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Abstract

The field of statistics has long been noted for techniques to detect patterns
and regularities in numerical data. In this article we explore connections between
statistics and the emerging field of “experimental mathematics.” These includes
both applications of experimental mathematics in statistics, as well as statistical
methods applied to computational mathematics.

1 Introduction

All truths are easy to understand once they are discovered; the point is

to discover them. — attributed to Galileo Galilei

Knowing things is very 20th century. You just need to be able to find

things. — Danny Hillis

In a provocative recent article entitled “The End of Theory,” Chris Anderson,
the Editor-in-Chief of Wired, heralds a new mode of scientific inquiry where ex-
ploding repositories of data, analyzed using advanced mathematical and statistical
techniques in the same manner as Google has analyzed the Internet, are sufficient to
render the traditional scientific method (hypothesize, model, test) obsolete: “The
new availability of huge amounts of data, along with the statistical tools to crunch
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these numbers, offers a whole new way of understanding the world. Correlation su-
persedes causation, and science can advance even without coherent models, unified
theories, or really any mechanistic explanation at all. There’s no reason to cling to
our old ways. It’s time to ask: What can science learn from Google?” [2].

Kevin Kelly, in response to Anderson’s article, makes a more modest statement:
“My guess is that this emerging method will be one additional tool in the evolution
of the scientific method. It will not replace any current methods (sorry, no end
of science!) but will complement established theory-driven science. ... The model
may be beyond the perception and understanding of the creators of the system, and
since it works it is not worth trying to uncover it. But it may still be there. It just
operates at a level we don’t have access to.” [28].

The present authors do not see that traditional model-based science is in any
danger of obsolescence, but we do agree that the explosion of data and novel compu-
tational techniques offer routes to scientific truth that are of a qualitatively different
nature than in previous eras—whether or not a model lurks behind the curtain. At
the least, it behooves us to explore these methods and see how they can complement
traditional approaches.

In this article, we offer some examples where aggressively utilizing of modern
computational tools have yielded results in an arena that is not often thought of as
amenable to data-driven analysis, namely mathematical research. We will demon-
strate that this new methodology has numerous connections with computational
statistics in both directions—the experimental math methodology can be produc-
tively applied to certain problems in statistics, and statistical methods can be ap-
plied in experimental math.

2 A Brief Overview of Experimental Mathe-

matics

“Experimental mathematics” is a name that has been loosely given to a new mode
of doing mathematical research where the computer is used as a “laboratory,” and
the “data” are the results of mathematical computation. Using this methodology,
we can “see” results long before we can rigorously prove them, and in fact, the
experimental results may point the direction of formal proofs. Some techniques
utilized in this methodology include high-precision numerical computation, integer
relation detection, symbolic computation, statistical analysis and visualization tools.
These methods are described by ourselves and others elsewhere, e.g., [19, 20], but
we will briefly mention three particularly important numerical methods here:

2.1 High-Precision Arithmetic

High-precision arithmetic is arguably the most heavily used single technique in ex-
perimental mathematics—digit expansions are in many cases the principal “raw
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data” of analysis. The main driver behind this requirement is the fact that integer
detection methods (see next subsection), which are used to discover new mathemat-
ical identities, require very high precision numerical inputs to obtain numerically
meaningful results. Many problems require several hundred digits of precision; one
application required 50,000-digit precision. From a programming point of view,
computer implementations of high-precision arithmetic typically represent a high-
precision datum as a string of computer words, where the first few words give the
sign, exponent and array size, and the remaining words contain successive sections
of the binary mantissa. A brief survey of techniques used to perform arithmetic
operations on these data structures is given in [19, pg 218–229]. Much relies on
implementation of a good complex fast Fourier transform to perform multiplica-
tion efficiently. Software is widely available for performing such computation, for
example the “QD” package, which performs double-double and quad-double preci-
sion arithmetic, and the “ARPREC” package, which performs arbitrary precision
arithmetic. These two packages permit researchers to convert existing C/C++ and
Fortran-90 programs, with only a few minor changes, to use high-precision arith-
metic. They are available from

http://crd.lbl.gov/~dhbailey/mpdist .

2.2 Integer Relation Detection

By “integer relation detection,” we mean the following: Given n real numbers
(xk, 1 ≤ k ≤ n) (typically presented as a list of real numbers given to high preci-
sion), determine if there are integers (ak, 1 ≤ k ≤ n) such that the inner product
a1x1 +a2x2 + · · ·+anxn = 0 (or zero to within some specified precision). Such com-
putations are typically used to see if a given computed value is given by a simple
mathematical formula involving known constants. This is done by computing the
given constant and all terms of the conjectured formula to high precision, and then
using an integer relation algorithm to search for a relation. If a relation is found,
then by solving the relation for the given constant, one obtains a formula. These
computations do not constitute a rigorous proof that the formula holds, but with
strong evidence of this sort it is often easier to find a proof. We will present several
examples of this methodology below.

At the present time, the most widely used integer relation algorithm is the
“PSLQ” algorithm of mathematician-sculptor Helaman Ferguson. A detailed state-
ment of the PSLQ algorithm, together with some recently discovered “multi-level”
and “multi-pair” variants of PSLQ, which run significantly faster and are better
suited for parallel processing, are described in [19, pg. 230–234] and [12]. In normal
operation of PSLQ on an input vector (xk), the entries of the reduced vector grad-
ually decrease in size until at the point of detection, the smallest entry abruptly
drops to approximately the “epsilon” of the high-precision arithmetic being used.
This behavior is shown in Figure 1, where the size drops by 180 orders of magni-
tude (to roughly 10−250, using 250-digit arithmetic) when the underlying relation is
discovered. The size of this abrupt drop can be taken as a “confidence ratio” in the
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Figure 1: Plot of log10 min |xi| as a function of PSLQ iteration number

detection, in much the same way as one interprets confidence ratios in conventional
statistical inference. A confidence ratio of 1020 or more almost always indicates
a genuine underlying mathematical relationship rather than a spurious artifact of
numerical round-off error.

It can be shown that if one wishes to find coefficients (ak) of an integer relation
for an input vector (xk), where the maximum absolute value of xk is roughly 10d,
then all the input values (xk) must be specified to at least nd-digit precision, and key
parts of the PSLQ algorithm itself must be performed to at least nd-digit precision
(and usually a bit more), or else the true relation will be lost in a sea of spurious
numerical artifacts. Informally speaking, this fact is based on a “conservation of
information” argument that will be familiar to applied statisticians—one cannot
extract more information from results than exists in the input.

The PSLQ algorithm can also provide “exclusion bounds,” which sometimes are
more valuable than detection results. For instance, it is not known whether or not
Catalan’s constant G :=

∑

n≥0(−1)k/(2k + 1)2 is the root of an algebraic equation
with integer coefficients. PSLQ cannot answer this question definitively, but a
10,000-digit computation using PSLQ by the authors demonstrated that if G does
satisfy some algebraic equation of degree 40 or less with integer coefficients, then the

Euclidean norm
√

a2
1 + a2

2 + · · · + a2
n of these coefficients must exceed 5.58 × 10244.

2.3 Numerical Integration

One other computational technique that we will briefly mention here, because it has
found numerous recent applications (including several that are relevant to compu-
tational statistics) is high-precision quadrature (i.e., numerical integration). While
a number of quadrature techniques, including such venerable methods as Gaussian
quadrature, have been applied by us and others in experimental math studies, we
have found that the little-known tanh-sinh scheme of Mori and Takahashi possesses
several very attractive features, including: (a) it produces high-precision numerical
values even for many integrand functions with singularities and/or infinite deriva-
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tives at endpoints, (b) the cost of computing the requisite abscissas and weights
scales only linearly with the number of evaluation points, whereas in Gaussian
quadrature and most other schemes the cost increases at least as n2; and (c) for
many integrand functions of interest, doubling the number of evaluation points
yields roughly double the number of correct digits in the result.

The tanh-sinh quadrature scheme transforms the integral of a given function
f(x) on the interval [−1, 1] to an integral on (−∞,∞) using the change of variable
x = g(t), where g(t) = tanh(π/2 · sinh t). Note that g(x) has the property that
g(x) → 1 as x → ∞ and g(x) → −1 as x → −∞, and all derivatives rapidly
approach zero for large positive and negative arguments. Thus one can write, for
h > 0,

∫ 1

−1
f(x) dx =

∫ ∞

−∞

f(g(t))g′(t) dt = h
N
∑

j=−N

wjf(xj) + E(h), (1)

where xj = g(hj) and wj = g′(hj), and where N is chosen large enough that
|wjf(xj)| < ǫ for |j| > N . Here ǫ = 10−p, where p is the numeric precision level in
digits. Because g′(t) and higher derivatives tend to zero very rapidly for large t, the
resulting integrand f(g(t))g′(t) typically is a smooth bell-shaped function, even if
f(t) itself is not well-behaved at the endpoints. For such bell-shaped integrands on
an infinite interval, the Euler-Maclaurin formula implies that the error E(h) in (1)
decreases faster than any power of h. Additional details are given in [15] and [20,
pg. 312–313].

Integrals in more than one dimension are more challenging. Even low precision
computation of anything more than a handful of digits say by quasi Monte Carlo

methods (qMC) is problematic. Both Gaussian quadrature and tanh-sinh quadra-
ture can be extended to multiple dimensions in a straightforward manner, although
the computational cost is greatly increased. For example, if 1,000 function evalua-
tions are required to produce a result good to say 500 digits for a certain class of
functions, then approximately 1,000,000 may be required in two dimensions, and
1,000,000,000 in three dimensions. Fortunately, modern highly parallel computing
technology can produce results in reasonable elapsed time, provided that issues such
as load balancing are handled properly. Some details of highly parallel implemen-
tations of high-precision numerical integration are given in [8].

In one recent application of these methods, the authors addressed Problem 11275

in the February 2007 issue of the Maa Monthly [17], which problem asks to
evaluate the iterated integral

Q :=

∫ ∞

0

∫ ∞

y

(x− y)2 log((x+ y)/(x− y))

xy sinh(x+ y)
dx dy.

By using a two-dimensional version of the tanh-sinh quadrature algorithm, we were
able to calculate

Q = 1.1532659890804730178602752931059938854511244009224435425100 . . .
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Once we had obtained this numerical value, we used it as input to the Inverse Sym-
bolic Calculator (ISC) tool, which is available at
http://ddrive.cs.dal.ca/~isc. This tool attempts to recognize numerical con-
stants by a combination of methods, including a table look-up procedure and an
integer relation detection facility. At the time, it was not able to recognize this
constant, but it was able to recognize

4Q/π2 = 0.46740110027233965470862274996903778382842485181020 . . .

= π2/4 − 2,

so that Q = π4/16 − π2/2. Once we “knew” the answer, it was not too difficult to
find a rigorous proof [7]. Subsequently, improvements were made to the ISC tool,
and now it is able to recognize the original constant.

3 Expectation Integrals

The best way to really explain what is meant by “experimental mathematics” is to
present a few examples of this methodology in action. To that end, we offer the
following examples, which are chosen, from among many examples we have seen,
because of connections to statistics, probability theory or statistical mechanics of
physics.

3.1 Box Expectation Integrals

Recently the present authors, together with Richard Crandall, used an experimental
approach to study certain integrals that arise naturally as expectations of distance
functions over random points in n-dimensional geometry. In particular, given pa-
rameter s and n-dimensional vector q = (q1, q2, · · · an), a box expectation integral is
defined here as the expectation of the norm |r − q|s for points r = (r1, r2, · · · rn)
chosen in equidistributed random fashion over the unit n-cube:

Xn(s, q) := 〈|r − q|s〉r∈[0,1]n

=

∫ 1

0
· · ·
∫ 1

0

(

(r1 − q1)
2 + . . .+ (rn − qn)2

)s/2
dr1 · · · drn. (2)

Two important variants are defined as:

Bn(s) :=

∫ 1

0
· · ·
∫ 1

0

(

r21 + . . .+ r2n

)s/2
dr1 · · · drn, (3)

∆n(s) :=

∫ 1

0
· · ·
∫ 1

0

(

(r1 − q1)
2 + . . . + (rn − qn)2

)s/2
dr1 · · · drn dq1 · · · dqn.

In other words, Bn(1) is the expected distance of a random point from the origin

(i.e., the vertex) of the n-cube, while ∆n(1) is the expected distance between two

random points of the n-cube.
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These integrals can be analyzed in much the same way as the Monthly integral
of the previous section, namely by computing numerical values to high precision,
and then using a tool such as the ISC to recognize the numerical values. The
principal challenge here is the cost of computing multi-dimensional integrals to
high precision, which cost increases very rapidly with dimension as noted earlier.
However, as it turns out, in this case we were able to reduce the B and ∆ integrals
to one-dimensional integrals, dramatically reducing the computational cost:

Bn(s) =
s

Γ(1 − s/2)

∫ ∞

0

du

us+1
(1 − b(u)n) ,

∆n(s) =
s

Γ(1 − s/2)

∫ ∞

0

du

us+1
(1 − e(u)n) ,

where

b(u) =
∞
∑

k=0

(−1)ku2k

k!(2k + 1)
= e−u2

∞
∑

k=0

2ku2k

(2k + 1)!!
,

e(u) =
∞
∑

k=0

(−1)ku2k

(k + 1)!(2k + 1)
= e−u2

∞
∑

k=0

u2k

(

2k+1

(2k + 1)!!
− 1

(k + 1)!

)

.

Here the !! notation means n(n− 2)(n− 4) · · · 2 if n is even and n(n− 2)(n− 4) · · · 1
if n is odd.

Based on numerical values that we obtained in this fashion, combined with
mathematical analysis and some symbolic computation, we ultimately were able to
find reasonable analytic evaluations in many cases. For example,

B2(−1) = log
(

3 + 2
√

2
)

, B3(−1) = −π
4
− 1

2
log 2 + log(5 + 3

√
3),

B1(1) =
1

2
, B2(1) =

√
2

3
+

1

3
log

(√
2 + 1

)

,

B3(1) =

√
3

4
+

1

2
log

(

2 +
√

3
)

− π

24
,

B4(1) =
2

5
+

7π

20

√
2 − π

20
log

(

1 +
√

2
)

+ log (3) − 7

5

√
2 arctan

(√
2
)

+
1

10
K0,

where the one unresolved term, namely

K0 = 2

∫ 1

0

arctanh

(

1√
3+y2

)

1 + y2
dy,

can be evaluated reasonably rapidly via the two-dimensional sum

K0 =
∑

m,k≥0

2k+1

2m+ 1

Im+k

3m+k+1
=

2

3

∞
∑

p=0

Ip

(

2

3

)p p
∑

n=0

1

2n (2n + 1)
.
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Here I0 := 1/2 and Im = (2mIm−1 + (3/4)m/2)/(2m + 1).
In a similar way, we were able to find the following evaluations of the ∆ integrals.1

∆2(−1) =
2

3
− 4

3

√
2 + 4 log(1 +

√
2), ∆1(1) =

1

3
,

∆2(1) =
1

15

(

2 +
√

2 + 5 log(1 +
√

2)
)

,

∆3(1) =
4

105
+

17

105

√
2 − 2

35

√
3 +

1

5
log(1 +

√
2) +

2

5
log(2 +

√
3) − π

15
,

∆4(1) =
26

15
G − 34π

105

√
2 − 16π

315
+

197

420
log (3) +

52

105
log

(

2 +
√

3
)

+
1

14
log

(

1 +
√

2
)

+
8

105

√
3 +

73

630

√
2 − 23

135

+
136

105

√
2 arctan

(

1√
2

)

− π

5
log

(

1 +
√

2
)

+
4

5
α log

(

1 +
√

2
)

−4

5
Cl2 (α) +

4

5
Cl2

(

α+
π

2

)

,

∆5(1) =
65

42
G − 380

6237

√
5 +

568

3465

√
3 − 4π

189
− 449

3465
− 73

63

√
2 arctan

(√
2

4

)

−184

189
log (2) +

64

189
log

(√
5 + 1

)

+
1

54
log

(

1 +
√

2
)

+
40

63
log

(√
2 +

√
6
)

− 5π

28
log

(

1 +
√

2
)

+
52π

63
log (2)

+
295

252
log (3) +

4

315
π2 +

3239

62370

√
2 − 8

21

√
3 arctan

(

1√
15

)

−52π

63
log

(√
2 +

√
6
)

+
5

7
α log

(

1 +
√

2
)

− 5

7
Cl2 (α)

5

7
Cl2

(

α+
π

2

)

+
52

63
K1,

where the unresolved quantity this time is the integral

K1 :=

∫ 4

3

arcsec (x)√
x2 − 4x+ 3

dx.

In the above, α := arcsin
(

2/3 − 1/6
√

2
)

, G :=
∑

n≥0(−1)k/(2k+1)2 is the Catalan

constant, Cl2 is the order-2 Clausen function

Cl2(x) :=

{

∑∞
k=1 sin(kx)/kn if n even

∑∞
k=1 cos(kx)/kn if n odd,

and Lin =
∑∞

k=1 z
k/kn is the polylogarithm function of order n. Numerous other

specific and general results have been obtained. See [10] for full details.

1In [10] the formulas for ∆4 and ∆5 both had the wrong sign in the coefficient of Cl2(α − π/2).
Fortunately, PSLQ makes it very easy to error-correct such things as long as the basis elements are
correct.

8



3.2 Ising Expectation integrals

Integrals very similar to the box integrals arise within many parts of mathemati-
cal physics; e.g., from the Ising model within statistical mechanics. Like the box
expectation integrals, these integrals are cast as multi-dimensional expectations of
certain simple algebraic functions. In recent studies with Crandall, we considered
these classes:

Cn :=
4

n!

∫ ∞

0
· · ·
∫ ∞

0

1
(

∑n
j=1(uj + 1/uj)

)2

du1

u1
· · · dun

un
,

Dn :=
4

n!

∫ ∞

0
· · ·
∫ ∞

0

∏

i<j

(

ui−uj

ui+uj

)2

(

∑n
j=1(uj + 1/uj)

)2

du1

u1
· · · dun

un
.

Consider the simplex u1 > u2 > · · · > un. We can perform a change of variables
via uk :=

∏k
i=1 ti, with t1 ∈ (0,∞) and other ti ∈ (0, 1). Define wk =

∏k
i=2 ti and

vk :=
∏n

i=k ti, and the functions

An(t2, t3 . . . , tn) :=





∏

n≥k>j≥1

uk/uj − 1

uk/uj + 1





2

,

Bn(t2, t3 . . . , tn) :=
1

(1 +
∑n

k=2wk)(1 +
∑n

k=2 vk)
.

Then the Ising expectation integrals can be recast as:

Dn = 2

∫ 1

0
· · ·
∫ 1

0
AB dt2 dt3 · · · dtn, (4)

Cn = 2

∫ 1

0
· · ·
∫ 1

0
B dt2 dt3 · · · dtn, (5)

It is also useful to define

En := 2

∫ 1

0
· · ·
∫ 1

0
A dt2 dt3 · · · dtn. (6)

As we noted earlier, at present there is no known practical scheme to find multi-
hundred-digit values of general iterated integrals, except straightforward extensions
of 1-D scheme that become impractically expensive beyond 3-D. Fortunately, we
observed that in the case of the Cn integrals, we have

Cn =
2n

n!

∫ ∞

0
tKn

0 (t) dt, (7)

where K0(t) denotes the modified Bessel function [1]. This converts the problem to
a 1-D integral, thus dramatically reducing the computational cost.

We then computed 1000-digit values of Cn for selected values of n, ranging from
3 up to 1024 (corresponding to a 1024-fold iterated integral). With these numerical
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values in hand, we were able to find (using PSLQ) and prove the following intriguing
results [9]: C3 := L−3(2) where L−3(s) =

∑

n≥1(1/(3n − 2)s − 1/(3n − 1)s), and
C4 = 7ζ(3)/12, where ζ(s) :=

∑

k≥1 1/ks is the Riemann zeta function for s > 1.
We further noticed that for large n, the numerical values appear to approach a
constant, e.g.,

C10 = 0.63188002414701222229035087366080283...

C40 = 0.63047350337836353186994190185909694...

C100 = 0.63047350337438679612204019271903171...

C200 = 0.63047350337438679612204019271087890...

By using the ISC tool, we immediately identified this constant:

lim
n→∞

Cn = 2e−2γ ,

where γ is Euler’s constant. We subsequently proved this intriguing numerical
discovery [9], along with numerous extensions. Further research, experimental and
theoretical, established the following results:

D2 = 1/3, D3 = 8 + 4π2/3 − 27L−3(2),

D4 = 4π2/9 − 1/6 − 7ζ(3)/2, E2 = 6 − 8 log 2,

E3 = 10 − 2π2 − 8 log 2 + 32 log2 2,

E4 = 22 − 82ζ(3) − 24 log 2 + 176 log2 2 − 256(log3 2)/3

+16π2 log 2 − 22π2/3,

E5
?
= 42 − 1984Li4(1/2) + 189π4/10 − 74ζ(3) − 1272ζ(3) log 2

+40π2 log2 2 − 62π2/3 + 40(π2 log 2)/3 + 88 log4 2

+464 log2 2 − 40 log 2.

In the case of E5, the
?
= notation means that this is only an experimental discovery—

as yet we do not have rigorous proof (and we may never have such a proof, because
no proof may be accessible). Although in this case we were not able to reduce the
integral to a 1-D form, we were nonetheless able to reduce its dimension by one
by a certain transformation. The one-page-long 3-D integral that resulted from
this manipulation is shown in [9]. The final evaluation of this integral to 250-
digit accuracy required four hours on 64 CPUs of the Virginia Tech Apple system.
Applying PSLQ to the resulting numerical value (together with the numerical values
of a set of conjectured component terms), yielded the experimental evaluation shown
above. Incidentally, the plot shown in Figure 1 is for the PSLQ run that discovered
this identity.

The Cn constants also occur naturally within quantum field theory. Additional
results on these integrals and some generalizations are given in [6] and [27].
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4 Digit Randomness and Borel’s Law

One of the oldest questions of mathematics is the whether constants such as π, e,
√

2
and log(2) have statistically random digits. Notably, von Neumann suggested the
first computer-age calculation of π on the ENIAC for statistical reasons [19, Ch.
3]. More precisely, we can ask, for a given constant α, whether every m-long string
of base-b digits appears, in the limit, with frequency b−m. If so, then we say that
α is b-normal. There is ample statistical evidence in favor of such conjectures—for
instance, the constant π was recently computed to over one trillion digits (both in
decimal and in base-16), but nothing was seen in statistical analysis of this data—see
Table 1, which gives the simple digit distribution of π in decimal and in hexadecimal
[19, Ch. 3].

Table 1. Digit distribution in base 10 and 16

Decimal Digit Occurrences

0 99999485134
1 99999945664
2 100000480057
3 99999787805
4 100000357857
5 99999671008
6 99999807503
7 99999818723
8 100000791469
9 99999854780

Total 1,000,000,000,000

Hex Digit Occurrences

0 62499881108
1 62500212206
2 62499924780
3 62500188844
4 62499807368
5 62500007205
6 62499925426
7 62499878794
8 62500216752
9 62500120671
A 62500266095
B 62499955595
C 62500188610
D 62499613666
E 62499875079
F 62499937801

Total 1,000,000,000,000

Along this line, it is reasonable to conjecture that every irrational root of an
algebraic equation with integer coefficients is not only 10-normal, but is b-normal
for all positive integers b > 1. Unfortunately, there are no proofs of normality
for any of these well-known constants. We do not even know, provably, whether
there are an infinite number of sevens in the decimal expansion of π, or whether
the binary expansion of

√
2 has balanced frequencies of zeros and ones [19, Ch. 4].

Until recently, the only proofs of normality were for highly contrived constants such
as Champernowne’s number, namely 0.12345678910111213141516 . . . in base ten, or
the corresponding concatenation in any given base [19, Ch. 4].
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4.1 The BBP Formula for Pi

One interesting breakthrough in this area was the recent discovery of a formula
that allows one to directly calculate binary digits of certain mathematical constants
(including π and log 2) beginning at an arbitrarily starting point, by means of a
surprisingly simple algorithm. This algorithm is based on the following formula,
which was discovered in 1996 by a computer program running the PSLQ integer
relation algorithm extensively [11][4],[19, Section 3.4]:

π =
∞
∑

k=0

1

16k

(

4

8k + 1
− 2

8k + 4
− 1

8k + 5
− 1

8k + 6

)

. (8)

It is easy to see how this individual digit-calculating scheme works by illustrating it
for a similar formula, namely log 2 =

∑∞
n=1 1/(n2n). Note that the binary expansion

of log 2 beginning after the first d binary digits is simply {2d log 2}, where {·} denotes
fractional part. Thus we can write

{2d log 2} =

{

∞
∑

n=1

2d−n

n

}

=

{

d
∑

n=1

2d−n

n

}

+







∞
∑

n=d+1

2d−n

n







=

{

d
∑

n=1

2d−n mod n

n

}

+







∞
∑

n=d+1

2d−n

n







, (9)

where we insert “mod n” in the numerator of the first term of (9) since we are only
interested in the fractional part after division by n. Now the expression 2d−n mod n
may be evaluated very rapidly by means of the binary algorithm for exponentia-
tion, where each multiplication is reduced modulo n. The entire scheme indicated
by formula (9) can be implemented on a computer using ordinary 64-bit or 128-
bit arithmetic—high-precision arithmetic software is not required. The resulting
floating-point value, when expressed in binary format, gives the first few digits of
the binary expansion of log 2 beginning at position d + 1. Similar calculations ap-
plied to each of the four terms in formula (8) yield a similar result for π. The largest
computation of this type to date is binary digits of π beginning at the quadrillionth
(1015-th) binary digit, performed by an international network of computers orga-
nized by Colin Percival in the year 2000. This algorithm was also used to rapidly
validate Kanada’s 2002 computation of a trillion hexadecimal digits of π.

Since 1996, formulas of this type have been found for numerous other constants,
using a similar experimental approach. A listing of many of these formulas is avail-
able in an online compendium [5]. No formula of this same type exists for π in any
non-binary number base [21].

4.2 Statistical Implications of the BBP Formulas

One interesting (and unanticipated) discovery is that the existence of these computer-
discovered BBP-type formulas has implications for the age-old question of normality
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for several basic mathematical constants, including π and log 2. This result, due to
one of the present authors and Richard Crandall, is that if a mathematical constant
has a BBP-type formula, then there is a related sequence which, if proven equidis-
tributed in the unit interval, implies the normality of the constant. This means, for
instance, that log 2 is 2-normal if and only if the simple sequence defined by x0 = 0
and xn = {2xn−1 + 1/n} is equidistributed in the unit interval. In a similar way, π
is 2-normal if and only if the sequence x0 = 0 and

xn =

{

16xn−1 +
120n2 − 89n + 16

512n4 − 1024n3 + 712n2 − 206n + 21

}

(10)

is equidistributed. Here the notation {·} means fractional part as before. Full details
are given in [13] and [19, Section 3.8].

What’s more, this line of research has recently led to a full-fledged proof of
normality for an uncountably infinite class of explicit real numbers. Given r ∈ [0, 1),
let rn be the n-th binary digit of r. Then for every r in the unit interval, the constant

αr =
∞
∑

n=1

1

3n23n+rn
(11)

is 2-normal and transcendental [14]. Further details on these results are given in
[19, Sec. 4.3], [16], and [14].

Given the sequence (10) for π, we can define the hexadecimal (base-16) digit
sequence yn = ⌊16xn⌋. In other words, we can divide the unit interval into 16 equal
subintervals, labeled (0, 1, 2, 3, · · · , 15), and set yn to be the label of the subinter-
val in which xn lies. When this is done, a remarkable phenomenon occurs: The
sequence (yn) appears to perfectly (not just approximately) produce the hexadeci-
mal expansion of π. In explicit computations, the first 1,000,000 hexadecimal digits
generated by this sequence are identical with the first 1,000,000 hexadecimal digits
of π − 3.

Evidently this phenomenon arises from the fact that in the sequence associated
with π, the perturbation term rn = (120n2 − 89n+ 16)/(512n4 − 1024n3 + 712n2 −
206n+21) is summable, whereas the corresponding expression for log 2, namely 1/n,
is not summable. In particular, define the sequence αn = {2nπ}, and let ||u − v||
denote the distance between u and v in the wrapped unit interval. Then it can be
shown that

||αn − xn|| ≤
∞
∑

k=n+1

120k2 − 89k + 16

16j−n(512k4 − 1024k3 + 712k2 − 206k + 21)

≈ 120(n + 1)2 − 89(n + 1) + 16

16(512(n + 1)4 − 1024(n + 1)3 + 712(n + 1)2 − 206(n + 1) + 21)
,

so that
∑∞

n=1 ||αn − xn|| ≈ 0.01579..
For the sake of heuristic argument, let us assume for the moment that the αn

are independent, uniformly distributed random variables in (0, 1), and let δn =
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||αn−xn||. Note that an error (i.e., an instance where xn lies in a different subinterval
of the unit interval than αn) can only occur when αn is within δn of one of the points
(0, 1/16, 2/16, · · · , 15/16). Since xn < αn for all n (where < is interpreted in the
wrapped sense when xn is slightly less than one), this event has probability 16δn.
Then the fact that the sum 0.01579 has a finite value implies, by the first Borel-
Cantelli lemma, that there can only be finitely many errors [18, pg. 153]. The
comparable figure for log 2 is infinite, which implies by the second Borel-Cantelli
lemma that discrepancies can be expected to appear indefinitely, but with decreasing
frequency.

Further, the small value of the sum suggests that it is unlikely that any errors
will be observed. If instead of summing ||αn − xn|| from one to infinity, we instead
sum from 1,000,001 to infinity (since we have computationally verified that there
are no errors in the first 1,000,000 elements), then we obtain 1.465 × 10−8, which
suggests that it is very unlikely that any errors will ever occur. It would be nice to
make “very unlikely” here more statistically precise.

5 Ramanujan Arithmetic-Geometric Contin-

ued Fractions

We now present some interesting results in the other direction—how data analysis
and visualization methods typical of what is widely done in computational statistics
can be employed in computational mathematics. Given a, b, η > 0, define

Rη(a, b) =
a

η +
b2

η +
4a2

η +
9b2

η + ...

.

This continued fraction arises in the Notebooks of the famous Indian mathematician
Srinivasa Ramanujan (1887-1920). He discovered instances of the striking fact that

Rη (a, b) +Rη (b, a)

2
= Rη

(

a+ b

2
,
√
ab

)

.

When the present authors first attempted to numerically compute R1 (1, 1), only
three reliable digits were obtained: 0.693 . . .. But even at this accuracy, the result
suggested that the value might be the well-known constant log 2. In any event,
higher accuracy was needed. From formula (1.11.70) of [20] one can see that for
0 < b < a,

R1(a, b) =
π

2

∑

n∈Z

sech
aK(k)

K2(k) + a2n2π2
sech

(

nπ
K(k′)

K(k)

)

, (12)
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where k = b/a = θ2
2/θ

2
3, k

′ =
√

1 − k2. Here θ2, θ3 are Jacobian theta functions [1,
Section 16.27], and K is a complete elliptic integral of the first kind [1, Section 17.3].

Viewing the previous equation as the limit of a Riemann sum, we have

R(a) := R1(a, a) =

∫ ∞

0

sech(πx/(2a))

1 + x2
dx = 2a

∞
∑

k=1

(−1)k+1

1 + (2k − 1)a
, (13)

where the final equality follows from the Cauchy-Lindelöf Theorem. This sum may
also be written in terms of hypergeometric functions [1, Section 15] as R(a) =
2a

1+aF
(

1
2a + 1

2 , 1;
1
2a + 3

2 ;−1
)

. The latter form can be used in Maple or Mathematica

to determine that

R(2) = 0.974990988798722096719900334529 . . . .

The ISC tool (or ‘identify’ in Maple) reports this constant is equal to ψ(3/8) −
ψ(7/8), where ψ(t) := Γ′(t)/Γ(t) is the digamma function [1, Section 6.3]. With
some additional manipulation, one obtains the simpler form R(2) =

√
2[π/2−log(1+√

2)].
Indeed, it can now be seen that [24]:

R(a) = 2

∫ 1

0

t1/a

1 + t2
dt.

Note that R(1) = log 2. No non-trivial closed form is known for R(a, b) with a 6= b,
although

R1

(

1

4π
β

(

1

4
,
1

4

)

,

√
2

8π
β

(

1

4
,
1

4

)

)

=
1

2

∑

n∈Z

sech(nπ)

1 + n2
,

comes close. Here β denotes the classical Beta function [1, Section 6.2]. Further
details are to be found in [24, 23, 20].

Study of these Ramanujan continued fractions was further facilitated by exam-
ining the closely related dynamical system t0 = 1, t1 = 1 and

tn := tn(a, b) =
1

n
+ ωn−1

(

1 − 1

n

)

tn−2 (14)

where ωn = a2 or b2 (from the Ramanujan continued fraction definition), depending
on whether n is even or odd. If we inspect this recursion based only on numerical
values, nothing much is evident—one only notes that tn → 0 fairly slowly. If,
however, we look at this iteration pictorially, we learn significantly more—see Figure
2.

If we then scale by
√
n (as was suggested by theoretical considerations but is

easily suggested numerically) and color the iterations blue or red depending on
whether n is odd or even, then some remarkable fine structure appears—see Figure
3. With assistance of such plots, the behavior of these iterates (and the Ramanujan
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In particular, if we plot (14)
in the complex plane chang-
ing color every few hundred
iterates we see dramatic ev-
idence of structure.

Figure 2: The first few thousand iterates of 14 plotted in the complex plane

Figure 3: Dynamics and attractors of two different cases
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A scatter plot of several thou-
sands of points for which numeri-
cal convergence seemed to occur.
The picture was accurate enough
to identify the exact equation of
the cardioid. Remarkably the
cardioid is precisely the domain
of validity of the complex AG in-
equality.

Figure 4: A cardioid revealed

continued fractions) are now quite well understood. These studies have ventured
into matrix theory, real analysis and even the study of martingales from probability
theory [24, 23, 22, 26]. The exact domain of convergence in the complex plane of
the original continued fraction is the cardioid C := {c: |1 + c|)/2 ≥

√

|c|}, where
c := b/a—see Figure 4.

There are exceptional cases when a/b is purely imaginary. Jacobsen-Masson

theory [23, 22] shows that the even/odd fractions for R1(i, i) behave “chaotically”
and do not converge. Indeed, when a = b = i, the values (tn(i, i)) exhibit a fourfold
quasi-oscillation, as n runs through values mod 4. Plotted versus n, the (real)
sequence tn(i) exhibits the serpentine oscillation of four separate “necklaces,” as
shown in Figure 5. The detailed asymptotic is

tn(i, i) =

√

2

π
cosh

π

2

1√
n

(

1 +O

(

1

n

))

×
{

(−1)n/2 cos(θ − log(2n)/2)

(−1)(n+1)/2 sin(θ − log(2n)/2),

where the first form is taken when n is even, and the second when n is odd. Here
θ = arg Γ((1 + i)/2).

Analysis is remarkably easy once given the following striking hypergeometric
parameterization of (14) when a = b 6= 0, see [22], which was both discovered and
proved largely by computer:

tn(a, a) =
1

2
Fn(a) +

1

2
Fn(−a), (15)

where Fn(a) is defined by:

Fn(a) := − an21−ω

ω β(n + ω,−ω)
2F1

(

ω, ω;n + 1 + ω;
1

2

)

.

Here 2F1 denotes the Gauss hypergeometric function [1], and

β(n + 1 + ω,−ω) =
Γ (n+ 1)

Γ (n+ 1 + ω) Γ (−ω)
,
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Figure 5: The subtle four fold serpent

is a Beta-function value, where ω := (1 − 1/a)/2. Indeed, once (15) was discovered
by a combination of insight and methodical computer experiment, its proof is highly
representative of the changing paradigm: both sides satisfy the same recursion and
the same initial conditions. This can be checked in Maple and if one looks inside
the computation, one learns which confluent hypergeometric identities are needed
for an explicit human proof.

6 Other topics

We finish by mentioning a number of other computational topics which the reader
can follow up on in the given references.

(a) Entropic measures of algorithmic complexity. In [25] an analysis is performed
of the binary expansion of Γ(1/n), n = 2, 3, . . . , 6. For all cases except n = 5
fast algorithms are known [19, Ch. 6]. For n = 5 it is conjectured no such
algorithm exists and the computation of various entropy measures supports
this dichotomy.

(b) Data mining. Resources like the Online encyclopedia of integer sequences

http:///www.research.att.com/~njas/sequences .
allow for substantial data mining [19, Ch. 8] [3]. Tools to automate the pro-
cess are still quite primitive. A variety of such resources is documented at

http://www.experimentalmath.info .

(c) Automated proof techniques. There are well-developed algorithms for automat-
ing the proof of identities of hypergeometric type due to Gosper and to Wilf-
Zeilberger among others [3, 7]. Equally potent tools for discovery of gen-
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erating functions, recursions and differential equations are described in [27]
and [19, 20, 3]. Less well-known are algorithms for automated proof of many
inequalities (see the article by Kauers in the same volume as [7]).

7 Conclusion

In the above survey, while we have focused on our own work and that of our collab-
orators, we are of course not alone in adopting these techniques. Many examples
originating with other researchers are scattered throughout [ema,expm1,expm2]. In
particular [ema, p. 190] makes a concise review of early work on and writings about
computer experiments in mathematics. Another good reference is the recent book
by Villegas, who employs a similar experimental approach [29].

We have seen how the emerging discipline of experimental mathematics has
much in common with computational statistics. Both disciplines seek to extract
underlying analytic facts out of “raw” data. Both disciplines involve ever-more
sophisticated mathematical and computational techniques. Both disciplines have
applications to each other and to numerous other fields of science. This article is
written in the spirit of fostering greater interaction between these two communities.
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