO robots in general
and at the four-legged league competition. The references to
general projects (from Section VII) are emphasized in boldface.
Although a precise match of the year when the study was con-
ducted and the year when the results were published was not
always possible, a clear upwards trend of the use of machine
learning on AIBOs is indicated in Table III. A dramatic increase
in the use of machine learning can be observed in 2003. By then,
evolutionary [9], reinforcement learning algorithms [11], [113],
or other simple search algorithms [91] were used for parame-
ter optimization, and it led to significant increases in walking
speeds of the AIBO. Related approaches and spin-off studies by
several competition teams and research groups then followed.
These advancements in walking speeds through machine learn-
ing were primarily achieved by the more successful and expe-
rienced teams of the four-legged league. Mutual inspiration of
ideas and comparison of results between these research groups

is documented in the associated publications, for example, [57],
[64], [65], [96], and [99].

It is agreed by many researchers in the field that, given the
challenges presented in Section II, the successful application of,
for example, evolutionary or reinforcement learning methods on
AIBOs, to obtain results superior to hand-coding is a triumph.
However, when compared with the very large amount of soft-
ware and the vast array of algorithms produced by each team,
machine learning still plays only a minor role. So far, only a few
machine learning techniques appear to be commonly used by the
four-legged league’s robot programmers. The most prominent
among them are the C4.5 decision tree algorithm [94], neural
networks, SVMs, various simple clustering methods, and some
basic evolutionary and reinforcement learning algorithms.

In the above-mentioned studies on walk learning, for example,
it becomes apparent that most of the approaches employed very
simple algorithms that are good for fast evaluation, as this is
important for experiments where large numbers of iterations
can be performed. However, the task of walk learning with
AIBOs only allows small numbers of iterations but there is a
plenty of time between the updates so that longer calculations
with much more sophisticated algorithms could be performed.
More sophisticated algorithms for this task, however, are not as
well known or as “practical” as the basic algorithms. The design
and application of more advanced algorithms that address this
issue might be a direction for future research.

This indicates that for the roboticists of the four-legged
league, the practicality of the machine learning method is an
essential condition. “Practicality” means it has already been
shown that the method works efficiently and a good implemen-
tation exists that is convenient to use and well documented. A
machine learning approach was typically considered only if it
promised to significantly improve a white box approach, or in
situations where the latter was not feasible.

The growing use of machine learning in the four-legged
league demonstrates that RoboCup is progressing according
to its mission to foster research through a robot soccer
competition [60]. This is corroborated by the observation
that there is an increasing number of projects using machine
learning on AIBO robots that appear to be spin-off projects
associated with the competitions at RoboCup (see Section VII).
In contrast to the application-oriented machine learning projects
of the soccer competition, the spin-off projects tended to take
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method-oriented approaches and to investigate newer and more
advanced machine learning methods or tasks.

IX. CONCLUSION

RoboCup is an exciting initiative that accelerates research
into intelligent robotics, multiagent systems, and robot learn-
ing. The four-legged league is important because it is the only
real robot league at RoboCup where all the teams employ the
same prescribed hardware, and therefore, can focus on software
development and algorithm design.

For an evaluation of the use of machine learning in the four-
legged league and on AIBO robots, it is appropriate to distin-
guish between application-oriented projects of the competition
teams and method-oriented studies of general research projects
using AIBOs.

A chronological review showed that the number of publica-
tions per year on robot learning with AIBO robots increased
from about 2 to 19 between 1998 and 2004. The use of machine
learning in the four-legged league was initially limited, but later,
it increased rapidly and led to impressive results.

Recently, Sony announced that it will cease the production of
AIBO robots. Since AIBO robots have been such an excellent
research platform, it is hoped that a suitable replacement will
be found soon so that this fruitful initiative of software-focused
research on robot learning, as it was developing within the Sony
four-legged league, can successfully be continued. Sony is to be
commended for the significant contributions AIBO robots have
made in the development of machine intelligence research.
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