Behavioural and Electrophysiological Correlates of Anticipatory Task-Set Reconfiguration

Rebecca Anne Nicholson

BA(Hons)

Submitted in total fulfilment of the requirements of the degree of

Doctor of Philosophy

School of Psychology

Faculty of Science and Information Technology

The University of Newcastle, Australia

May, 2006

Declaration

I hereby certify that the work embodied in this thesis is the result of original research
and has not been submitted for a higher degree to any other University or Institution.

Acknowledgments

I wish to acknowledge that this thesis was supported by a postgraduate scholarship, jointly funded by the Australian Neuroscience Institute of Schizophrenia and Allied Disorders (NISAD) and the University of Newcastle.

I sincerely wish to thank everyone who has in any way contributed to this thesis. In particular, I wish to thank my supervisors, Dr Frini Karayanidis and Professor Pat Michie, for their guidance, patience and encouragement in assisting the completion of this thesis.

Additionally, I am grateful to all members from the Functional Neuroimaging Laboratory and to Dane Poboka and Associate Professor Andrew Heathcote from the Cognition Laboratory, for their invaluable support, assistance and friendship over the past years.

Sincere thanks are extended to all the participants of the experiments, as without their involvement this research would not have been possible.

Finally, I wish to thank my friends and family as their unwavering support over the years has been crucial in the completion of this thesis.

I dedicate this work to my baby girl who is due to enter the world any day now and to the infinite possibilities the future holds.

Table of Contents

A	BSTRA	CT	III
P	UBLIC	ATIONS	IV
A	BBREV	TATIONS	Vl
1	GE	NERAL INTRODUCTION	1-1
	1.1	THE MYSTERY OF COGNITIVE CONTROL PROCESSES	1-1
	1.2	THE INVESTIGATION OF COGNITIVE CONTROL USING TASK-SWITCHING PARADIGMS	
	1.3	SOURCES OF RT SWITCH COST: ACTIVE TASK-SET RECONFIGURATION	
	1.4	SOURCES OF RT SWITCH COST: TASK-SET INTERFERENCE EFFECTS	1-9
	1.5	CUEING TASK-SWITCHING PARADIGM	1-11
	1.6	EVENT-RELATED BRAIN POTENTIALS.	
	1.7	TASK-SWITCHING AND EVENT-RELATED BRAIN POTENTIALS	
	1.8	OVERVIEW OF EXPERIMENTS	
	1.9	GENERAL METHOD	1-27
2	EX	PERIMENT 1: ERP CORRELATES OF TASK-SWITCHING PROCESSES	2-29
	2.1	Метнор	2-32
	2.2	RESULTS	2-37
	2.3	DISCUSSION	2-47
3	EX	PERIMENT 1 (B): EFFECTS ON THE LRP	3-55
	3.1	METHOD	3-57
	3.2	RESULTS	
	3.3	DISCUSSION	3-60
4	EX	PERIMENT 2: EFFECTS OF 'SWITCH-TO' AND 'SWITCH-AWAY' CUES	4-64
	4.1	METHOD	1 60
	4.1	RESULTS	
	4.3	DISCUSSION	
5		PERIMENT 3: ENGAGEMENT IN ANTICIPATORY RECONFIGURATION	
	5.1	МЕТНОО	
	5.2	RESULTS	
	5.3	DISCUSSION	5-109
6	EX	PERIMENT 4: EFFECTS OF SWITCHING TASK-SETS VERSUS TASK-CUES	6-114
	6.1	Метнор	6-119
	6.2	RESULTS	
	6.3	DISCUSSION	6-134
7	EX	PERIMENT 5: LOCALISATION OF RECONFIGURATION PROCESSES	7-144
	7.1	METHOD	7-147
	7.1	RESULTS	
	7.3	DISCUSSION	

8	EX	XPERIMENT 6: EXAMPLE CLINICAL APPLICATIONS	8-163
	8.1	METHOD	8-169
	8.2	RESULTS	8-176
	8.3	DISCUSSION	
9	GI	ENERAL DISCUSSION	9-199
	9.1	COMPONENTS OF TASK-SWITCHING	9-200
	9.2	ELECTROPHYSIOLOGICAL CORRELATES OF TASK-SET RECONFIGURATION C	COMPONENTS9-209
	9.3	IMPLICATIONS FOR MODELS OF COGNITIVE CONTROL	9-222
	9.4	GENERAL ISSUES AND FUTURE DIRECTIONS	9-224
	9.5	SIGNIFICANCE AND INNOVATIONS	9-228
10	RE	EFERENCES	10-229
11	AF	PPENDIX	11-239

Abstract

The concept of a unitary cognitive control system has increasingly come under question. Numerous paradigms have emerged that aim to dissect cognitive control into its constituent processes, including task-switching paradigms that require alternation between multiple tasks. A switch in task is associated with increased reaction time (RT) as compared to a repeat in task, which is proposed to at least partially reflect processes associated with reconfiguration of the currently active task-set. Previous event-related brain potential studies show a differential positivity emerging prior to a switch in task that appears to reflect anticipatory task-set reconfiguration. Six experiments were conducted that investigated the behavioural and ERP correlates of task-switching, and in particular, the cognitive control processes involved in anticipatory task-set reconfiguration.

Experiment 1 dissociated the effects of passive dissipation of task-set interference from anticipatory task-set reconfiguration. In Experiment 2, it was further verified that the switch-related differential positivity reflects processes associated with anticipatory task-set reconfiguration, particularly initiation of the new task-set. A simplified paradigm was developed in Experiment 3 that maximised engagement in anticipatory task-set reconfiguration, reducing mean RT switch cost. Experiment 4 demonstrated that the RT switch cost and differential positivity in cueing paradigms are associated with task-set reconfiguration rather than a cue repetition benefit. Consistent with previous brain imaging studies, Experiment 5 revealed that anticipatory task-set reconfiguration is associated with increased activation in the prefrontal cortex and parietal lobe.

These findings show that task-set reconfiguration processes are activated when switching between tasks and that this consists of multiple components including the active utilisation of cognitive control processes in anticipatory task-set reconfiguration. Task-switching paradigms are thus a useful tool for investigating control processes in healthy populations and as Experiment 6 demonstrates, in clinical populations that have deficits in control processes, such as patients with schizophrenia.

Publications and Conferences

Publications arising from this thesis¹

- **Nicholson**, R., Karayanidis, F., Poboka, D., Heathcote, A., & Michie, P. (2005). Electrophysiological correlates of anticipatory task-switching processes. *Psychophysiology*, 42(5), 540-554.
- **Nicholson**, R., Karayanidis, F., Bumak, E., Poboka, D., & Michie, P. (2006). ERPs dissociate the effects of switching task-sets and task-cues. *Brain Research*, 1095, 107-123.
- Karayanidis, F., **Nicholson**, R., Schall, U., Meem, L., Fulham, R., & Michie, P (in press). Switching between univalent task-sets in schizophrenia: ERP evidence of an anticipatory task-set reconfiguration deficit. *Clinical Neurophysiology*.
- **Nicholson**, R., Karayanidis, F., Davies, A., & Michie, P. (in revision). Components of Task-set Reconfiguration: Differential Effects of 'Switch-to' and 'Switch-away' Cues. Brain Research.
- **Nicholson**, R., Karayanidis, F., Fulham, R. & Michie, P. (in revision). Organization of anticipatory task-switching processes using low-resolution electromagnetic tomography (LORETA). *International Journal of Psychophysiology*.

Conference presentations with published abstracts arising from this thesis

- **Nicholson**, R., Karayanidis, F., Bumak, E., Poboka., D & Michie., P. (2005). ERPs dissociate the effects of switching task-sets and task-cues. 15th Australasian Society for Psychophysiology Conference (ASP), Wollongong, Australia, 8th-11th December. *Journal of Clinical EEG and Neuroscience, 144*.
- **Nicholson**, R., Karayanidis, F., Fulham, R. & Michie., P. (2005). Localisation of anticipatory task-switching processes. 15th Australasian Society for Psychophysiology Conference (ASP), Wollongong, Australia, 8th-11th December. *Journal of Clinical EEG and Neuroscience*, 144.
- Karayanidis F, *Nicholson R, Michie, P., & Davies, A. (2005). Active Preparation in Task-Switching: Differential Effects of 'Switch-to' and 'Switch-away' Cues. 46th Annual Meeting of the Psychonomic Society, Toronto, Canada, 10th -13th November. *Psychonomic Society Abstracts*, 10, 119.
- Karayanidis, F, *Nicholson, R, Poboka, D, Davies, A, Heathcote, A, & Michie, P. (2005) Anticipatory cognitive control in task-switching: differential effects of 'switch to' versus 'switch away' cues. 32^{nd} Australian Experimental Psychology Conference (EPC), Melbourne, Australia, $1^{st} 3^{rd}$ April. *Australian Journal of Psychology, 57, 57.*
- Karayanidis, F., *Nicholson, R., & Michie, P. (2004). Differential positivity (D-pos) in cue–stimulus interval reflects anticipatory task-set reconfiguration processes. 12th World Congress of Psychophysiology, **Thessaloniki**, Greece, 18th 23rd September. *International Journal of Psychophysiology*, 54, 13.
- Schall, U., Karayanidis, F., *Nicholson, R., &. Meem, L. (2004). Preparation in anticipation of a predictable Task-switch in schizophrenia. 12th World Congress of Psychophysiology, **Thessaloniki**, Greece, 18th 23rd September. *International Journal of Psychophysiology*, *54*, 103.
- *Nicholson, R., Karayanidis, F., Poboka, D., Heathcote, A., & Michie, P. (2003). Electrophysiological components associated with preparation for an impending switch in task. 13th Australasian Society for Psychophysiology Conference (ASP), Hobart, Australia, 12-14th December. *Australian Journal of Psychology, 56 (Supplement),* 43.
- Davies, A., *Nicholson, R., Karayanidis, F., Poboka, D., Heathcote, A., & Michie, P. (2003). Active preparation in task-switching: Effects of 'switching to' versus 'switching away' from a task-set. 13th Australasian Society for Psychophysiology Conference (ASP), Hobart, Australia, 12-14th December. *Australian Journal of Psychology, 56 (Supplement),* 41.

iv

¹ See Appendix for full publications, corresponding experiment numbers in thesis and declarations on the roles and contributions of co-authors. * Presented under maiden name, Rebecca Hannan.

- *Nicholson, R., Karayanidis, F., Poboka, D., Heathcote, A., & Michie, P. (2003). Electrophysiological components associated with anticipatory task-switching processes. 1st NSW State Australian Psychological Society Conference (APS), Newcastle, Australia, 23rd 25th May, Australian Journal of Psychology, 55 (Supplement), 103.
- *Nicholson, R., Karayanidis, F., Poboka, D., Heathcote, A., & Michie, P. (2003). Anticipatory preparation & passive dissipation processes in task-switching: Event-related potential analysis. 30th Australian Experimental Psychology Conference (EPC), Sydney, Australia, 25th -27th April, Australian Journal of Psychology, 55 (Supplement), 80.
- *Nicholson, R., Karayanidis, F., Poboka, D., Heathcote, A., & Michie, P. (2002). ERP components associated with anticipatory task-switching processes. 12th Australasian Society for Psychophysiology Conference (ASP) and 6th Australian Functional Brain Mapping Symposium, Sydney, Australia, 29th November 3rd December, *Australian Journal of Psychology, 55 (Supplement)*, 19.

Other conference presentations arising from this thesis

- **Nicholson**, R., Karayanidis, F., Fulham, R. & Michie., P. (2005). Localisation of anticipatory task-switching processes. 4th Postgraduate Student Conference, School of Behavioural Sciences, University of Newcastle, Australia, 24th November.
- *Nicholson, R., Karayanidis, F., Poboka, D., Heathcote, A., & Michie, P. (2005). ERP components associated with preparation for an impending switch in task. International Conference on Attentional Control (ICAC), Chia-yi, Taiwan, 5th-7th January.
- Karayanidis, F., *Nicholson, R., Poboka, D., Heathcote, A., & Michie, P. (2005). Active preparation in task-switching: Differential effects of 'switch-to' and 'switch-away' cues. International Conference on Attentional Control (ICAC), Chia-yi, Taiwan, 5th-7th January.
- *Nicholson, R., Karayanidis, F., Poboka, D., Heathcote, A., & Michie, P. (2003). Anticipatory preparation & passive dissipation processes in task-switching: Event-related potential analysis. 2nd Postgraduate Student Conference, School of Behavioural Sciences, University of Newcastle, Australia, 10th October.
- *Nicholson, R., Karayanidis, F., Poboka, D., Heathcote, A., & Michie, P. (2003). Anticipatory preparation & passive dissipation processes in task-switching: Event-related potential analysis. 4th International Conference on Cognitive Science (ICCS) and 7th Australasian Society for Cognitive Science Conference (ASCS), Sydney, Australia, 13th -17th July.

Other publications and conferences

- Jamadar, S., Karayanidis, F., **Nicholson**, R. & Michie., P. (2005). Event Related Potential Correlates of Preparation for an Upcoming Switch in Task. 15th Australasian Society for Psychophysiology Conference (ASP), Wollongong, Australia, 8th-11th December. *Journal of Clinical EEG and Neuroscience*, 144.
- Poboka, D., Heathcote, A., Karayanidis, F., & *Nicholson, R. (2005). An Investigation of Task Switch Costs: Preparation Activation, Timing and Readiness Decay. International Conference on Attentional Control (ICAC), Chia-yi, Taiwan, 5th-7th January.
- Poboka, D., Heathcote, A., *Nicholson, R., & Karayanidis, F. (2003). Anticipatory preparation & passive dissipation processes in task-switching: Reaction time distribution analysis. 4th International Conference on Cognitive Science (ICCS) and 7th Australasian Society for Cognitive Science Conference (ASCS), Sydney, Australia, 13th -17th July.
- Poboka, D., Heathcote, A., Karayanidis, F., & *Nicholson, R. (2003). Anticipatory preparation & passive dissipation processes in task-switching: Reaction time distribution analysis. 30th Australian Experimental Psychology Conference (EPC), Sydney, Australia, 25th -27th April, Australian Journal of Psychology, 55 (Supplement), 88.

Abbreviations

	Abbreviated \ Symbol Form
Analysis of variance	ANOVA
Analysis of co-variance	ANCOVA
Contingent negative variation	CNV
Cue-stimulus interval	CSI
Differential positivity	D-Pos
Differential negativity	D-Neg
Electroencephalogram	EEG
Electrooculogram	EOG
Event-related brain potential	ERP
Functional magnetic resonance imaging	fMRI
Independent component analysis	ICA
Intelligence quotient	IQ
Late positive component	LPC
Lateralised readiness potential	LRP
Low-resolution electromagnetic tomography	LORETA
Microvolt	μV
Milliseconds	ms
Montreal Neurologic Institute	MNI
National adult reading test	NART
Operational criteria diagnostic system	OPCRIT
Quarter peak latency	QPL
Reaction time	RT
Response-cue interval	RCI
Response-stimulus interval	RSI
Schedule for assessment of negative symptoms	SANS
Schedule for assessment of positive symptoms	SAPS
Wisconsin Card Sorting Test	WCST