
Quantisation Issues in Feedback Control

Hernan Haimovich

A thesis submitted in partial fulfilment
of the requirements for the degree of

Doctor of Philosophy

School of Electrical Engineering

and Computer Science

The University of Newcastle

Callaghan, NSW 2308

Australia

March, 2006





I hereby certify that the work embodied in this thesis is the result of

original research and has not been submitted for a higher degree to any

other University or Institution.

Hernan Haimovich





Acknowledgements

First, I would like to deeply thank my supervisors, Prof. Graham Goodwin and Dr. María Seron. The

process of doing this PhD would have been extremely difficult had it not been for Graham’s enthusiastic

encouragement and María’s wisdom and in-depth ever-present help. I am also grateful to them for

providing both financial support and a great working environment during my studies.

I would like to acknowledge Prof. Ernesto Kofman for providing the seed for one of the two topics of

this thesis. Very special thanks go to Dr. Julio Braslavsky and Prof. Arie Feuer for the many interesting

technical discussions.

For reading and providing comments on different parts of this thesis, I would like to express my

gratitude to Juan Carlos Agüero, José Mare, Elena Prieto, and Daniel Quevedo.

I would also like to thank Jacqui Ramagge for encouraging and helping me to learn more advanced

mathematical topics. Thanks as well to the other members of our maths and flatness study group: Udo

Baumgartner, Aidan Sims, José De Doná and María Seron.

Life has been so much easier here at uni due to the always keen and helpful, superheroes-in-

secretary-disguise, Dianne Piefke and Jayne Disney. Thanks very much, Dianne and Jayne. Thanks

also to Frank Sobora for his help with any computer-related problem.

I am truly grateful to the many academics back in Argentina who, in spite of the many difficulties

and the lack of resources, have always worked extremely hard to give their best to me (and to all their

students). In particular, thanks very much Professors Sergio Junco, Juan Carlos Gómez and Federico

Miyara.

Coming to Australia has been an incredible experience, especially because of the great people that

I have met. Thanks Tristan and Jae, Osvaldo and Olga, Juan Carlos, James and Patty, Alejandro, Boris,

José, Claudio and Claudia, Elena and Rhyall, Juan and Paz, José and Sandra, José and Patricia, Mario,

Daniela, Milan and Erica, Eduardo and Andrea, and Manolo. Very special thanks to Julio, Marimar and



vi Acknowledgements

Ruth for sharing so much with me: playing music and dancing together, making me feel at home at their

place, going on holidays together, and so much more. Thanks a lot, guys.

I am greatly indebted to my parents, Beatriz and Jorge, for always giving me their love and support.

Thanks to my sister, Alejandra, for being such a great friend, and to my grandparents Fany and Abraham,

and Raquel. Thanks also to my parents-in-law, Stella and Carlos, for sharing so many memorable

moments during my PhD studies.

And last but not least at all, thanks to my lovely and always joyful wife Silvana Abecasis for her

constant support, her beautiful smile, and for sharing her life with me. Thanks also, Sil, for coming to

Australia with me, an endeavour which, I know, was not easy for you in the beginning.



vii

To Silvana





Contents

Acknowledgements v

Abstract xiii

Notation xv

1 Introduction 1

1.1 Quantisation in Feedback Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Quadratic Stabilisation via Quantised Static Feedback . . . . . . . . . . . . . 3

1.1.2 Componentwise Ultimate Bounds for Perturbed Systems . . . . . . . . . . . . 4

1.2 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Associated Publications and Related Work . . . . . . . . . . . . . . . . . . . . . . . . 8

I Geometric Approach to Quadratic Stabilisation and Quantisation Density 11

2 Quadratic Stabilisation and Quantisation Density 13

2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Quadratic Stabilisation of Discrete-time Systems . . . . . . . . . . . . . . . . . . . . 14

2.3 Quadratic Stabilisation via Quantised Feedback . . . . . . . . . . . . . . . . . . . . . 16

2.4 Quantisation Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Infimum Quantisation Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Geometric Approach to Quadratic Stabilisation with Quantisers 35

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Lowest Quantiser Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Geometric Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40



x CONTENTS

3.3.1 Geometric Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.2 Characterisation of QS Pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4 Necessary and Sufficient Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.5 Stabilising Finite-density Multivariable Quantiser Design . . . . . . . . . . . . . . . . 49

3.5.1 Reduced-dimension Quantiser . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5.2 QS Quantiser with Finite Density . . . . . . . . . . . . . . . . . . . . . . . . 56

3.5.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4 State-space Approach to Quantiser “Coarseness” for Single-input Systems 63

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 Single-input Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3 Preliminary Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.4 Quantiser Coarseness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4.1 Coarse-QS and CAQS Pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.4.2 CAQS Quantisers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.5 CAQS Quantisers and Quantisation Density . . . . . . . . . . . . . . . . . . . . . . . 75

4.6 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.7 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5 Quantisation Density and Multiple-input Systems: A Special Case 85

5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.3 Problem Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.3.1 Solution to Subproblem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.3.2 Solution to Subproblem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.4 Relationship to a Similar Claim in the Literature . . . . . . . . . . . . . . . . . . . . . 90

5.5 Comparison of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

II Componentwise Ultimate Bounds for Perturbed Systems 93

6 Componentwise Ultimate Bounds for Quantised Systems 95

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.1.1 Overview of Part II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.1.2 Ultimate Bound Computation Tools . . . . . . . . . . . . . . . . . . . . . . . 96

6.1.3 Notation and Preliminary Tools . . . . . . . . . . . . . . . . . . . . . . . . . 98



CONTENTS xi

6.2 Quantised System Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.2.1 Quantised Discrete-time Scheme . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.2.2 Quantised Sampled-data Scheme . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.3 Quantiser Perturbations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.3.1 Single Scalar Quantiser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.3.2 Quantiser Perturbations in Vector Form . . . . . . . . . . . . . . . . . . . . . 105

6.4 Componentwise Ultimate Bounds for Quantised Systems . . . . . . . . . . . . . . . . 106

6.4.1 Discrete-time Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.4.2 Sampled-data Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.5.1 Static Controller with a Single Quantiser . . . . . . . . . . . . . . . . . . . . 115

6.5.2 Static Controller with Mixed Quantisers . . . . . . . . . . . . . . . . . . . . . 118

6.5.3 Dynamic Controller with a Single Quantiser . . . . . . . . . . . . . . . . . . . 119

6.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7 General Perturbation Bounds 121

7.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.2 Ultimate Bounds for Continuous-time Systems . . . . . . . . . . . . . . . . . . . . . 122

7.2.1 Constant Perturbation Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.2.2 State-dependent Perturbation Bounds . . . . . . . . . . . . . . . . . . . . . . 127

7.2.3 Application to Nonlinear Systems . . . . . . . . . . . . . . . . . . . . . . . . 135

7.3 Ultimate Bounds for Discrete-time Systems . . . . . . . . . . . . . . . . . . . . . . . 136

7.3.1 State-dependent Perturbation Bounds . . . . . . . . . . . . . . . . . . . . . . 136

7.3.2 Application to Nonlinear Systems . . . . . . . . . . . . . . . . . . . . . . . . 138

7.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

7.4.1 Continuous-time System with Constant Perturbation Bounds . . . . . . . . . . 138

7.4.2 Continuous-time System with State-dependent Perturbation Bounds . . . . . . 139

7.4.3 Discrete-time System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

7.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

8 Summary and Future Work 145

8.1 General Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

8.1.1 Quantisation Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

8.1.2 Componentwise Ultimate Bounds for Perturbed Systems . . . . . . . . . . . . 146

8.2 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

8.2.1 Quantisation Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147



xii CONTENTS

8.2.2 Componentwise Ultimate Bounds for Perturbed Systems . . . . . . . . . . . . 148

A Proof of Theorems 3.10 and 4.7 149

Bibliography 157



Abstract

Systems involving quantisation arise in many areas of engineering, especially when digital implemen-

tations are involved. In this thesis we consider different aspects of quantisation in feedback control

systems. We study two topics of interest: (a) quantisers that quadratically stabilise a given system and

are efficient in the use of their quantisation levels and (b) the derivation of ultimate bounds for perturbed

systems, especially when the perturbations arise from the use of quantisers.

In the first part of the thesis we address problem (a) above. We consider quadratic stabilisation

of discrete-time multiple-input systems by means of quantised static feedback and we measure the ef-

ficiency of a quantiser via the concept of quantisation density. Intuitively, the lower the density of a

quantiser is, the more separated its quantisation levels are. We thus deal with the problem of optimising

density over all quantisers that quadratically stabilise a given system with respect to a given control

Lyapunov function. Most of the available results on this problem treat single-input systems, and the

ones that deal with the multiple-input case consider only two-input systems. In this thesis, we derive

several new results for multiple-input systems and also provide an alternative approach to deal with the

single-input case. Our new results for multiple-input systems include the derivation of the structure of

optimal quantisers and the explicit design of multivariable quantisers with finite density that are able

to quadratically stabilise systems having an arbitrary number of inputs. For single-input systems, we

provide an alternative approach to the analysis and design of optimal quantisers by establishing a link

between the separation of the quantisation levels of a quantiser and the size of its quantisation regions.

In the second part of the thesis we address problem (b) above. In the presence of perturbations,

asymptotic stabilisation may not be possible. However, there may exist a bounded region that contains

the equilibrium point and has the property that the system trajectories converge to this bounded region.

When this bounded region exists, we say that the system trajectories are ultimately bounded, and that

this bounded region is an ultimate bound for the system. The size of the ultimate bound quantifies the

performance of the system in steady state. Hence, it is important to derive ultimate bounds that are as

tight as possible. This part of the thesis addresses the problem of ultimate bound computation in settings

involving several scalar quantisers, each having different features. We consider each quantised variable

in the system to be a perturbed copy of the corresponding unquantised variable. This turns the original
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quantised system into a perturbed system, where the perturbation has a natural componentwise bound.

Moreover, according to the type of quantiser employed, the perturbation bound may depend on the

system state. Typical methods to estimate ultimate bounds are based on the use of Lyapunov functions

and usually require a bound on the norm of the perturbation. Applying these methods in the setting

considered here may disregard important information on the structure of the perturbation bound. We

therefore derive ultimate bounds on the system states that explicitly take account of the componentwise

structure of the perturbation bound. The ultimate bounds derived also have a componentwise form, and

can be systematically computed without having to, for example, select a suitable Lyapunov function for

the system. The results of this part of the thesis, though motivated by quantised systems, apply to more

general perturbations, not necessarily arising from quantisation.



Notation

, Definition.

‖·‖2 Euclidean norm of a vector and corresponding induced norm of a matrix.

‖·‖∞ Infinity norm of a vector and corresponding induced norm of a matrix.

] Disjoint union.

# Number of elements (cardinality) of a set.

η(q) Quantisation density of a quantiser q.

λmax(·) Maximum eigenvalue of a real symmetric matrix.

λmin(·) Minimum eigenvalue of a real symmetric matrix.

ρ(M) Spectral radius of the square matrix M , that is, maximum over the magnitude

of the eigenvalues of M .

0n×m n×m matrix with zero entries.

1n n-dimensional column vector with all components equal to 1.

bbc Greatest integer not greater than b.

dbe Least integer not less than b.

C Set of complex numbers.

CAQS Coarse Almost Quadratically Stabilising.

CLF Control Lyapunov Function.

diag(λ1, . . . , λn) Diagonal matrix with main-diagonal entries λ1, . . . , λn.

In n× n identity matrix.

Im(M) Range of a matrix M .

LTI Linear Time-invariant.

max{x, y} Componentwise maximum of vectors x and y.

|M | Elementwise magnitude of a matrix M with (possibly) complex entries. That

is, if M has entries Mi,j , then |M | is the matrix with entries |Mi,j |.



xvi Notation

M ≺ N Set of componentwise inequalities Mi,j < Ni,j for i = 1, . . . ,m, j =

1, . . . , n, when M,N ∈ R
m×n.

M � N Set of componentwise inequalities Mi,j ≤ Ni,j , for i = 1, . . . ,m, j =

1, . . . , n, when M,N ∈ R
m×n.

M � N Set of componentwise inequalities Mi,j > Ni,j for i = 1, . . . ,m, j =

1, . . . , n, when M,N ∈ R
m×n.

M � N Set of componentwise inequalities Mi,j ≥ Ni,j , for i = 1, . . . ,m, j =

1, . . . , n, when M,N ∈ R
m×n.

n mod N Remainder of dividing n by N (n ∈ Z+,0, N ∈ Z+).

QS Quadratically Stabilising.

q, q̃, q̄, q̊ Quantisers.

R Set of real numbers.

R
n
+ Set of vectors in R

n with positive components.

R
n
+,0 Set of vectors in R

n with nonnegative components.

R
n×m
+ Set of matrices in R

n×m with positive entries.

R
n×m
+,0 Set of matrices in R

n×m with nonnegative entries.

Re(M) Elementwise real part of a matrix M . That is, if M has entries Mi,j , then

Re(M) is the matrix with entries Re(Mi,j).
T Transpose.

T k Iteration of a map T : R
n → R

n, T k(x) = T (T k−1(x)), for k = 1, 2, . . ., and

T 0(x) , x.

U(q) Range of a quantiser q.

V (·) Control Lyapunov function.

Z Integers.

Z+ Positive integers.

Z+,0 Nonnegative integers.



Chapter 1

Introduction

1.1 Quantisation in Feedback Control

The term “quantisation” refers to the restriction of a variable to a discrete set of values rather than a

continuous set of values. There are several reasons why quantisation needs to be considered in feed-

back control systems. For example, since controllers are usually implemented digitally, signals that take

values in a continuous set need to be represented with finite precision to allow digital information pro-

cessing in finite time (Åström and Wittenmark, 1997). In addition, sensors may produce an output that

indicates only whether the value of the measured signal lies within some range. The number of different

ranges that the sensor can distinguish may be severely limited in some cases. A prime example of the

latter situation is provided by the exhaust gas oxygen sensor used for air-to-fuel ratio control in auto-

motive systems (see, for example, Grizzle et al., 1991). Further motivation for considering quantisation

in feedback control systems is the recent boom of interest in networked control systems (Raji, 1994;

Zhang et al., 2001; Walsh and Ye, 2001). These systems are characterised by the fact that controllers

and plants are interconnected over a digital communication network, making quantisation essential in

order to transmit information among different parts of the system.

The analysis of the effects of quantisation in feedback control systems began as early as in the

1950s, as evidenced by the work of Kalman (1956). Kalman’s work was aimed at studying the effects of

nonlinearities on sampled-data systems. Although the words quantiser or quantisation do not explicitly

appear in this work, the effect of including an ideal relay —one of the simplest forms of quantiser—

in a sampled-data system was analysed. Also during the 1950s, the words quantisation and quantised

appeared in the control systems literature (Flügge-Lotz and Taylor, 1956; Bertram, 1958). The need to

analyse the effects of quantisation on control systems stemmed from the fact that controllers could be

digitally implemented. Indeed, in a typical digital control scheme, quantisation arises due to the use of

analog-to-digital (A/D) and digital-to-analog (D/A) converters, and because the calculations performed
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by the digital processor have round-off errors.

The way in which quantisation is dealt with in feedback control systems has experienced a striking

change in recent years. Traditionally, quantisation in control systems was regarded as an undesirable

phenomenon. The most common approach to designing a digital controller was to disregard quanti-

sation in a first stage, when the controller was designed. The impact of quantisation on the resulting

performance was later mitigated by utilising A/D and D/A converters, and digital processors, with suit-

ably high precision. Naturally, however, even small quantisation errors can have a negative impact on

achievable performance. Different methods exist for estimating the deleterious effect of quantisation on

a digital control system that is designed ignoring the presence of quantisation (Bertram, 1958; Slaugh-

ter, 1964; Yakowitz and Parker, 1973; Green and Turner, 1988; Miller et al., 1988; Farrell and Michel,

1989; Miller et al., 1989). Almost all of these methods regard a quantised variable as a perturbed copy

of the unquantised variable. The effect of quantisation on the resulting performance is then analysed

utilising a bound on the perturbation introduced by the quantiser. This approach is well justified when

the required precision is easily achievable and the cost of the resulting implementation is reasonable.

A different approach is to regard a quantised variable as a partial observation of the unquantised

variable. This means that a quantised variable provides information on a range of values that the un-

quantised variable may take, rather than one specific value. Relevant works that address quantisation in

this manner in the context of feedback control systems are Curry (1970) and Delchamps (1990). These

works have paved the way for the most recent approach to quantisation, which consists in viewing a

quantiser as an information coder. This new approach has led to a paradigm change regarding quanti-

sation in a feedback control system: from undesirable phenomenon to intrinsic and inescapable system

component.

Indeed, in recent years, different control schemes have been proposed and analysed, which explicitly

account for the fact that controller and plant(s) are connected via a communication channel (see the spe-

cial issue Antsaklis and Baillieul, Guest Eds., 2004, and the references therein). The new challenges that

arise from the introduction of a communication channel between controller and plant(s) are numerous.

These challenges include the need to explicitly deal with variable time delays, nonuniform sampling,

limited data-rate/bandwidth, data loss, and quantisation.

There has been substantial research effort directed at various aspects of the above factors. Sev-

eral lines of research exist which address different groups of such issues. In particular, numerous

works explicitly deal with quantisation while focusing on stabilisation in a networked control setting.

Within these works, we can distinguish between the ones where the quantisation strategy is dynamic and

time-varying (for example, Wong and Brockett, 1999; Brockett and Liberzon, 2000; Liberzon, 2003a,b;

Liberzon and Hespanha, 2005; Nair and Evans, 2003, 2004; Li and Baillieul, 2004; Tatikonda and Mit-

ter, 2004a,b; Tatikonda and Elia, 2004) and where it is fixed and static (for example, Elia and Mitter,

2001; Elia and Frazzoli, 2002; Kao and Venkatesh, 2002; Fu and Xie, 2003, 2005; Baillieul, 2002; Ishii
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and Francis, 2002b, 2003; Ishii and Başar, 2005; Goodwin et al., 2004).

If the quantisation strategy is dynamic and time-varying, then quantisers having a finite number

of levels may be employed to achieve asymptotic stabilisation. On the other hand, if the quantisation

strategy is fixed and static, employing a quantiser with a finite number of levels can only yield local

practical stability. Asymptotic stability can be achieved by utilising quantisers with a countably infinite

number of levels, having increasingly higher precision towards the origin (such as logarithmic quantis-

ers). Quantisers with a finite number of levels have greater practical significance than quantisers with

an infinite number of levels. However, the latter quantisers have been very useful for proving many

important results in networked control.

Throughout this thesis, we will regard a quantiser as a fixed and static component of the system and

will analyse different aspects of quantisation in feedback control systems. Specifically, we will deal

with the following two topics: (a) quadratic stabilisation by means of quantised static feedback and (b)

the derivation of ultimate bounds for perturbed systems, especially when the perturbations arise due to

the use of quantisers.

1.1.1 Quadratic Stabilisation via Quantised Static Feedback

In Part I of the thesis, we deal with quadratic stabilisation of discrete-time linear systems by means of

static feedback employing quantisers. The approach that we follow is related to the work of Elia and

Mitter (2001); Elia and Frazzoli (2002); Elia (2002); Kao and Venkatesh (2002); Fu and Xie (2003,

2005). Elia and Mitter (2001) introduce a measure of density of quantisation. Intuitively, the density

of a quantiser is lower than that of another quantiser if the values of the former are more separated

than those of the latter. In this sense, a quantiser can be regarded as being more efficient in the use

of its quantisation levels if its density is lower. In this context, an important question that is posed

and answered in Elia and Mitter (2001) is: for a linear single-input system, what is the most efficient

quantiser over all quadratically stabilising quantisers?

The interesting results of Elia and Mitter (2001) apply only to single-input systems. Generalising

these results to multiple-input systems is recognised as an extremely difficult task. Indeed, for multiple-

input systems, the quantisation density problem introduced in Elia and Mitter (2001) still remains largely

open. Elia and Frazzoli (2002) and Elia (2002) provide lower bounds on the infimum quantisation

density for two-input systems. Kao and Venkatesh (2002) analyse different quantisation schemes and

their densities for linear multiple-input systems. However, explicit design of a multivariable quantiser

with finite (though not necessarily infimum) quantisation density is performed only when quadratic

stabilisation is possible through the use of a two-dimensional subspace of the input space.

The works of Fu and Xie (2003, 2005) employ a completely different approach to deal with the

optimisation of quantisation density. These authors model a logarithmic quantiser as a nonlinearity
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bounded by a sector. The system is then regarded as an uncertain system with sector-bound uncertainty

and the problem is posed as a robust control problem. Their main finding is that, for single-input

systems, this approach is not conservative. That is, the results of Elia and Mitter (2001) can be recovered

by means of this approach. To deal with multiple-input systems, Fu and Xie utilise independent scalar

quantisers for each input signal. Independently quantising the different input signals, however, leads to

designs with infinite quantisation density.

Our contribution to this problem will be to give several new results related to quadratic stabilisation

of single- and multiple-input systems and to quantisation density. These results are presented in Part I

of the thesis and include the derivation of the structure of optimal quantisers and the explicit design

of multivariable quantisers with finite density that are able to quadratically stabilise systems having an

arbitrary number of inputs.

1.1.2 Componentwise Ultimate Bounds for Perturbed Systems

In Part II of the thesis, we deal with the derivation of componentwise ultimate bounds for continuous-

time, discrete-time and sampled-data perturbed systems, especially when the perturbations arise due to

the use of quantisers.

Quantisation in digital control systems arises due to the use of A/D, D/A and digital processors with

finite precision. Since a digital control system is usually designed ignoring the presence of quantisation,

it is necessary to estimate the effect that quantisation has on the resulting practical implementation. This

effect can be quantified by means of bounds on the difference between the desired and the actual system

behaviour. In particular, it is of interest to obtain ultimate bounds on the system variables (Yakowitz and

Parker, 1973; Green and Turner, 1988; Miller et al., 1988; Farrell and Michel, 1989; Miller et al., 1989).

More recently, motivated by networked control systems, several control schemes have been consid-

ered that involve static memoryless quantisers (see for example, Elia and Mitter, 2001; Ishii and Francis,

2002b, 2003; Ishii et al., 2004; Ishii and Başar, 2005; Fu and Hara, 2005). Most of these works deal with

the design of quantised control strategies to achieve different objectives, and utilise all the information

provided by a quantised variable. However, some aspects of the resulting schemes can also be analysed

by regarding a quantised variable as a perturbed copy of the corresponding unquantised variable. In

particular, ultimate bounds on the system variables may be obtained in this manner when asymptotic

stability is not possible.

Regarding a quantised variable as a perturbed copy of the unquantised variable turns a quantised con-

trol system into a perturbed system. The most general and powerful tool to analyse ultimate bounds in

perturbed systems is the use of Lyapunov functions (see, for example, Khalil, 2002). This approach has

the inherent difficulty of finding a suitable Lyapunov function. For linear systems, however, quadratic

Lyapunov functions can be easily computed. Kofman (2005) proposes a different method to estimate
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ultimate bounds for linear continuous-time perturbed systems with constant perturbation bounds. The

method is based on the analysis of the system in modal coordinates and gives componentwise ultimate

bounds on the system state. An example is given where the suggested method yields ultimate bounds

that are substantially tighter than those derived by means of quadratic Lyapunov functions. The method

of Kofman can be regarded as the continuous-time counterpart to the earlier method of Yakowitz and

Parker (1973).

In Part II of the thesis, we will bring together the above earlier ideas and more recent work. In

particular, motivated by the results of Yakowitz and Parker (1973) and Kofman (2005), we develop

systematic methods to obtain componentwise ultimate bounds in continuous-time, discrete-time and

sampled-data perturbed systems, especially when the perturbations arise due to the use of quantisers.

We allow for different types of quantisers: uniform, logarithmic and semitruncated logarithmic. Our

developments require several extensions of the methods of Yakowitz and Parker and Kofman. We also

show how our methods can be applied to a class of nonlinear systems. The main features of our methods

are their systematic nature and their flexibility in dealing with highly structured perturbation schemes.

This latter feature allows us to deal with systems involving many different quantisers in the same setting.

1.2 Thesis Overview

The contents of the thesis are presented in 6 core chapters, which have been organised into two parts:

the first part deals with stabilisation by means of quantisers, and the second part addresses the derivation

of ultimate bounds in the presence of quantisation. A final chapter presents a summary and conclusions.

Part I (Chapters 2 to 5) addresses quantisation density in the context of quadratic stabilisation of

discrete-time systems by means of static feedback utilising quantisers. The works most related to this

part of the thesis are Elia and Mitter (2001); Elia and Frazzoli (2002); Elia (2002); Kao and Venkatesh

(2002); Fu and Xie (2003, 2005). A more detailed description of the various chapters follows.

In Chapter 2, we first briefly review quadratic stabilisation of linear discrete-time systems and then

focus on quantisation density in the context of multiple-input systems. We generalise the definition

of quantisation density of Elia and Mitter (2001) to multiple-input systems and derive several new

results regarding quantisation density. We also pose the problem of optimising quantisation density

over all quantisers that quadratically stabilise a given multiple-input system and derive an important

result that reveals the structure of a quantiser that optimises density. The different results of this chapter

are employed in the remaining chapters of Part I of the thesis.

In Chapter 3, we focus on the characterisation of quantisers that quadratically stabilise a given

multiple-input system. As a first step toward this characterisation, we consider quantisers having a

form that can be interpreted as the simplest possible in some appropriate sense. We derive necessary

and sufficient conditions for these quantisers to quadratically stabilise a system, and we do this by
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means of explicit geometric considerations. We thus develop a novel geometric approach to quadratic

stabilisation of multiple-input systems by means of quantisers. The geometric approach derived in this

chapter will provide the framework for results derived in subsequent chapters. We also employ this

geometric approach to design quantisers with finite density that can stabilise multiple-input systems

having an arbitrary number of inputs.

In Chapter 4, we deal with single-input systems. For these systems, we enhance the geometric ap-

proach of Chapter 3 to explore quantiser coarseness from a state-space standpoint, as opposed to the

standard input-space-based concept of quantisation density. We introduce a novel type of quantisers,

namely CAQS (Coarse-Almost-Quadratically-Stabilising) quantisers, and analyse the relationships be-

tween CAQS quantisers and quantisers that minimise quantisation density in the standard sense. We

also show how to directly utilise CAQS quantisers to design static output feedback strategies that em-

ploy quantisers of infimum density. We conclude this chapter by showing how to recover a well-known

result on infimum quantisation density by means of our approach.

In Chapter 5, we solve a special case of infimum quantisation density problem for multiple-input

systems. Specifically, we derive the infimum density over all quantisers that quadratically stabilise the

system and have levels in a one-dimensional subspace of the input space. We also show that our result

conflicts with a previously published result, and we provide a counterexample to the latter result.

Part II (Chapters 6 and 7) addresses the derivation of ultimate bounds in systems involving quantisa-

tion. Throughout this part, a quantised variable will be regarded as a perturbed copy of the corresponding

unquantised variable.

In Chapter 6, we derive componentwise ultimate bound expressions for discrete-time and sampled-

data perturbed systems, especially when the perturbations arise due to quantisation. A very important

feature of our results is that they can directly accommodate feedback schemes where quantisers of

different characteristics and/or types affect different signals in the same system. We demonstrate the

applicability and potential of the method by means of an example taken from recent literature on the

topic of control over communication networks.

In Chapter 7, we extend the results of Chapter 6 to deal with perturbed systems where the perturba-

tion bounds have more general forms. In this case, we focus on continuous- and discrete-time perturbed

systems. Since the perturbations are allowed to be bounded by state-dependent functions, the method

can then be applied to nonlinear systems by regarding them as perturbed linear systems.

In Chapter 8, we summarize and give suggestions for future work.

1.3 Thesis Contributions

The main contributions of the thesis are believed to be:
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Chapter 2. We derive an expression for the quantisation density of multivariable quantisers having ra-

dially logarithmically spaced levels (Theorem 2.12). We establish the invariance of the density of

a quantiser under a linear one-to-one transformation (Lemma 2.15). We also derive results (The-

orem 2.17 and Theorem 2.19) that provide insight into the structure of quantisers that optimise

density for a multiple-input system.

Chapter 3. We give a geometric interpretation to the fact that a quantiser quadratically stabilises the

system. We derive necessary and sufficient conditions for a quantised feedback having levels in

a minimum-dimensional subspace to quadratically stabilise a given multiple-input system (The-

orem 3.14 and Theorem 3.17). We also explicitly design quantisers having finite quantisation

density that are able to quadratically stabilise a system having an arbitrary number of inputs (The-

orem 3.22).

Chapter 4. For single-input systems, we explore quantiser coarseness from a state-space standpoint.

We introduce and characterise CAQS quantisers (Theorem 4.16) and analyse the connections

between this state-space approach and the standard input-space-based quantisation density (The-

orems 4.19, 4.21, 4.22 and 4.23). We also show how to directly utilise CAQS quantisers to design

static output feedback strategies that employ infimum density quantisers (Theorem 4.20).

Chapter 5. We derive a new result on infimum quantisation density for multiple-input systems, opti-

mising over the class of quantisers that have levels in a one-dimensional subspace of the input

space (Theorem 5.3). We also show that our result partially replaces an incorrect intermediate

result in Elia and Frazzoli (2002).

Chapter 6. We derive ultimate bound expressions for perturbed discrete-time systems (Theorem 6.5)

and sampled-data systems (Theorem 6.8 and Lemma 6.9). These expressions are believed to be

novel. A key feature that distinguishes these results from other ultimate-bound derivation meth-

ods is the particular componentwise form of the perturbation bound [see (6.36)]. This form for

the perturbation bound is particularly well-suited to the analysis of schemes where different com-

binations of uniform, logarithmic and semitruncated logarithmic quantisers are simultaneously

employed on the same system.

Chapter 7. We extend the results of Chapter 6 to perturbed systems with more general componentwise

perturbation bounds. This extension allows us to derive ultimate bounds for a class of nonlinear

systems by regarding them as perturbed linear systems, with perturbation bounds that may depend

on the system state. We provide systematic methods for the derivation of ultimate bounds (The-

orem 7.4 for continuous-time systems and Theorem 7.8 for discrete-time systems), jointly with

a region of attraction to the ultimate bound (Algorithm 1 and Theorem 7.5 for continuous-time

systems, and Theorem 7.9 for discrete-time systems).
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1.4 Associated Publications and Related Work

Most of the results presented in this thesis have been published by the author in journal and conference

papers. The following list details the relevant publications:

Journal Papers

• H. Haimovich, M. M. Seron and G. C. Goodwin. Geometric Characterization of Multivariable

Quadratically Stabilizing Quantizers. International Journal of Control, 79(8):845-857, 2006.

• E. Kofman, H. Haimovich and M. M. Seron. A Systematic Method to Obtain Ultimate Bounds

for Perturbed Systems. International Journal of Control, 2006. In press.

Conference Papers

• H. Haimovich and M. M. Seron. On infimum quantization density for multiple-input systems. In

Proc. 44th IEEE Conf. on Decision and Control, Seville, Spain, pp. 7692-7697, 2005.

• H. Haimovich. Stabilizing static output feedback via coarsest quantizers. In 16th IFAC World

Congress, Prague, Czech Republic, 2005.

Other related works published by the author during his Ph.D. studies are:

Book Chapters

• T. Perez and H. Haimovich. Output Feedback Optimal Control with Constraints. In G. C. Good-

win, M. M. Seron and J. A. De Doná, Constrained Control and Estimation: An Optimisation

Approach, Springer-Verlag, London, 2005, Chapter 12.

• J. Welsh, H. Haimovich and D. Quevedo. Control over Communication Networks. In G. C.

Goodwin, M. M. Seron and J. A. De Doná, Constrained Control and Estimation: An Optimisation

Approach, Springer-Verlag, London, 2005, Chapter 16.

Journal Papers

• G. C. Goodwin, H. Haimovich, D. E. Quevedo and J. S. Welsh. A moving horizon approach to

networked control system design. IEEE Trans. on Automatic Control, 49(9):1427-1445, 2004.

• T. Perez, H. Haimovich and G. C. Goodwin. On optimal control of constrained linear systems

with imperfect state information and stochastic disturbances. International Journal of Robust and

Nonlinear Control, 14:379-393, 2004.
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Geometric Approach to Quadratic

Stabilisation and Quantisation Density





Chapter 2

Quadratic Stabilisation and

Quantisation Density

2.1 Overview

The concept of quantisation density was first introduced by Elia and Mitter (2001) into the context of

quadratic stabilisation of linear systems. Intuitively, the density of a quantiser is lower than that of

another quantiser if the values of the former are more separated than those of the latter. In this sense,

a quantiser can be regarded as being more efficient in the use of its quantisation levels if its density is

lower.

Elia and Mitter (2001) consider and solve the problem of finding a least dense quantiser over all

quantisers that quadratically stabilise a given linear single-input system. These authors begin by consid-

ering discrete-time systems and approach the problem by dividing it into two parts. First, a least dense

quantiser over all quantisers that quadratically stabilise with respect to a given Control Lyapunov Func-

tion (CLF) (see Definition 2.3) is explicitly found. The density of this quantiser is explicitly derived

and depends, among other quantities, on the matrix defining the given quadratic CLF. The second part

of the approach consists in optimising this density over all matrices that define quadratic CLFs for the

system. The end result of this two-part approach is the derivation of an optimum quantisation density,

corresponding to a least dense quantiser over all quadratically stabilising quantisers, and also to show

how such a least dense quantiser may be constructed. Elia and Mitter then develop a comprehensive

treatment of stabilisation of single-input linear systems with least dense quantisers, providing results

which deal with continuous-time systems, state estimation with quantisers and practical stabilisation

with finite quantisers arising from the truncation of a least dense quantiser.

For multiple-input systems the problem of optimising quantisation density over all quantisers that
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quadratically stabilise a system still remains largely open. Elia and Frazzoli (2002) give a straight-

forward generalisation of the quantisation density definition to two-input systems and provide lower

bounds on the infimum quantisation density for two-input systems. Tighter lower bounds on the infi-

mum quantisation density for two-input systems are given in Elia (2002). Kao and Venkatesh (2002)

analyse different quantisation schemes and their densities for linear multiple-input systems. However,

explicit design of a multivariable quantiser with finite (though not necessarily infimum) quantisation

density is performed only when quadratic stabilisation is possible through the use of a two-dimensional

subspace of the input space.

Throughout Part I of this thesis, we will derive results contributing to the problem of optimising

quantisation density over all quantisers that quadratically stabilise a discrete-time system. We will be

mainly concerned with multiple-input systems though we will also provide a different approach to deal

with single-input systems. We will focus on the optimisation of quantisation density for a given CLF,

which corresponds to the first part of Elia and Mitter’s two-part approach.

In this chapter, we begin with a brief review of quadratic stabilisation of linear time-invariant

discrete-time systems. After this brief review, we focus on quantisation density in the context of

multiple-input systems. We will provide a straightforward generalisation of the definition of quanti-

sation density to multiple-input systems and will then derive several new results in this context.

2.2 Quadratic Stabilisation of Discrete-time Systems

We consider a discrete-time linear time-invariant system, defined by

x(k + 1) = Ax(k) +Bu(k), (2.1)

where A ∈ R
n×n, B ∈ R

n×m, u(k) ∈ R
m is the current control, and x(k) ∈ R

n is the current state.

We assume that the matrix A has at least one eigenvalue outside or on the unit circle, B has full column

rank and the pair (A,B) is stabilisable.

The main ingredient in the analysis of quadratic stabilisation of system (2.1) is a positive definite

quadratic function V : R
n → R+,0, of the form

V (x) = xTPx, where P = P T > 0. (2.2)

Although system (2.1) is linear, applying a nonlinear feedback u = q(x) yields a nonlinear closed-

loop system. The resulting closed-loop system is said to be quadratically stable if and only if it admits

a quadratic Lyapunov function. We thus employ the following definitions.

Definition 2.1 (Quadratic Stability) A time-invariant discrete-time system of the form x(k + 1) =

f(x(k)), where f : R
n → R

n satisfies f(0) = 0, is said to be quadratically stable with respect to
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V if V is a quadratic positive definite function of the form (2.2) and V (f(x)) − V (x) < 0, for all

nonzero x ∈ R
n. It is said to be quadratically stable if there exists V such that x(k + 1) = f(x(k)) is

quadratically stable with respect to V .

Definition 2.2 (Quadratically Stabilising Feedback) A static feedback u = q(x) is said to quadrati-

cally stabilise system (2.1) with respect to V if the closed-loop system x(k+1) = Ax(k)+Bq(x(k)) is

quadratically stable with respect to V . It is said to quadratically stabilise system (2.1) if the closed-loop

system x(k + 1) = Ax(k) +Bq(x(k)) is quadratically stable.

Given a function V of the form (2.2), we will analyse feedback laws that quadratically stabilise

system (2.1) with respect to V . However, not every function V of the form (2.2) will allow such a

feedback law to exist. We therefore employ the following definition.

Definition 2.3 (CLF) A positive definite quadratic function of the form V (x) = xTPx, with P =

PT > 0, is said to be a control Lyapunov function (CLF) for system (2.1) if a static feedback u = q(x)

exists such that the closed-loop system x(k + 1) = Ax(k) + Bq(x(k)) is quadratically stable with

respect to V .

The concept of control Lyapunov function is restricted neither to quadratic functions nor to open-

loop linear systems, and is thus much more general than what we will utilise in this thesis. The reader

is referred to Sontag (1998) for further information.

In the sequel, we will employ the increment of a function V of the form (2.2) along the trajectories

of system (2.1), defined as

∆V (x, u) , V (Ax+Bu) − V (x) = xTLx+ 2xTMu+ uTBTPBu, (2.3)

where

L , ATPA− P, M , ATPB. (2.4)

Since, by assumption, P = P T > 0 and B has full column rank, then BTPB > 0 and hence BTPB is

invertible. We then define the matrices

Q , M(BTPB)−1MT − L and KGD , −(BTPB)−1MT . (2.5)

The following result shows how to determine whether a given function V of the form (2.2) is a CLF for

system (2.1).

Lemma 2.4 A function V : R
n → R+,0 of the form (2.2) is a CLF for system (2.1) if and only ifQ > 0,

where Q was defined in (2.5) with L and M as in (2.4).

Proof. Necessity. Consider ∆V (x, u) in (2.3). Since P > 0 andB has full column rank, thenBTPB >

0. Then, given x ∈ R
n, there exists a unique u ∈ R

m that minimises the increment ∆V (x, u) over
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all u ∈ R
m. This minimiser can be straightforwardly calculated by finding the partial derivative of

∆V (x, u) with respect to u and equating to zero. Thus, we have

∂∆V (x, u)

∂u
= 2xTM + 2uTBTPB. (2.6)

Equating (2.6) to zero and solving for u yields u = KGDx, with KGD as in (2.5). Given x ∈ R
n, then

u = KGDx is the control action that yields the least increment of V along the trajectories of system

(2.1). Therefore, given any function q : R
n → R

m, then ∆V (x,KGDx) ≤ ∆V (x, q(x)) for all x ∈ R
n.

Since V is a CLF for system (2.1), then a feedback u = q(x) exists such that ∆V (x, q(x)) < 0, for all

nonzero x ∈ R
n. Hence,

∆V (x,KGDx) ≤ ∆V (x, q(x)) < 0 (2.7)

for all nonzero x ∈ R
n. Using KGD from (2.5), and (2.3), yields

∆V (x,KGDx) = −xTQx (2.8)

with Q as defined in (2.5). Combining (2.7) and (2.8), it follows that −xTQx < 0, for all nonzero

x ∈ R
n, whence Q > 0 follows.

Sufficiency. Consider the static feedback u = KGDx, with KGD as in (2.5), and ∆V (x, u) in (2.3).

Note that ∆V (x,KGDx) = −xTQx < 0, for all nonzero x ∈ R
n because Q > 0. Hence, V is a CLF

for system (2.1). �

2.3 Quadratic Stabilisation via Quantised Feedback

We next analyse quadratic stabilisation of system (2.1) when the control is a static feedback based on

a quantised measurement of the state. Note that to achieve quadratic stabilisation of the open-loop

unstable system (2.1) by means of a quantised static feedback u = q(x), a quantiser q with an infinite

number of levels is needed. We employ the following quantiser definition.

Definition 2.5 (Quantiser) A quantiser q is a discrete-range function q : R
r → R

s of the form

q(x) = ui if and only if x ∈ Ri, for i ∈ Z. (2.9)

The sets Ri are called the quantisation regions of q and ui is called the value or level of q corresponding

to Ri. The sets Ri, i ∈ Z, satisfy

⋃

i∈Z

Ri = R
r, and Ri ∩Rj = ∅ whenever i 6= j. (2.10)

Since we will characterise quantisers that quadratically stabilise system (2.1), we employ the fol-

lowing definition.
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Definition 2.6 (QS Quantiser) Consider a CLF V of the form (2.2) and its increment along the trajec-

tories of system (2.1), ∆V (x, u) in (2.3). A quantiser q : R
n → R

m that satisfies q(0) = 0 and

∆V (x, q(x)) < 0, for all x ∈ R
n \ {0}, (2.11)

is called quadratically stabilising (QS) with respect to V . We say that a quantiser q is just ‘QS’ instead

of ‘QS with respect to V ’ when the CLF V is clear from the context.

2.4 Quantisation Density

The density of quantisation, as introduced by Elia and Mitter (2001), is aimed at quantifying the ef-

ficiency of a quantiser in the use of its levels. It is well-known that any quantiser that quadratically

stabilises a given open-loop-unstable discrete-time LTI system necessarily has an infinite number of

levels, which become increasingly closer near the origin. Therefore, the density of quantisation has

been defined to provide a finite value for quantisers having these features (for example, for logarithmic

quantisers).

The concept of quantisation density, as introduced in Elia and Mitter (2001), applies to symmetric

quantisers with scalar levels, that is, quantisers q : R
r → R that satisfy q(x) = −q(−x) for all x ∈ R

r.

A generalisation of this concept to quantisers with two-dimensional levels (q : R
r → R

2) appears in

Elia and Frazzoli (2002) and Elia (2002). We next provide a straightforward generalisation to quantisers

with levels of arbitrary dimension.

Definition 2.7 (Quantisation Density) Given a quantiser q : R
r → R

s, let U(q) denote the range of

q, that is,

U(q) , {u ∈ R
s : u = q(x) for some x ∈ R

r}. (2.12)

For ε ∈ (0, 1], let Cs(ε) be the following region in R
s:

Cs(ε) , {u ∈ R
s : ε ≤ ‖u‖2 ≤ 1/ε}. (2.13)

The density of q, denoted η(q), is defined as follows:

η(q) , lim sup
ε→0

#[U(q) ∩ Cs(ε)]
−2 ln ε

, (2.14)

where #[·] denotes the number of elements (cardinality) of a set.

The measure of density in Definition 2.7 coincides with the one given in Elia and Mitter (2001) when

the output of the quantiser q is a scalar (that is, s = 1) and q satisfies q(x) = −q(−x). If a quantiser q

has these features, then note that

#[U(q) ∩ C1(ε)] = 2#[U(q) ∩ C1
+(ε)], (2.15)
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where C1
+(ε) is the set defined as

C1
+(ε) , {u ∈ R : ε ≤ u ≤ 1/ε}.

Then, from (2.14) and (2.15), we have

η(q) = lim sup
ε→0

#[U(q) ∩ C1(ε)]

−2 ln ε
= lim sup

ε→0

#[U(q) ∩ C1
+(ε)]

− ln ε
.

The right-hand side of the expression above is precisely the density of q as defined in Elia and Mitter

(2001). The density of quantisation of Definition 2.7 is also equal to one half the density defined in Elia

and Frazzoli (2002) and Elia (2002) for quantisers having two-dimensional levels.

According to (2.14), the density of a quantiser with a finite number of levels is zero, since then

the numerator of the right-hand side of (2.14) is bounded and the denominator grows without bound as

ε → 0. Also, a quantiser with radially uniformly spaced values has infinite density, since in this case

the numerator grows linearly as ε → 0 while the denominator grows logarithmically. Note also that the

density of a quantiser q is infinite if, for some 0 < ε ≤ 1, q has an infinite number of levels in the set

Cs(ε).

The quantisation density measure of Definition 2.7 is finite for quantisers having radially logarith-

mically spaced values. We will verify this statement in Theorem 2.12. We require the following two

preliminary results.

Lemma 2.8 Let 0 < ρ < 1 and let {εin}∞n=−1 for i = 1, . . . , N be N sequences, each one satisfying

εi−1 = 1, ρ ≤ εi0 ≤ 1, and εin = ρnεi0, ∀n ∈ Z+. (2.16)

Let fi : (0, 1] → Z+,0 for i = 1, . . . , N be N functions, each one satisfying, for n ∈ Z+,0,

fi(ε) = n if and only if εin < ε ≤ εin−1. (2.17)

Define f : (0, 1] → Z+,0 by

f(ε) =
N∑

i=1

fi(ε). (2.18)

Consider {εi0}Ni=1 and sort its N elements into nonincreasing order to obtain {ζi}Ni=1 satisfying

ζi+1 ≤ ζi for i = 1, . . . , N − 1. (2.19)

Define the sequence {εn}∞n=−1 as

εn =







1 if n = −1,

ρb n
N cζ(n mod N)+1 if n ∈ Z+,0,

(2.20)

where bbc denotes the greatest integer not greater than b, and n mod N denotes the remainder of

dividing n by N . Then,
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i) εn ≤ εn−1 for all n ∈ Z+,0.

ii) limn→∞ εn = 0.

iii) If n ∈ Z+,0, then

f(ε) = n if and only if εn < ε ≤ εn−1.

Proof. i) If n = 0, from (2.20) we have ε0 = ζ1 and ε−1 = 1. Since, by definition, ζ1 = εi0 for some

i ∈ {1, . . . , N} and εi0 ≤ 1 from (2.16), then ε0 = ζ1 ≤ 1 = ε−1, establishing i) for n = 0.

If n = kN , with k ∈ Z+, then from (2.20) we have εn = ρkζ1 and εn−1 = ρk−1ζN . By definition

of ζi, and using (2.16), we have ζ1 ≤ 1 and ρ ≤ ζN . Multiplying the former inequality by ρk > 0, and

the latter by ρk−1 > 0, yields εn = ρkζ1 ≤ ρk ≤ ρk−1ζN = εn−1, establishing that εn ≤ εn−1 for

n = kN with k ∈ Z+. Note that this already establishes i) if N = 1.

If n 6= kN for all k ∈ Z+,0, then
⌊
n
N

⌋
=
⌊
n−1
N

⌋
and

n mod N > (n− 1) mod N. (2.21)

From (2.20), then

εn = ρrζ(n mod N)+1 and εn−1 = ρrζ((n−1) mod N)+1, (2.22)

where r ,
⌊
n
N

⌋
=
⌊
n−1
N

⌋
. Since ρ > 0, from (2.22), (2.21) and (2.19), it follows that εn ≤ εn−1

whenever n 6= kN for all k ∈ Z+,0. We have thus established i).

ii) This follows straightforwardly from (2.20) and since 0 < ρ < 1.

iii) Using i) it then follows that εn < ε ≤ εn−1 if and only if the following N sets of inequalities

hold:

εn+j < ε ≤ εn−N+j , for j = 0, . . . , N − 1, (2.23)

where we define εk , 1 for k = −2, . . . ,−N if N > 1. Using (2.20), note that

εn+j = ρbn+j
N cζ((n+j) mod N)+1, and (2.24)

εn−N+j = ρbn+j
N c−1ζ((n+j) mod N)+1. (2.25)

Recall that ζi for i = 1, . . . , N are obtained by sorting the values {εi0}Ni=1 and hence

ζi = ε
k(i)
0 for i = 1, . . . , N, (2.26)

where the function k : {1, . . . , N} → {1, . . . , N} is bijective (the function k is a permutation). There-

fore, combining (2.23)–(2.26), we have that εn < ε ≤ εn−1 if and only if

ρbn+j
N cεk(((n+j) mod N)+1)

0 < ε ≤ ρbn+j
N c−1ε

k(((n+j) mod N)+1)
0 (2.27)
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for j = 0, . . . , N − 1. From (2.16), (2.17) and (2.27), then εn < ε ≤ εn−1 if and only if

fk̄n(j)(ε) =

⌊
n+ j

N

⌋

for j = 0, . . . , N − 1, (2.28)

where we have defined k̄n(j) = k(((n+j) mod N)+1). Note that the function k̄n : {0, . . . , N−1} →
{1, . . . , N} is also bijective.

Sufficiency. Recalling (2.18) and using (2.28), then εn < ε ≤ εn−1 implies that

f(ε) =

N∑

i=1

fi(ε) =

N−1∑

j=0

fk̄n(j)(ε) =

N−1∑

j=0

⌊
n+ j

N

⌋

= n. (2.29)

Necessity. Proving necessity in iii) is equivalent to proving that provided n ∈ Z+,0, if ε /∈ (εn, εn−1],

then f(ε) 6= n. Since ε ∈ (εn, εn−1] if and only if (2.28) holds, then ε /∈ (εn, εn−1] is equivalent to

fk̄n(j)(ε) 6=
⌊
n+ j

N

⌋

for some j ∈ {0, . . . , N − 1}. (2.30)

Note that the functions fi for i = 1, . . . , N are nonincreasing, and that we already know that f(ε) =
∑N
i=1 fi(ε) = n for all εn < ε ≤ εn−1. We also know, from (2.28) and (2.30), that if ε /∈ (εn, εn−1],

then at least one of the values fi(ε) will differ from its value for ε ∈ (εn, εn−1]. Note then that f(ε) must

also differ from its value for ε ∈ (εn, εn−1], because the functions fi are all nonincreasing. Therefore,

we have shown that if ε /∈ (εn, εn−1], then f(ε) 6= n, concluding the proof. �

Lemma 2.9 Let 0 < ρ < 1 and let u ∈ R
s satisfy

ρ < ‖u‖2 ≤ 1. (2.31)

Define the set

U , {ρju : j ∈ Z}, (2.32)

the function

f : (0, 1] → Z+,0, f(ε) , #[U ∩ Cs(ε)], (2.33)

where Cs(ε) is the set defined in (2.13), the quantities

φ , min{‖u‖2 , ρ/ ‖u‖2} and ψ , max{‖u‖2 , ρ/ ‖u‖2}, (2.34)

and the sequence {εn}∞n=−1,

εn =







1 if n = −1,

ρn/2ψ if n ∈ Z+,0 and is even,

ρ(n−1)/2φ if n ∈ Z+,0 and is odd.

(2.35)

Then, the sequence {εn}∞n=−1 is nonincreasing, satisfies limn→∞ εn = 0 and if n ∈ Z+,0, then

f(ε) = n if and only if εn < ε ≤ εn−1.
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Proof. From (2.32), we can write

U = U+ ] U−, (2.36)

where

U+ , {ρju : j ∈ Z+,0} and U− , {ρ−ju : j ∈ Z+}, (2.37)

and ] denotes disjoint union. From (2.33), then

f = f1 + f2, (2.38)

where f1 : (0, 1] → Z+,0 and f2 : (0, 1] → Z+,0 are defined by

f1(ε) , #[U+ ∩ Cs(ε)] and f2(ε) , #[U− ∩ Cs(ε)]. (2.39)

For each ε ∈ (0, 1], the integers f1(ε) and f2(ε) are the number of elements of U+ and U−, respectively,

that are contained in Cs(ε). Define the sequences {ε1n}∞n=−1 and {ε2n}∞n=−1 by

ε1n , ρn ‖u‖2 and ε2n ,
ρn+1

‖u‖2

, if n ∈ Z+,0,

ε1−1 , ε2−1 , 1.

Note that ε10 = ‖u‖2 satisfies (2.31). Operating on (2.31) yields ρ ≤ ρ
‖u‖

2

= ε20 < 1. Note then that

(2.16) is satisfied for i = 1, 2. From (2.13), (2.37) and (2.39), then if n ∈ Z+,0,

f1(ε) = n if and only if ε1n < ε ≤ ε1n−1, (2.40)

f2(ε) = n if and only if ε2n < ε ≤ ε2n−1. (2.41)

Then, (2.17) is satisfied for i = 1, 2. Defining ζ1 , ψ and ζ2 , φ and recalling (2.34), it follows

that {ζi}2
i=1 is obtained by sorting the values ε10 = ‖u‖2 and ε20 = ρ/ ‖u‖2 into nonincreasing order.

Moreover, for n ∈ Z+,0 we can rewrite (2.35) as

εn =







1 if n = −1,

ρbn
2 cζ(n mod 2)+1 if n ∈ Z+,0.

(2.42)

Therefore, Lemma 2.8 proves the result. �

Example 2.10 To gain some insight into the functions f , f1 and f2 defined in Lemma 2.9 and its proof,

consider ρ = 0.7, u = [0.9 0]T ∈ R
2 and the set U defined in (2.32). We have ‖u‖2 = 0.9 and

ρ/ ‖u‖2 ≈ 0.778. From (2.34) then φ = 0.778 and ψ = 0.9. Figure 2.1 depicts the functions f1 and

f2 defined in (2.39). Note that, for n ∈ Z+, f1(ε) = n if and only if ρn ‖u‖2 < ε ≤ ρn−1 ‖u‖2 and

f2(ε) = n if and only if ρn+1/ ‖u‖2 < ε ≤ ρn/ ‖u‖2. Also, f1(ε) = 0 if and only if ‖u‖2 < ε ≤ 1 and

f2(ε) = 0 if and only if ρ/ ‖u‖2 < ε ≤ 1.
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Figure 2.1: The functions f1 and f2 defined in (2.39) with u = [0.9 0]T and ρ = 0.7. a) f1. b) f2.
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Figure 2.2: The function f defined in (2.33), with u = [0.9 0]T and ρ = 0.7.

Figure 2.2 depicts the function f defined in (2.33), which satisfies f = f1 + f2, and the sequence

{εn}∞n=−1 defined in (2.35). We can verify in Figure 2.2 that f(ε) = n if and only if εn < ε ≤ εn−1,

whenever n ∈ Z+,0.

Example 2.11 As another example of the application of Lemma 2.9, consider ρ = 0.7, u = [
√

2/2
√

2/2 ]T

and the set U defined in (2.32). We have ‖u‖2 = 1 and ρ/ ‖u‖2 = ρ = 0.7. From (2.34) then φ = 0.7

and ψ = 1. Figure 2.3 depicts the functions f1 and f2 defined in (2.39). Figure 2.4 depicts the func-

tion f defined in (2.33). The sequence {εn}∞n=−1 defined in (2.35) is ε−1 = ε0 = 1, ε1 = ε2 = 0.7,

ε3 = ε4 = 0.72, . . . . Lemma 2.9 states that, for n ∈ Z+,0, f(ε) = n if and only if εn < ε ≤ εn−1. Note

that f(ε) 6= 2 for all ε ∈ (0, 1]. Note also that this fact does not invalidate the statement “f(ε) = 2 if

and only if ε2 < ε ≤ ε1”, because ε2 = ε1 and hence ε2 < ε ≤ ε1 is never true.

The following result provides the density of a quantiser having radially logarithmically spaced levels.



2.4 Quantisation Density 23

ε0

5

3

1
2

4

f2(ε)

. . .

ε0

. . .

5

3

1
2

4

6

f1(ε)

a) b)
ρφ φ = 0.7ρ2ψ ρψ = 0.7 ψ = 1

· · ·· · ·
1ρ

‖u‖2

ρ2

‖u‖2
‖u‖

2
= 1ρ ‖u‖

2
ρ2 ‖u‖

2

Figure 2.3: The functions f1 and f2 defined in (2.39) with u = [
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Figure 2.4: f = f1 + f2.

Theorem 2.12 Let q : R
r → R

s be a quantiser and let the range of q, U(q), satisfy

U(q) =

N⊎

i=1

Ui ∪ {0}, (2.43)

where the sets Ui, i = 1, . . . , N , satisfy

Ui = {ρjui : j ∈ Z}, (2.44)

with 0 < ρ < 1 and ui ∈ R
s \ {0}. Then,

η(q) =
N

− ln ρ
. (2.45)

Proof. Note that replacing ui by ρkui in (2.44) yields identical Ui, whenever k ∈ Z and for i =

1, . . . , N . Therefore, without loss of generality we can assume that ui, for i = 1, . . . , N , satisfy

ρ < ‖ui‖2 ≤ 1. (2.46)
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Consider the set Cs(ε) defined in (2.13) and note that 0 /∈ Cs(ε) for ε ∈ (0, 1]. Then, since U(q)

satisfies (2.43), it follows that U(q) ∩ Cs(ε) =
⊎N
i=1[Ui ∩ Cs(ε)]. Moreover, note that each Ui, for

i = 1, . . . , N , satisfies

Ui = U+
i ] U−

i , where

U+
i = {ρjui : j ∈ Z+,0} and U−

i = {ρ−jui : j ∈ Z+}. (2.47)

Therefore,

U(q) ∩ Cs(ε) =

(
N⊎

i=1

[U+
i ∩ Cs(ε)]

)

]
(

N⊎

i=1

[U−
i ∩ Cs(ε)]

)

and hence

#[U(q) ∩ Cs(ε)] =

(
N∑

i=1

#[U+
i ∩ Cs(ε)]

)

+

(
N∑

i=1

#[U−
i ∩ Cs(ε)]

)

. (2.48)

Define, for i = 1, . . . , 2N , the functions

fi : (0, 1] → Z+,0, fi(ε) =







#[U+
i ∩ Cs(ε)] if i ∈ {1, . . . , N},

#[U−
i−N ∩ Cs(ε)] if i ∈ {N + 1, . . . , 2N},

(2.49)

and

f : (0, 1] → Z+,0, f(ε) ,

2N∑

i=1

fi(ε). (2.50)

From (2.48)–(2.50), it follows that

#[U(q) ∩ Cs(ε)] = f(ε) (2.51)

For each ε ∈ (0, 1], the quantities fi(ε) indicate how many elements of U+
i (for i = 1, . . . , N ) or of

U−
i−N (for i = N + 1, . . . , 2N ) are contained in Cs(ε), and f(ε) indicates how many elements of U(q)

are contained in Cs(ε).

Define the 2N sequences {εin}∞n=−1, for i = 1, . . . , 2N , as

εin =







1 if n = −1,

ρn ‖ui‖2 if n ∈ Z+,0, i ∈ {1, . . . , N},

ρn+1/ ‖ui−N‖2 if n ∈ Z+,0, i ∈ {N + 1, . . . , 2N}.

(2.52)

From (2.46) and (2.52), then ρ < εi0 ≤ 1 for i = 1, . . . , N . Operating on (2.46) yields ρ ≤ ρ/ ‖ui‖2 <

1, and using (2.52) then ρ ≤ εi0 < 1 for i = N + 1, . . . , 2N . Then, note that (2.16) holds for i =

1, . . . , 2N . From (2.13), (2.46), (2.47), (2.49) and (2.52), we have, for i = 1, . . . , 2N ,

fi(ε) = n if and only if εin < ε ≤ εin−1,
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and hence (2.17) holds for i = 1, . . . , 2N . Sort the 2N elements {εi0}2N
i=1 into nonincreasing order to

obtain {ζi}2N
i=1 satisfying ζi+1 ≤ ζi for i = 1, . . . , 2N − 1. Define the sequence {εn}∞n=−1 as

εn =







1 if n = −1,

ρb n
2N cζ(n mod 2N)+1 if n ∈ Z+,0.

(2.53)

Then, Lemma 2.8 iii) shows that, for n ∈ Z+,0, f(ε) = n if and only if εn < ε ≤ εn−1.

From (2.14) and (2.51), we can write

η(q) = lim sup
ε→0

f(ε)

−2 ln ε
. (2.54)

By definition of lim sup, and since f is defined only on the interval (0, 1], we have

lim sup
ε→0

f(ε)

−2 ln ε
= lim
ε→0+

sup
x∈(0,ε]

f(x)

−2 lnx
. (2.55)

The sequence {εn}∞n=−1 satisfies ε−1 = 1 by definition. By Lemma 2.8 i) and ii), then εn ≤ εn−1 for all

n ∈ Z+,0 and limn→∞ εn = 0. Then, given ε ∈ (0, 1], we can find k ∈ Z+,0 such that εk < ε ≤ εk−1.

Hence

sup
x∈(0,εk]

f(x)

−2 lnx
≤ sup
x∈(0,ε]

f(x)

−2 lnx
≤ sup
x∈(0,εk−1]

f(x)

−2 lnx
(2.56)

and

sup
x∈(0,εk−1]

f(x)

−2 lnx
= sup
n≥k

(

sup
x∈(εn,εn−1]

f(x)

−2 lnx

)

. (2.57)

Since, by Lemma 2.8 iii), f(x) = n if and only if εn < x ≤ εn−1, then

sup
x∈(εn,εn−1]

f(x)

−2 lnx
= sup
x∈(εn,εn−1]

n

−2 lnx
=

n

−2 ln εn−1
. (2.58)

Combining (2.57) and (2.58) yields

sup
x∈(0,εk−1]

f(x)

−2 lnx
= sup
n≥k

n

−2 ln εn−1
. (2.59)

Substituting (2.59) into (2.56) and taking limits yields

lim
k→∞

sup
n≥k+1

n

−2 ln εn−1
≤ lim
ε→0+

sup
x∈(0,ε]

f(x)

−2 lnx
≤ lim
k→∞

sup
n≥k

n

−2 ln εn−1

and hence, recalling (2.54) and (2.55), it follows that

η(q) = lim sup
ε→0

f(ε)

−2 ln ε
= lim sup

n→∞

n

−2 ln εn−1
. (2.60)

From (2.53), we have, for n ∈ Z+,0,

ln εn = ln ζ(n mod 2N)+1 +
⌊ n

2N

⌋

ln ρ.

Then, note that

lim
n→∞

n

−2 ln εn−1
= lim
n→∞

n+ 1

−2 ln εn
= lim
n→∞

n+ 1

−2
(
ln ζ(n mod 2N)+1 +

⌊
n

2N

⌋
ln ρ
) . (2.61)
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Since ln ζ(n mod 2N)+1 is bounded for all n ∈ Z+,0, it follows that

lim
n→∞

n+ 1

−2 ln εn
= lim
n→∞

n+ 1

−2
⌊
n

2N

⌋
ln ρ

.

Also, since
⌊
n

2N

⌋
= n

2N + ∆(n), where |∆(n)| < 1 for all n ∈ Z+,0, then

lim
n→∞

n+ 1

−2 ln εn
= lim
n→∞

n+ 1

−2
(
n

2N + ∆(n)
)
ln ρ

= lim
n→∞

n+ 1

−2 n
2N ln ρ

=
N

− ln ρ
. (2.62)

Combining (2.61) and (2.62) yields

lim
n→∞

n

−2 ln εn−1
=

N

− ln ρ
. (2.63)

Since limn→∞
n

−2 ln εn−1
exists, then

lim sup
n→∞

n

−2 ln εn−1
= lim
n→∞

n

−2 ln εn−1
.

The result then follows from (2.60) and (2.63). �

From expression (2.45), given by Theorem 2.12 for the density of a quantiser q whose range U(q)

satisfies (2.43) and (2.44), it follows that the lower ρ is, the lower the density of the quantiser q (recall

that 0 < ρ < 1). Note that the lower ρ is, the more radially separated the values of q are. In this

sense, we see that the density of quantisation of Definition 2.7 is related to the radial separation of the

quantisation levels of a quantiser, and that lower densities correspond to greater separation.

Theorem 2.12 shows that a quantiser q : R
r → R

s with range U(q) = {ρju1 : j ∈ Z} ∪ {0},

where 0 < ρ < 1 and u1 ∈ R
s \ {0} has a density η(q) = −1/ ln ρ. Moreover, the density of a

quantiser whose range is a union of such sets is equal to the sum of the densities corresponding to each

such set. Theorem 2.12 therefore shows that the density of a quantiser is additive over disjoint sets of

the form {ρjui : j ∈ Z}. In particular, when N = 2 and u2 = −u1, application of Theorem 2.12

yields η(q) = 2/ − ln ρ. This value of the density is the one employed in Elia and Mitter (2001), and

corresponds to symmetric scalar logarithmic quantisers.

We next provide an example of the calculations performed in the proof of Theorem 2.12, which

derived the density of a quantiser with radially logarithmically separated levels.

Example 2.13 Consider a quantiser q : R
n → R

2 with range U(q) = U1 ∪ U2 ∪ {0}, where Ui =

{ρkui : k ∈ Z}, i = 1, 2, ρ = 0.7, u1 = [0.9 0]T , and u2 = [
√

2/2
√

2/2]T . Figure 2.5 a) shows

the range of q, U(q). Note that U1 and U2 are disjoint. To find the density of this quantiser, we need to

evaluate (2.14). We have

#[U(q) ∩ C2(ε)] =
2∑

i=1

#[Ui ∩ C2(ε)]

=

(
2∑

i=1

#[U+
i ∩ C2(ε)]

)

+

(
2∑

i=1

#[U−
i ∩ C2(ε)]

)

=

4∑

i=1

fi(ε),
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where U+
i and U−

i , for i = 1, 2, are the sets defined in (2.47), and fi, for i = 1, . . . , 4 are the functions

defined in (2.49). Figures 2.5 b) and c) show how to determine the value #[U(q) ∩ C2(ε)], for ε = 0.7.

Figure 2.5 b) shows the set U(q) = U+
1 ] U+

2 ] U−
1 ] U−

2 ] {0} and the set C2(0.7), and Figure 2.5 c)

shows the set

U(q) ∩ C2(0.7) = [U+
1 ∩ C2(0.7)] ] [U+

2 ∩ C2(0.7)] ] [U−
1 ∩ C2(0.7)] ] [U−

2 ∩ C2(0.7)].

Note that functions f1 and f3 in this example coincide with f1 and f2 of Example 2.10, respectively, and

f2 and f4 in this example coincide with f1 and f2 of Example 2.11, respectively. From Figure 2.5 c), we
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Figure 2.5: a) U(q). b) U+
1 , U+

2 , U−
1 , U−

2 and C2(0.7). c) U(q) ∩ C2(0.7).

see that

#[U+
1 ∩ C2(0.7)] = f1(0.7) = 1,

#[U+
2 ∩ C2(0.7)] = f2(0.7) = 2,

#[U−
1 ∩ C2(0.7)] = f3(0.7) = 1, and

#[U−
2 ∩ C2(0.7)] = f4(0.7) = 1.

We have ‖u1‖2 = 0.9, ‖u2‖2 = 1, ρ/ ‖u1‖2 = 7/9 ≈ 0.778 and ρ/ ‖u2‖2 = 0.7. From (2.52), we have

ε10 = 0.9, ε20 = 1, ε30 = 0.778 and ε40 = 0.7. Sorting these four values into nonincreasing order yields

ζ1 = 1, ζ2 = 0.9, ζ3 = 0.778 and ζ4 = 0.7. Figure 2.6 a) depicts the function f(ε) defined in (2.50),

which satisfies (2.51), and the sequence {εn}∞n=−1 defined in (2.53). Note that f(ε) = n if and only if

εn < ε ≤ εn−1, whenever n ∈ Z+. Note that f(ε) 6= 4 whenever ε ∈ (0, 1]. Note also that this fact does

not invalidate the statement “f(ε) = 4 if and only if ε4 < ε ≤ ε3”, because ε3 = ε4 and hence ε4 < ε ≤
ε3 is never true. Figure 2.6 b) shows the function f(ε)/ − 2 ln ε. Note that this function is increasing

on any interval (εn, εn−1] and hence supx∈(εn,εn−1]
f(x)

−2 lnx = f(εn−1)
−2 ln εn−1

= n
−2 ln εn−1

, verifying (2.58).

According to Theorem 2.12, the density of the quantiser q in this example is η(q) = 2/− ln 0.7 ≈ 5.607.

This value is also depicted in Figure 2.6 b).

Remark 2.14 A quantiser q : R
r → R

s, whose range, U(q), is the cartesian product of the ranges of s

scalar logarithmic quantisers, has infinite density. This follows since U(q) will have an infinite number
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Figure 2.6: a) The function f(ε). b) f(ε)/− 2 ln ε.

of elements in the set Cs(ε), for some value of ε satisfying 0 < ε ≤ 1. Figure 2.7 shows the range, U(q),

of a quantiser q : R
r → R

2, having the property that

U(q) ⊃ {ρk1a : k ∈ Z} × {ρk2b : k ∈ Z}.

Figure 2.7 also shows the set Cs(ε) for some value of ε satisfying 0 < ε ≤ 1. Note that Cs(ε) contains

an infinite number of elements of U(q) and hence η(q) = ∞.

ε

1/ε
b

a

Figure 2.7: Quantiser with range corresponding to the cartesian product of the ranges of 2 scalar loga-

rithmic quantisers. Only positive quadrant shown.

We next provide another result related to quantisation density. One useful feature of linear systems

is that they may be easily analysed in different coordinate frames. However, when a linear system is

connected to a quantiser, the resulting system is in general not linear. It would then be useful to know

whether quantisation density changes under linear transformations. The following result shows that
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the density of a quantiser is preserved under a linear transformation, provided the transformation is

one-to-one.

Lemma 2.15 Let q̄ : R
r → R

p be a quantiser, let W ∈ R
s×p be a matrix having linearly independent

columns and let q : R
r → R

s be defined by q(x) = Wq̄(x), for all x ∈ R
r. Then, η(q) = η(q̄).

Proof. Let U(·) denote the range of a quantiser, and note that U(q) ⊂ R
s and U(q̄) ⊂ R

p. Let Cs(ε)

and Cp(ε) be defined as in (2.13). Define the functions

f : (0, 1] → Z+,0 ∪ {∞}, f(ε) , #[U(q) ∩ Cs(ε)] (2.64)

f̄ : (0, 1] → Z+,0 ∪ {∞}, f̄(ε) , #[U(q̄) ∩ Cp(ε)]. (2.65)

By definition of q, we have U(q) = WU(q̄) and hence

f(ε) = #[U(q) ∩ Cs(ε)] = #[WU(q̄) ∩ Cs(ε)]

= # {Wū : ū = q̄(x), x ∈ R
r, ε ≤ ‖Wū‖2 ≤ 1/ε}

= # {ū : ū = q̄(x), x ∈ R
r, ε ≤ ‖Wū‖2 ≤ 1/ε} , (2.66)

where the last equality above follows since W has linearly independent columns. Note that we may

bound ‖Wū‖2 by

αm ‖ū‖2 ≤ ‖Wū‖2 ≤ αM ‖ū‖2 , (2.67)

where 0 < αm ≤ αM . Define

α1 , min

{

αm,
1

αM

}

and α2 , max

{

αM ,
1

αm

}

, (2.68)

and note that 0 < α1 ≤ 1 ≤ α2. From (2.65), we have, for any ε ∈ (0, 1/α2],

f̄(α2ε) = #

{

ū : ū = q̄(x), x ∈ R
r, α2ε ≤ ‖ū‖2 ≤ 1

α2ε

}

. (2.69)

We have

α2ε ≤ ‖ū‖2 =⇒ α2αmε ≤ αm ‖ū‖2

(2.67)
=⇒ α2αmε ≤ ‖Wū‖2

(2.68)
=⇒ ε ≤ ‖Wū‖2 (2.70)

and

‖ū‖2 ≤ 1

α2ε
=⇒ α2 ‖ū‖2 ≤ 1

ε

(2.68)
=⇒ αM ‖ū‖2 ≤ 1

ε

(2.67)
=⇒ ‖Wū‖2 ≤ 1

ε
. (2.71)

Combining (2.70) and (2.71) yields

α2ε ≤ ‖ū‖2 ≤ 1

α2ε
=⇒ ε ≤ ‖Wū‖2 ≤ 1

ε
. (2.72)

From (2.66), (2.69) and (2.72), it follows that f̄(α2ε) ≤ f(ε). In a similar manner, we can show that

f(ε) ≤ f̄(α1ε), establishing that

f̄(α2ε) ≤ f(ε) ≤ f̄(α1ε), for all ε ∈ (0, 1/α2]. (2.73)
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From (2.73), and recalling that α2 ≥ 1 and hence 1/α2 ≤ 1, then

f̄(α2ε)

−2 ln ε
≤ f(ε)

−2 ln ε
≤ f̄(α1ε)

−2 ln ε
, for all ε ∈ (0, 1/α2].

Therefore,

lim sup
ε→0

f̄(α2ε)

−2 ln ε
≤ lim sup

ε→0

f(ε)

−2 ln ε
≤ lim sup

ε→0

f̄(α1ε)

−2 ln ε
. (2.74)

Note that ln ε = ln(αε) − lnα whenever ε > 0 and α > 0. From (2.64) and recalling the definition of

quantisation density in (2.14), it follows that

lim sup
ε→0

f(ε)

−2 ln ε
= η(q).

We can thus rewrite (2.74) as

lim sup
ε→0

f̄(α2ε)

−2 ln(α2ε) + lnα2
≤ η(q) ≤ lim sup

ε→0

f̄(α1ε)

−2 ln(α1ε) + lnα1
. (2.75)

Since [− ln(αε)] → ∞ as ε→ 0+, for any α > 0, then it follows from (2.75) that

lim sup
ε→0

f̄(α2ε)

−2 ln(α2ε)
≤ η(q) ≤ lim sup

ε→0

f̄(α1ε)

−2 ln(α1ε)
. (2.76)

From (2.65) and the definition of quantisation density, then (2.76) implies that

η(q̄) ≤ η(q) ≤ η(q̄), (2.77)

whence η(q) = η(q̄). �

Lemma 2.15 shows that if two quantisers are related via a one-to-one linear transformation, then

their densities are equal. This result will be repeatedly used in the sequel.

2.5 Infimum Quantisation Density

As we have previously mentioned, Elia and Mitter (2001) pose and solve the problem of finding the

infimum quantisation density required to quadratically stabilise a given single-input system. We next

consider this problem in the context of multiple-input systems. Subsequently, we derive a first result

regarding infimum quantisation density in this context.

We thus consider the following problem:

Problem 2.16 Given system (2.1) and a CLF V of the form (2.2), solve

η? = inf η(q), subject to (2.78)

q is a quantiser and is QS with respect to V , (2.79)

where η(q) is the density of q, as defined in (2.14).
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Theorem 2.17 Let q : R
n → R

m be a QS quantiser for system (2.1) with respect to a CLF V of the

form (2.2). Consider the matrices L and M defined in (2.4) and the matrix Q defined in (2.5). Define

K , (BTPB)−1/2MT , (2.80)

and find the following singular value decomposition1 of KQ−1/2:

KQ−1/2 = S1ΣS
T
2 (2.81)

where

S1 ∈ R
m×m, S2 ∈ R

n×m, Σ = diag(σ1, . . . , σm), and ST1 S1 = Im = ST2 S2. (2.82)

Define the quantiser q̄ : R
n → R

m by

q̄(x) = q
(

Q−1/2S2S
T
2 Q

1/2x
)

, for all x ∈ R
n. (2.83)

Then, q̄ is QS and η(q̄) ≤ η(q).

Proof. We begin by showing that q̄ is QS. Since q is QS by assumption, then q(0) = 0. Then, from

(2.83) it follows that q̄(0) = 0. Consider the increment of V , as defined in (2.3). Using (2.3)–(2.5) and

(2.80), we can write ∆V (x, u) as

∆V (x, u) =
[

Kx+ (BTPB)1/2u
]T [

Kx+ (BTPB)1/2u
]

− xTQx. (2.84)

We have

∆V (Q−1/2S2S
T
2 Q

1/2x, u) =
[

KQ−1/2S2S
T
2 Q

1/2x+ (BTPB)1/2u
]T [

KQ−1/2S2S
T
2 Q

1/2x+ (BTPB)1/2u
]

− xTQ1/2S2S
T
2 Q

−1/2QQ−1/2S2S
T
2 Q

1/2x. (2.85)

Using (2.81) and (2.82) in (2.85), and simplifying, yields

∆V (Q−1/2S2S
T
2 Q

1/2x, u) =
[

Kx+ (BTPB)1/2u
]T [

Kx+ (BTPB)1/2u
]

− xTQ1/2S2S
T
2 Q

1/2x. (2.86)

Note that the matrices Q1/2S2S
T
2 Q

1/2 and Q can be written as

Q1/2S2S
T
2 Q

1/2 = Q1/2S̄2




Im 0

0 0



 S̄T2 Q
1/2, and

Q = Q1/2S̄2InS̄
T
2 Q

1/2,

1This decomposition was proposed in Kao and Venkatesh (2002).



32 Quadratic Stabilisation and Quantisation Density

where S̄2 ∈ R
n×n satisfies S̄2S̄

T
2 = In and ST2 = [Im 0m×n−m]S̄T2 . Hence, Q ≥ Q1/2S2S

T
2 Q

1/2 and

it follows from (2.84) and (2.86) that

∆V (x, u) ≤ ∆V (Q−1/2S2S
T
2 Q

1/2x, u), for all x ∈ R
n and u ∈ R

m. (2.87)

By (2.83), we have

∆V (x, q̄(x)) = ∆V
(

x, q(Q−1/2S2S
T
2 Q

1/2x)
)

(2.88)

and from (2.87), with u = q(Q−1/2S2S
T
2 Q

1/2x), then

∆V
(

x, q(Q−1/2S2S
T
2 Q

1/2x)
)

≤ ∆V
(

Q−1/2S2S
T
2 Q

1/2x, q(Q−1/2S2S
T
2 Q

1/2x)
)

. (2.89)

Since q is QS by assumption, then ∆V (x, q(x)) < 0 for all nonzero x ∈ R
n. In particular,

∆V
(

Q−1/2S2S
T
2 Q

1/2x, q(Q−1/2S2S
T
2 Q

1/2x)
)

< 0, (2.90)

for all x ∈ R
n satisfying Q−1/2S2S

T
2 Q

1/2x 6= 0. Note that Q−1/2S2S
T
2 Q

1/2x 6= 0 if and only if

ST2 Q
1/2x 6= 0. Combining (2.88)–(2.90), it follows that

∆V (x, q̄(x)) < 0, for all x ∈ R
n such that ST2 Q

1/2x 6= 0. (2.91)

If ST2 Q
1/2x = 0, then from (2.83) and since q is QS, we have q̄(x) = q(0) = 0. From (2.84), it follows

that

∆V (x, 0) = xTKTKx− xTQx = xTQ1/2Q−1/2KTKQ−1/2Q1/2x− xTQx

(2.81)
= xTQ1/2S2ΣS

T
1 S1ΣS

T
2 Q

1/2x− xTQx

= − xTQx, whenever ST2 Q
1/2x = 0. (2.92)

Therefore, we have

∆V (x, q̄(x)) = ∆V (x, 0) = −xTQx < 0, whenever ST2 Q
1/2x = 0 and x 6= 0. (2.93)

Combining (2.91) and (2.93) yields

∆V (x, q̄(x)) < 0 for all nonzero x ∈ R
n. (2.94)

We have thus established that q̄ is QS.

We next show that η(q̄) ≤ η(q). Let U(·) denote the range of a quantiser [recall (2.12)]. From

(2.83), note that U(q̄) ⊆ U(q). Therefore, it follows that

#[U(q̄) ∩ Cm(ε)] ≤ #[U(q) ∩ Cm(ε)], (2.95)

for all ε ∈ (0, 1], where Cm(ε) is the set defined in (2.13). From (2.14), then η(q̄) ≤ η(q). This

concludes the proof. �
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Theorem 2.17 shows that, given any QS quantiser q, we can construct a QS quantiser q̄ with a

specific structure that is also QS and whose density is not greater than that of q. The key structural

difference between an arbitrary QS quantiser q and a quantiser q̄ constructed from q according to (2.83)

is that the matrix Q−1/2S2S
T
2 Q

1/2 has rank m [recall (2.82)] where m ≤ n (this inequality follows

because the system input matrix B has full column rank). Figure 2.8 shows the quantiser q̄ constructed

from a given quantiser q according to (2.83). Note that the quantiser q̄ can be written as

q(·) Q−1/2S2 ST2 Q
1/2

x ∈ R
n

︸ ︷︷ ︸

q̃ : R
m → R

m

u ∈ R
m

︸ ︷︷ ︸

q̄ : R
n → R

m

x̄ ∈ R
m

Figure 2.8: Structure of the quantiser q̄ in Theorem 2.17.

q̄(x) = q̃(ST2 Q
1/2x), (2.96)

where q̃ : R
m → R

m.

The result of Theorem 2.17 then implies that the search for the infimum density in Problem 2.16 can

be performed exclusively over quantisers q̄ having the specific structure (2.96), yielding the same result,

η?. Note that the ranges of q̄ and q̃ coincide, and hence η(q̄) = η(q̃). We can thus recast Problem 2.16

as follows.

Problem 2.18 Given system (2.1) and a CLF V of the form (2.2), solve

η? = inf η(q̃), subject to (2.97)

q̃ : R
m → R

m, and the quantiser q̄ : R
n → R

m defined by (2.96) is QS with respect to V , (2.98)

where η(q̃) is the density of q̃, as defined in (2.14), Q was defined in (2.5), and with S2 as in Theo-

rem 2.17.

We then immediately have the following result.

Theorem 2.19 The infimum density η? of Problem 2.18 coincides with that of Problem 2.16.

Consequently, the search for the infimum density η?, which has to be performed over quantisers

q : R
n → R

m is reduced to a search over quantisers q̃ : R
m → R

m (m ≤ n). We have thus provided a

first result regarding infimum density over all quantisers that are QS with respect to a given CLF.

Remark 2.20 It is interesting to particularise the result of Theorem 2.17 to single-input systems. In

this case, the matrix K in (2.80) satisfies K ∈ R
1×n and hence the matrices in the singular value
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decomposition (2.81) are S1 = 1, Σ = σ ∈ R and ST2 = KQ−1/2/σ. Therefore, it follows that

ST2 Q
1/2 = K/σ and from (2.80) and (2.5), then ST2 Q

1/2 = α1M
T = α2KGD, with α1 ∈ R and

α2 ∈ R, and where KGD was defined in (2.5). Then, according to Theorem 2.19, the search for

an infimum density quantiser can be performed exclusively over quantisers q̄ : R
n → R of the form

q̄(x) = qs(KGDx), where qs : R → R (scalar quantiser). Note that this structure for the quantisers

over which the search must be performed is precisely the one in the first part of the proof of Theorem 1

of Elia and Mitter (2001).

Remark 2.21 Kao and Venkatesh (2002) claim that a quantiser that optimises density for a multiple-

input system and with respect to a given CLF, needs to have levels only in a minimum-dimension sub-

space of the input space. However, careful inspection of the results in Kao and Venkatesh (2002) reveals

that the definition of quantisation density employed in that paper, in general, coincides neither with that

of Elia and Mitter (2001) for single-input systems nor with that of Elia and Frazzoli (2002) for two-input

systems. In addition, the quantisation density defined in Kao and Venkatesh (2002), in general, is not

even a scalar multiple of that in Elia and Mitter (2001). Therefore, we cannot employ the results of Kao

and Venkatesh (2002) in the current context.

2.6 Chapter Summary

We have briefly reviewed quadratic stabilisation of linear discrete-time systems. We have also reviewed

the concept of quantisation density and provided a straightforward generalisation of this concept to quan-

tisers having levels of arbitrary dimension. We have derived several new results regarding quantisation

density for multiple-input systems. In particular, Theorem 2.12 derived the density of a multivariable

quantiser having radially logarithmically spaced levels and Lemma 2.15 established the invariance of

the density of a quantiser under a linear one-to-one transformation.

We have also posed the problem of optimising quantisation density over all quantisers that quadrat-

ically stabilise a multiple-input system with respect to a given CLF. We have then derived an important

novel result (encompassing Theorem 2.17 and Theorem 2.19) that implies that the search for the infi-

mum density can be performed exclusively over quantisers having a specific structure. Finally, in the

case of single-input systems, we have shown that the latter result coincides with a result of Elia and

Mitter (2001).



Chapter 3

Geometric Approach to Quadratic

Stabilisation with Quantisers

3.1 Overview

In Chapter 2, we have shown that, when searching for the infimum quantisation density over all quan-

tisers that are QS with respect to a given CLF, we need only consider quantisers having a specific form.

More precisely, given a system of the form

x(k + 1) = Ax(k) +Bu(k), (3.1)

and a CLF V of the form

V (x) = xTPx, where P = P T > 0, (3.2)

A ∈ R
n×n, B ∈ R

n×m, A is unstable, B has full column rank and the pair (A,B) is stabilisable, then

we need only consider quantisers q : R
n → R

m defined by

q(x) = q̃(ST2 Q
1/2x), (3.3)

where q̃ : R
m → R

m is a quantiser, and S2 ∈ R
n×m and Q ∈ R

n×n are matrices constructed from the

system and CLF matrices A, B and P .

The derivation of the structure (3.3), which restricts the quantisers that we need to consider, was

performed without dealing with specific details on the construction of QS quantisers. However, to de-

rive additional results regarding quantisation density for multiple-input systems, we will require further

insight into specific features of QS quantisers. This chapter will therefore be concerned with character-

ising QS quantisers.

As a first step toward the characterisation of all QS quantisers of the form (3.3), we will focus on

the simplest (in some sense) of the quantiser structures that can be put into the form (3.3). We will thus
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consider quantisers q̃ : R
m → R

m of the specific form

q̃(x̄) = Wq̊(D̄T x̄), (3.4)

where W ∈ R
m×p and D̄ ∈ R

m×p have linearly independent columns, q̊ : R
p → R

p is a quantiser,

and the dimension p is as low as possible. Note that the quantiser q̊ is the only nonlinear element in

the setting that we consider. Therefore, requiring the dimension p to be as low as possible constrains

the nonlinear operation q̊ to occur between spaces of minimum dimension. In this sense, we may then

regard the structure that we impose on q̃ to be the simplest possible.

Combining (3.3) and (3.4), we can write

q(x) = Wq̊(DTx), (3.5)

where D ∈ R
n×p satisfies

DT = D̄TST2 Q
1/2. (3.6)

Figure 3.1 shows the setting that we consider. The requirement that the dimension p in the scheme of

Figure 3.1 be as low as possible will constitute a key feature in the derivations of this chapter.

︸ ︷︷ ︸

q(·)

ū ∈ R
p a ∈ R

p

q̊(·) DT ·

x+ = Ax+Bu
u ∈ R

m x ∈ R
n

W ·
quantiser

Figure 3.1: The quantised feedback considered: u = q(x) = Wq̊(DTx).

The first part of this chapter (§3.2–§3.4) is concerned with the derivation of necessary and sufficient

conditions for a quantiser q of the form (3.5) to be QS. In §3.2 we derive the lowest possible value for

the dimension p in the scheme of Figure 3.1. In §3.3, we give a geometric interpretation to the fact that a

quantiser is QS, and we characterise a QS quantiser in terms of its quantisation regions and values. Our

derivations are based on explicit geometric considerations and will thus provide a geometric approach

to quadratic stabilisation by means of quantisers of the specific form considered. In §3.4, we derive

necessary and sufficient conditions for a quantiser q of the form (3.5) to be QS.

In the second part of this chapter (§3.5), we explicitly construct QS quantisers having finite quan-

tisation density. We will utilise the necessary and sufficient conditions derived in §3.4 to establish that

the constructed quantisers are QS. We will also employ the results of Chapter 2 to derive an explicit

expression for the density of the quantisers constructed. We provide a summary of the results of this

chapter in §3.6.
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3.2 Lowest Quantiser Dimension

In this section, we characterise the lowest value for the dimension p in the scheme of Figure 3.1 so that

there exists a quantiser q(x) = Wq̊(DTx) that is QS with respect to a given quadratic CLF V .

We recall from Chapter 2 the expression for the increment of the CLF V in (3.2) along the trajectories

of system (3.1):

∆V (x, u) , V (Ax+Bu) − V (x) = xTLx+ 2xTMu+ uTBTPBu, (3.7)

where

L , ATPA− P, M , ATPB. (3.8)

To derive the lowest value for p, we require the following preliminary result.

Lemma 3.1 Consider system (3.1) and a CLF V of the form (3.2). Let the feedback u = WDTx,

where W ∈ R
m×p and D ∈ R

n×p both have linearly independent columns, quadratically stabilise

system (3.1) with respect to V . Then, there exists a quantiser q̊ : R
p → R

p such that the quantised

feedback u = Wq̊(DTx) quadratically stabilises system (3.1) with respect to V .

Proof. Note that for any given α > 0, we can always build a quantiser q̊ : R
p → R

p satisfying

‖a− q̊(a)‖2 < α ‖a‖2, for all nonzero a ∈ R
p. (This can be achieved, for example, with q̊ consisting

of componentwise scalar logarithmic quantisers, each of these scalar quantisers having relative errors

as small as desired.) Let K = WDT , and consider ∆V , the increment of V , defined in (3.7). By

assumption, ∆V (x,Kx) < 0, for all x ∈ R
n \ {0}. Note that ∆V (x,Kx) ≤ −β ‖x‖2

2, for some

β > 0. Define ε(x) , Kx−Wq̊(DTx). We have

‖ε(x)‖2 =
∥
∥Kx−Wq̊(DTx)

∥
∥

2
=
∥
∥W [DTx− q̊(DTx)]

∥
∥

2
≤ ‖W‖2

∥
∥DT

∥
∥

2
‖x‖2 α.

Using (3.7) and (3.8), we then have

∆V (x,W q̊(DTx)) = ∆V (x,Kx− ε(x))

= ∆V (x,Kx) − 2xT (M +KTBTPB)ε(x) + ε(x)TBTPBε(x)

≤ −β ‖x‖2
2 + 2 ‖x‖2

∥
∥M +KTBTPB

∥
∥

2
‖ε(x)‖2 +

∥
∥BTPB

∥
∥

2
‖ε(x)‖2

2

≤
(

−β + 2
∥
∥M +KTBTPB

∥
∥

2
‖W‖2 ‖D‖2 α+

∥
∥BTPB

∥
∥

2
‖W‖2

2 ‖D‖2
2 α

2
)

‖x‖2
2 .

Thus, ∆V (x,W q̊(DTx)) < 0 if α > 0 is chosen small enough. Hence, the result follows. �

We next find the lowest value for the dimension p in the scheme of Figure 3.1 so that a quantiser

q(x) = Wq̊(DTx) is QS with respect to a given quadratic CLF V . Parts of this proof follow directly

from results in Kao and Venkatesh (2002), where the minimum dimension of a subspace of the input
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space that is necessary for quadratic stabilisation is derived. However, we will provide an alternative

characterisation in terms of the number of positive eigenvalues of the matrix L in (3.8), and we also

directly derive this result considering the setting of Figure 3.1.

Theorem 3.2 Consider system (3.1) and a quadratic CLF V of the form (3.2). Let ` be the number of

positive eigenvalues of the matrix L defined in (3.8), and suppose that L is invertible. Then, ` is the

lowest value of p for which there exist matrices W ∈ R
m×p and D ∈ R

n×p with linearly independent

columns, and a quantiser q̊ : R
p → R

p such that the quantiser q : R
n → R

m defined by q(x) =

Wq̊(DTx) is QS with respect to V .

Proof. We begin by proving that if q is QS with respect to V , then p ≥ `. Note that, since L =

LT ∈ R
n×n is invertible and has ` positive eigenvalues, then L has n − ` negative eigenvalues. Since

q(0) = Wq̊(DT 0) = 0 and W has linearly independent columns, then q̊(0) = 0. Let P = {x ∈ R
n :

DTx = 0} and consider the increment of V , ∆V , defined in (3.7). Note that ∆V (x, 0) < 0 for all

x ∈ P \ {0}. From (3.7), we have ∆V (x, 0) = xTLx and hence xTLx < 0 for all nonzero vectors in a

subspace of dimension n− p, because D ∈ R
n×p has linearly independent columns. Since L has n− `

negative eigenvalues, then n− p ≤ n− ` (see Horn and Johnson, 1985, §4.3.23, p. 192), whence p ≥ `.

We next prove that p = ` is a valid choice. Define

K , (BTPB)−1/2MT , (3.9)

with M as in (3.8). Consider the matrix Q defined in (2.5), repeated here for convenience:

Q , M(BTPB)−1MT − L. (3.10)

By Lemma 2.4, and since V is a CLF, then Q > 0. Consider the decomposition proposed in Kao and

Venkatesh (2002):

KQ−1/2 = S1ΣS
T
2 , (3.11)

where S1 ∈ R
m×m, S2 ∈ R

n×m, ST1 S1 = Im = ST2 S2, Σ = diag(σ1, . . . , σm) and σi are the singular

values of KQ−1/2, arranged in decreasing order. Let s be the number of singular values of KQ−1/2

that are greater than or equal to 1. Furthermore, let

G , −(BTPB)−1/2S1




Σ1:s 0s×m−s

0m−s×s 0m−s×m−s



ST2 Q
1/2, (3.12)

where Σ1:s , diag(σ1, . . . , σs) contains the singular values of KQ−1/2 that are greater than or equal

to 1. We next prove that u = Gx is quadratically stabilising with respect to V . Using (3.7)–(3.10), we

can write ∆V (x, u) as

∆V (x, u) = [Kx+ (BTPB)1/2u]T [Kx+ (BTPB)1/2u] − xTQx. (3.13)
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We have

Kx+ (BTPB)1/2Gx =
[

KQ−1/2 + (BTPB)1/2GQ−1/2
]

Q1/2x

=



S1ΣS
T
2 − S1




Σ1:s 0

0 0



ST2



Q1/2x (3.14)

= S1




0 0

0 Σs+1:m



ST2 Q
1/2x, (3.15)

where in (3.14) we have used (3.11) and (3.12), and in (3.15) we have defined

Σs+1:m , diag(σs+1, . . . , σm).

From (3.13) and (3.15), we have

∆V (x,Gx) = xTQ1/2S2




0 0

0 Σs+1:m



ST1 S1




0 0

0 Σs+1:m



ST2 Q
1/2x− xTQ1/2Q1/2x

= xTQ1/2



S2




0 0

0 Σ2
s+1:m



ST2 − In



Q1/2x, (3.16)

where Σ2
s+1:m = diag(σ2

s+1, . . . , σ
2
m) and we have used the fact that ST1 S1 = Im. The expression

between round brackets in (3.16) is a negative definite matrix since σi, for i = s + 1, . . . ,m, are the

singular values of KQ−1/2 that are less than one. Therefore, ∆V (x,Gx) < 0, for all x ∈ R
n \ {0},

showing that V is a Lyapunov function for x(k + 1) = (A+BG)x(k).

The final step is to prove that rank(G) = `. By (3.12), the rank of G is s, where s is the number

of singular values greater than or equal to one of the matrix KQ−1/2 in (3.11). The squared singular

values of KQ−1/2 are the eigenvalues of KQ−1KT . From (3.10) and (3.9), we have Q = KTK − L.

Since L is invertible, using a matrix inversion formula yields

Q−1 = −[L−1 + L−1KT (I −KL−1KT )−1KL−1], (3.17)

whence

KQ−1KT = −(I −KL−1KT )−1KL−1KT = (F − I)−1F, (3.18)

where we have defined F , KL−1KT . Let v be an eigenvector of KQ−1KT with eigenvalue σ2.

Then, using (3.18), we have

(F − I)−1Fv = σ2v ⇐⇒ Fv = (F − I)σ2v ⇐⇒ σ2v = (σ2 − 1)Fv. (3.19)

From (3.19), it follows that σ2 6= 1, since otherwise we would obtain v = 0, which would be a

contradiction since v is an eigenvector. This proves that KQ−1/2 has no singular values equal to one,
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and hence s is the number of singular values of KQ−1/2 strictly greater than one. Then, from (3.19),

we have

(F − I)−1Fv = σ2v ⇐⇒ Fv =
σ2

σ2 − 1
v (3.20)

and hence v is also an eigenvector of F corresponding to the eigenvalue σ2/(σ2 − 1). Since σ2 ≥ 0

and σ2 6= 1, it then follows that the number of singular values greater than one of KQ−1/2, s, equals

the number of positive eigenvalues of F = KL−1KT . Hence s is less than or equal to the number of

positive eigenvalues of L−1, which is the same as that of L. Therefore s ≤ `. In addition, since G has

rank s, we may write G = WDT , where W ∈ R
m×s and D ∈ R

n×s both have linearly independent

columns. Then, since the feedback u = Gx quadratically stabilises system (3.1) with respect to V ,

Lemma 3.1 shows that there exists a quantised feedback u = Wq̊(DTx) with q̊ : R
s → R

s that also

achieves the same goal. By the first part of this proof, then s ≥ `. We thus have s ≤ ` and s ≥ `,

whence s = `, showing that the lowest value of p is indeed `. �

Remark 3.3 Theorem 3.2 gives the lowest value of the dimension p for the scheme of Figure 3.1 to be

quadratically stable with respect to a given CLF V . This lowest value is equal to the number of positive

eigenvalues of the matrix L defined in (3.8). Note that L necessarily has at least one nonnegative

eigenvalue. This follows since, for V (x) = xTPx, the open-loop system x(k + 1) = Ax(k) gives

V (Ax) − V (x) = xTLx. Thus, if all the eigenvalues of L were negative, the open-loop system would

be stable, contradicting the assumption that A has at least one eigenvalue outside or on the unit circle.

Remark 3.4 The fact that a QS quantiser q(x) = Wq̊(DTx) exists, where W ∈ R
m×` has linearly

independent columns and ` is the number of positive eigenvalues of L, implies that the number of inputs,

m, is greater than or equal to the number of positive eigenvalues of L.

Remark 3.5 In the proof of Theorem 3.2, it was shown that if the number of positive eigenvalues of the

matrix L defined in (3.8) is `, then a linear feedback with rank ` that quadratically stabilises system (3.1)

with respect to the given CLF V always exists (provided L is invertible). Moreover, one such feedback

is u = Gx, with G as in (3.12).

3.3 Geometric Approach

The main aim of this section is to give a geometric interpretation to the fact that a quantiser q is QS and to

characterise a QS quantiser in terms of its quantisation regions and values. The geometric interpretation

is given in §3.3.1, and the characterisation in §3.3.2.
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3.3.1 Geometric Interpretation

The geometric interpretation that we will obtain is based on the analysis of conditions that the quanti-

sation regions and values of the QS quantiser q must necessarily satisfy. We will utilise the following

definition.

Definition 3.6 (QS Pair) Consider V and ∆V as in (3.2) and (3.7), respectively, let R ⊂ R
n and

u ∈ R
m. We say that the pair (u,R) is QS (with respect to V ) if u = 0 when 0 ∈ R and

∆V (x, u) < 0, for all x ∈ R \ {0}. (3.21)

The following lemma shows the significance of Definition 3.6 in the current context.

Lemma 3.7 Let q : R
n → R

m be a quantiser, let Ri and ui, for all i ∈ Z, denote its quantisation

regions and corresponding values, respectively. Then, q is QS if and only if (ui,Ri) is QS, for all i ∈ Z.

We can give a geometric interpretation to (3.21) as follows. Define the sets1

X(u) , {x ∈ R
n : ∆V (x, u) < 0}, and for future reference, (3.22)

X0(u) , {x ∈ R
n : ∆V (x, u) ≤ 0}. (3.23)

Using (3.22), we obtain the following geometric characterisation of a QS pair.

Lemma 3.8 Consider V , ∆V and X(u) as in (3.2), (3.7) and (3.22), respectively, let R ⊂ R
n and

u ∈ R
m. Then, the pair (u,R) is QS if and only if u = 0 when 0 ∈ R and R \ {0} ⊆ X(u).

Using Lemma 3.8, we readily derive the following characterisation of a QS quantiser in terms of its

quantisation regions and values.

Lemma 3.9 Let q : R
n → R

m be a quantiser, let Ri and ui, for all i ∈ Z, denote its quantisation

regions and corresponding values, respectively. Then, q is QS if and only if ui = 0 when 0 ∈ Ri and

Ri \ {0} ⊆ X(ui) for all i ∈ Z. (3.24)

The approach that we follow is based on the analysis of the set inclusion condition (3.24). This

analysis is carried out by exploiting the geometry of the sets X(u) and by considering the constraints

imposed on the quantisation regions and values of q by the fact that q has the form q(x) = Wq̊(DTx).

To analyse the sets X(u) defined in (3.22), recall (3.7) and note that the geometry of X(u) depends

on the matrix L defined in (3.8). Since L is symmetric, we can decompose it as

L = UTΛU, where UUT = In and Λ = diag(λ1, . . . , λn), (3.25)

1A similar idea is used by Ishii and Francis (2002b) in the context of continuous-time systems with switching control.
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and λ1, . . . , λn ∈ R are the eigenvalues of L (Horn and Johnson, 1985). In the sequel, we assume that

L is invertible. For future reference, note that

L−1 = UTΛ−1U, where Λ−1 = diag(1/λ1, . . . , 1/λn). (3.26)

It is now useful to consider the following affine transformation:

Tu(x) , U(x+ L−1Mu), (3.27)

where L and M are defined in (3.8). Note that, from (3.25), the transformation Tu is invertible and

T−1
u (x̃) = UT x̃− L−1Mu. (3.28)

Next, consider the sets X(u) and X0(u), defined in (3.22) and (3.23), respectively. Let X̃(u) and

X̃0(u) be the images under Tu of X(u) and X0(u), respectively, that is, X̃(u) , Tu(X(u)) and

X̃0(u) , Tu(X0(u)). Using (3.7), (3.25), (3.27) and (3.28), we have

X̃(u) = {x̃ ∈ R
n : x̃TΛx̃+ uTHu < 0}, (3.29)

X̃0(u) = {x̃ ∈ R
n : x̃TΛx̃+ uTHu ≤ 0}, (3.30)

where H , BTPB −MTL−1M. (3.31)

Consider next a QS quantiser q : R
n → R

m satisfying q(x) = Wq̊(DTx), where q̊ : R
p → R

p,

and both W ∈ R
m×p and D ∈ R

n×p have linearly independent columns. Let Ri and ui, for all i ∈ Z,

denote the quantisation regions and corresponding values of q. Note that the regions Ri satisfy

Ri =
⋃

a∈Ai

{x ∈ R
n : DTx = a}, (3.32)

for some Ai ⊂ R
p. Recall Lemma 3.9 and condition (3.24) where now Ri has the form (3.32). By

Theorem 3.2, we know that the lowest possible value for p is `, where ` is the number of positive

eigenvalues of the matrix L defined in (3.8). Since we are interested in the case where the dimension p

is as low as possible, we take p = `. Consider the sets (hyperplanes) P(a) , {x ∈ R
n : DTx = a},

for all a ∈ R
`. Note that, from (3.32), Ri =

⋃

a∈Ai
P(a). Hence, Ri \ {0} ⊆ X(ui) if and only if

P(a) \ {0} ⊆ X(ui), for all a ∈ Ai. Since Tu [defined in (3.27)] is invertible, then Ri \ {0} ⊆ X(ui)

if and only if

Tui
(P(a)) \ {Tui

(0)} ⊆ X̃(ui), for all a ∈ Ai, (3.33)

where X̃(ui) = Tui
(X(ui)) was defined in (3.29). Thus, condition (3.24) can be equivalently analysed

by considering (3.33) for all i ∈ Z. Note that, since Tu is an invertible affine transformation, it trans-

forms hyperplanes into hyperplanes and hence Tui
(P(a)) is a hyperplane. The analysis of (3.33) then

involves the problem of finding conditions for a whole hyperplane or for a hyperplane minus one point

to be contained in X̃(u). The following theorem gives the solution to this problem.
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Theorem 3.10 Let Λ = diag(λ1, . . . , λn) ∈ R
n×n, where λ1, . . . , λn−` < 0 and λn−`+1, . . . , λn > 0.

Let D̃ ∈ R
n×` have linearly independent columns, let u ∈ R

m and ã ∈ R
`. Let P̃ , {x̃ ∈ R

n : D̃T x̃ =

ã} and let X̃(u) and X̃0(u) satisfy (3.29) and (3.30), respectively, where H = HT ∈ R
m×m. Then,

1. P̃ \ {0} ⊂ X̃(0) if and only if

D̃TΛ−1D̃ > 0, and (3.34)

ã = 0. (3.35)

2. P̃ ⊂ X̃(u) only if u 6= 0 and

D̃TΛ−1D̃ ≥ 0. (3.36)

3. If D̃TΛ−1D̃ > 0 and u 6= 0, then P̃ ⊂ X̃(u) if and only if

ãT (D̃TΛ−1D̃)−1ã < −uTHu. (3.37)

4. If D̃TΛ−1D̃ > 0 and u 6= 0, then P̃ ⊂ X̃0(u) if and only if

ãT (D̃TΛ−1D̃)−1ã ≤ −uTHu. (3.38)

Proof. See Appendix A. �

In summary, the derivations of this section were as follows. Lemma 3.9 gave a geometric interpreta-

tion of a QS quantiser q : R
n → R

m as a set inclusion condition in terms of its quantisation regions and

values. We then considered the geometry of the sets X(u) and the constraints imposed on the quantisa-

tion regions of q by the fact that q has the form q(x) = Wq̊(DTx). By utilising the transformation Tu,

this led to the derivation of conditions for a hyperplane to be contained in X̃(u) = Tu(X(u)), which

was performed in Theorem 3.10.

3.3.2 Characterisation of QS Pairs

By Lemma 3.7, a quantiser is QS if and only if all its quantisation value/region pairs are QS. Hence,

we next provide a characterisation of QS pairs. This characterisation will be used in §3.4 to derive

necessary and sufficient conditions on W , D and q̊ so that q(x) = Wq̊(DTx) is QS. We first establish

the following preliminary result.

Lemma 3.11 Let D ∈ R
n×` have linearly independent columns, where ` is the number of positive

eigenvalues of the matrix L defined in (3.8), and define P , {x ∈ R
n : DTx = 0}. Then, (u,P) is QS

if and only if u = 0 and DTL−1D > 0.



44 Geometric Approach to Quadratic Stabilisation with Quantisers

Proof. Defining P̃ , T0(P), with T0 as defined in (3.27), we obtain

P̃ = {x̃ ∈ R
n : DTUT x̃ = 0}. (3.39)

Necessity. Note that 0 ∈ P and since (u,P) is QS, then Definition 3.6 implies that u = 0. By

Lemma 3.8, the pair (0,P) is QS if and only if P \ {0} ⊂ X(0). Since the transformation Tu is

invertible, P \ {0} ⊂ X(0) if and only if P̃ \ {0} ⊂ X̃(0), with X̃ as defined in (3.29) and since

T0(0) = 0. From Theorem 3.10 part 1 and (3.39), then DTUTΛ−1UD > 0 which using (3.26) yields

DTL−1D > 0.

Sufficiency. By (3.26), DTL−1D = DTUTΛ−1UD. Then Theorem 3.10 part 1 and (3.39) show

that P̃ \ {0} ⊂ X̃(0). Since Tu is invertible and T0(0) = 0, then P̃ \ {0} ⊂ X̃(0) if and only if

P \ {0} ⊂ X(0). Using Lemma 3.8, we establish that (u,P) is QS. �

The main result of this section is the following theorem, which provides a characterisation of QS

pairs. This result will be used in the derivation of necessary and sufficient conditions in §3.4.

Theorem 3.12 (Characterisation of QS Pairs) Let D ∈ R
n×` have linearly independent columns,

where ` is the number of positive eigenvalues of the matrix L defined in (3.8). Suppose thatDTL−1D >

0, let R be a nonempty region that satisfies

R =
⋃

a∈A
{x ∈ R

n : DTx = a} (3.40)

for some A ⊂ R
`, and let u ∈ R

m. Then, (u,R) is QS [with respect to the CLF V given in (3.2)] if and

only if one of the following statements holds:

1) u = 0 and A = {0}.

2) u 6= 0 and (a +DTL−1Mu)T (DTL−1D)−1(a +DTL−1Mu) < −uTHu, for all a ∈ A, where

M and H were defined in (3.8) and (3.31), respectively.

Proof. Define P(a) , {x ∈ R
n : DTx = a} and note that R =

⋃

a∈A P(a).

Necessity. Since (u,R) is QS and R =
⋃

a∈A P(a), then note that (u,P(a)) is QS for all a ∈
A. Suppose that u = 0. Then, by Lemma 3.8, P(a) \ {0} ⊂ X(0), which happens if and only if

T0(P(a)) \ {0} ⊂ X̃(0), since T0 is invertible and T0(0) = 0. From (3.27) and (3.28), we have

T0(P(a)) = {x̃ ∈ R
n : DTUT x̃ = a}. Then, Theorem 3.10 part 1, implies that the only possible value

of a is a = 0. This establishes 1). Next, suppose that u 6= 0. Since (u,P(a)) is QS for all a ∈ A,

then Definition 3.6 implies that 0 /∈ P(a) for all a ∈ A. Consequently, from Lemma 3.8 it follows that

P(a) ⊂ X(u) for all a ∈ A, which happens if and only if Tu(P(a)) ⊂ X̃(u). From (3.27) and (3.28),

we have

Tu(P(a)) = {x̃ ∈ R
n : DTUT x̃ = a+DTL−1Mu}. (3.41)
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Using Theorem 3.10 part 3, and (3.26), then 2) follows.

Sufficiency. If 1) is true, then R = P(0) and, since DTL−1D > 0 by assumption, Lemma 3.11

shows that (0,P(0)) is QS. If 2) is true, then consider (3.41). By Theorem 3.10 part 3, then Tu(P(a)) ⊂
X̃(u) and hence P(a) ⊂ X(u), for all a ∈ A. This proves that (u,P(a)) is QS for all a ∈ A and hence

(u,R) is QS, completing the proof. �

3.4 Necessary and Sufficient Conditions

In this section, we present a key result. Specifically, we apply the geometric characterisation developed

in §3.3 to derive necessary and sufficient conditions for a quantiser q : R
n → R

m defined by q(x) =

Wq̊(DTx) to be QS, where W ∈ R
m×`, D ∈ R

n×`, q̊ : R
` → R

` and ` is the number of positive

eigenvalues of the matrix L defined in (3.8). We require the following preliminary result.

Lemma 3.13 Let D ∈ R
n×` have linearly independent columns, where ` is the number of positive

eigenvalues of the matrix L defined in (3.8). Suppose that DTL−1D > 0. Then,

MTL−1D(DTL−1D)−1DTL−1M > −H, (3.42)

where M and H were defined in (3.8) and (3.31), respectively.

Proof. Let P = {x ∈ R
n : DTx = 0} and note that 0 ∈ P. Fix any nonzero u ∈ R

m. We have 0 /∈
X0(u) = {x ∈ R

n : ∆V (x, u) ≤ 0}, since, by (3.7), ∆V (0, u) = uTBTPBu > 0 because P > 0, B

has full column rank and u 6= 0. Hence P 6⊂ X0(u). Consider the transformation Tu defined in (3.27),

define P̃ , Tu(P) and consider the set X̃0(u) defined in (3.30). Since Tu is invertible, then P 6⊂ X0(u)

if and only if P̃ 6⊂ X̃0(u). Using (3.27) and (3.28), we have P̃ = {x̃ ∈ R
n : DTUT x̃ = DTL−1Mu}

and defining

D̃ , UD and ã , DTL−1Mu, (3.43)

we can write P̃ = {x̃ ∈ R
n : D̃T x̃ = ã}. From (3.26) and (3.43), we have D̃TΛ−1D̃ = DTL−1D

and by assumption DTL−1D > 0 and u 6= 0. Then, Theorem 3.10 part 4, states that P̃ ⊂ X̃0(u) if and

only if (3.38) holds. Since P̃ 6⊂ X̃0(u), then (3.38) cannot be true. Therefore, using (3.43), it follows

that

uTMTL−1D(DTL−1D)−1DTL−1Mu > −uTHu,

for all nonzero u ∈ R
m. Then, the result follows. �

We next derive conditions on the matrices W and D, and then proceed to derive conditions on q̊.

Theorem 3.14 (Necessary and Sufficient Conditions on W and D) Let D ∈ R
n×` and W ∈ R

m×`

have linearly independent columns, where ` is the number of positive eigenvalues of the matrix L,
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defined in (3.8). Then, there exists a quantiser q̊ : R
` → R

` such that the quantiser q : R
n → R

m

defined by

q(x) = Wq̊(DTx), for all x ∈ R
n, (3.44)

is QS if and only if

i) DTL−1D > 0, and

ii) J , −W THW > 0, where H was defined in (3.31).

Proof. Define S , DTL−1MW , with M as in (3.8).

Necessity. Let R be the quantisation region of q that contains the origin, let u be the value of q

corresponding to R and define P , {x ∈ R
n : DTx = 0}. Since q is QS, then Lemma 3.7 shows that

(u,R) is QS. Since P ⊆ R, then note, straightforwardly from Definition 3.6, that (u,P) also is QS. We

thus have that (u,P) is QS and Lemma 3.11 proves i).

By i), we have DTL−1D > 0 and hence DTL−1D is invertible. Define R , (DTL−1D)−1 and

note that R > 0. Since q is QS and satisfies (3.44), then by Lemma 3.7 and Theorem 3.12 it follows that

for any x ∈ R
n satisfying DTx 6= 0, there exists u ∈ R

m satisfying

(a+DTL−1Mu)TR(a+DTL−1Mu) < −uTHu, (3.45)

with a = DTx. Since D has linearly independent columns and u = Ww for w ∈ R
`, it then follows

from (3.45) that for any nonzero a ∈ R
`, there exists w ∈ R

` satisfying

(a+ Sw)TR(a+ Sw) < wTJw, (3.46)

where we have used the definitions of S and J . Operating on (3.46) yields

aTRa+ 2aTRSw + wT (STRS − J)w < 0. (3.47)

By Lemma 3.13, (3.42) holds. Since W has linearly independent columns, then premultiplying (3.42)

by WT and postmultiplying by W yields STRS > J , whence STRS − J > 0. Hence given a nonzero

a ∈ R
` there exists w ∈ R

` satisfying (3.47) if and only if

min
w∈R`

aTRa+ 2aTRSw + wT (STRS − J)w < 0. (3.48)

The minimum on the left-hand side of (3.48) can be straightforwardly calculated as:

aT (R−RS(STRS − J)−1STR)a. (3.49)

It then follows that (R−RS(STRS − J)−1STR) must be negative definite and hence its inverse also

must be. Calculating its inverse using a matrix inversion formula yields

R−1 − SJ−1ST < 0. (3.50)
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From (3.50) and since R > 0, we have

0 < R−1 < SJ−1ST . (3.51)

Since, S ∈ R
`×` and J ∈ R

`×`, then (3.51) shows that J−1 > 0, whence J > 0, establishing ii). This

concludes the necessity part of the proof.

Sufficiency. Since i) is true, Lemma 3.13 establishes (3.42). Since W has linearly independent

columns, premultiplying (3.42) by W T and postmultiplying by W yields

ST (DTL−1D)−1S > J, (3.52)

where we have used the definitions of S and J . Since J > 0 by ii), it follows from (3.52) that S ∈ R
`×`

is nonsingular.

Next, consider the feedback u = −WS−1DTx. This feedback quadratically stabilises with respect

to the given CLF V (x) = xTPx. To see this, consider, for all u ∈ Im(W ), the hyperplanes

P(u) = {x ∈ R
n : u = −WS−1DTx} = {x ∈ R

n : ū = −S−1DTx}

=
⋃

a∈{ū}
{x ∈ R

n : −S−1DTx = a}, (3.53)

where ū ∈ R
` is a point that satisfies u = Wū. Note that, for each u ∈ Im(W ), the point ū that satisfies

u = Wū is unique because W has linearly independent columns. In particular, u = 0 if and only if

ū = 0. Let D̃ , −DS−T and note that D̃TL−1D̃ > 0 since DTL−1D > 0 and S is nonsingular.

Then, using (3.53), Theorem 3.12 part 1) shows that (0,P(0)) is QS. Moreover, we have

D̃TL−1Mu = D̃TL−1MWū = −S−1Sū = −ū, and (3.54)

−uTHu = −ūTWTHWū = ūTJū (3.55)

where we have used the definitions of S, D̃ and J . Using (3.53)–(3.55) and the assumption that J > 0,

Theorem 3.12 part 2) then shows that the pairs (u,P(u)) are QS, for all nonzero u ∈ Im(W ). By

Definition 3.6, we have ∆V (x, u) < 0 for all x ∈ P(u) \ {0}, for all u ∈ Im(W ). Equiva-

lently, ∆V (x,−WS−1DTx) < 0, for all x ∈ R
n \ {0}. Hence, the feedback u = −WS−1DTx

is quadratically stabilising with respect to the given CLF V (x) = xTPx and has rank `, since both W

and D have linearly independent columns. Then, Lemma 3.1 shows that a QS quantiser of the form

q(x) = WS−1q̊′(DTx) exists, where q̊′ : R
` → R

`. The result then follows by defining q̊ : R
` → R

`

by q̊(a) = S−1q̊′(a). �

Remark 3.15 Note that the necessary and sufficient conditions of Theorem 3.14 have been derived

without imposing the form (3.6) on the matrix D. Therefore, if we intend to minimise quantisation den-

sity, we may have to consider matrices D that, in addition to satisfying the conditions of Theorem 3.14,

also satisfy (3.6).
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Remark 3.16 By the first part of the sufficiency proof of Theorem 3.14, note that conditions i)–ii) of

this theorem imply that the matrix S = DTL−1MW is nonsingular.

Theorem 3.17 (Necessary and Sufficient Conditions on q̊) Let W ∈ R
m×` and D ∈ R

n×` have lin-

early independent columns, where ` is the number of positive eigenvalues of the matrix L defined in

(3.8). Suppose that conditions i)—ii) of Theorem 3.14 are satisfied. Let q̊ : R
` → R

` be a quantiser

with quantisation regions denoted by Ai and corresponding values ūi, for all i ∈ Z. Then, the quantiser

q : R
n → R

m satisfying

q(x) = Wq̊(DTx), for all x ∈ R
n, (3.56)

is QS if and only if

i) ūj = 0 and Aj = {0} for some j ∈ Z, and

ii) ūi 6= 0 and

(a+ Sūi)
T (DTL−1D)−1(a+ Sūi) < ūTi Jūi, (3.57)

for all a ∈ Ai, for all i ∈ Z, i 6= j.

Proof. Note that, by (3.56), ū ∈ R
` is a value of q̊ if and only if Wū ∈ R

m is a value of q. Also, A is a

quantisation region of q̊ if and only if
⋃

a∈A{x ∈ R
n : DTx = a} is a quantisation region of q. Then,

let Ri and ui be the quantisation regions and values of q that are in correspondence with Ai and ūi, for

all i ∈ Z. By Lemma 3.7, q is QS if and only if (ui,Ri) are QS, for all i ∈ Z.

Necessity. Since q is QS, then q(0) = 0 and hence uj = 0 is a quantisation value of q, for some

j ∈ Z. Then, Wūj = uj = 0, whence ūj = 0 since W has linearly independent columns. From

Theorem 3.12 and since (0,Rj) is QS, we have Aj = {0}, proving i). For any integer i 6= j, we have

ui 6= 0, whence ūi 6= 0. Then, Theorem 3.12 part 2) and the fact that ui = Wūi establish (3.57), for all

a ∈ Ai, proving ii).

Sufficiency. Using i), ii) and the fact that ui = Wūi for all i ∈ Z in Theorem 3.12 shows that

(ui,Ri) is QS, for all i ∈ Z. Then, Lemma 3.7 shows that q is QS. �

Remark 3.18 For a fixed nonzero ūi ∈ R
`, and since DTL−1D > 0 and J > 0, all a ∈ R

` that satisfy

(3.57) are contained in an ellipsoid centred at −Sūi and whose size depends on ūTi Jūi. Moreover,

since ST (DTL−1D)−1S > J , then none of these ellipsoids contain the point a = 0.

Theorems 3.14 and 3.17 give necessary and sufficient conditions for the quantised feedback scheme of

Figure 3.1 to be quadratically stable with respect to the CLF V defined in (3.2). Theorem 3.14 gives

the necessary and sufficient conditions on the matrices W and D, and Theorem 3.17 the conditions on

q̊. Theorem 3.17 states that, provided W and D satisfy the necessary and sufficient conditions given by
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Theorem 3.14, each quantisation region of q̊ has to be contained in an ellipsoid (see Remark 3.18). This

provides a novel geometric characterisation of the quantised feedback laws u = Wq̊(DTx), where q̊ has

the lowest possible dimension, that quadratically stabilise system (3.1) with respect to a given quadratic

CLF.

The results derived can be used both for testing whether a given quantised feedback of the form

considered stabilises quadratically with respect to a given CLF and for designing a quadratically stabil-

ising quantised feedback. Note that the conditions derived are valid irrespective of the structure of the

reduced-dimension quantiser q̊, that is, q̊ can result from the independent quantisation of the ` compo-

nents of DTx or can be an intrinsically multivariable quantiser.

3.5 Stabilising Finite-density Multivariable Quantiser Design

In this section, we combine the geometric approach of the first part of this chapter and the results of

Chapter 2 to design finite-density multivariable QS quantisers.

Specifically, we will design a quantiser q : R
n → R

m that satisfies q(x) = Wq̊(DTx) for all

x ∈ R
n, where W ∈ R

m×`, D ∈ R
n×`, q̊ : R

` → R
` is a quantiser and ` is the number of positive

eigenvalues of L. The quantiser q will be QS (with respect to the given CLF V ) and will have finite

quantisation density.

In §3.5.1, we present the specific quantiser q̊ involved in the design of q. In §3.5.2, we give sufficient

conditions for q to be QS, and compute its density. We shall henceforth refer to q̊ as the “reduced-

dimension quantiser”.

3.5.1 Reduced-dimension Quantiser

We next explain the construction of a specific quantiser q̊ : R
p → R

p, where p is arbitrary. Since this

construction is somewhat involved, we begin by illustrating the construction when p = 2 in Figure 3.2.

The quantisation regions of q̊ have square form when p = 2 (cubic when p = 3, hypercubic when

p > 3). The centre of each square (cube, hypercube) is its corresponding quantisation value. The

construction of the quantiser q̊ involves a parameter, C, which is an odd integer that satisfies C ≥ 3.

The quantiser q̊ can be constructed for any such value of C (C = 5 in Figure 3.2). The quantiser q̊ also

involves the functions I : R → 2
C−1Z, and j : R+ → Z, defined by

I(b) =
2

C − 1

⌈
C − 1

2
|b| − 1

2

⌉

sgn(b), (3.58)

j(b) =








ln
C

(C − 1)b

ln
1

ρ







, (3.59)
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1

1

a2

a1

C = 5

Figure 3.2: Reduced-dimension quantiser q̊ : R
2 → R

2. Each solid-line square is a quantisation region

of q̊. The centre of each square (represented by a circle) is the corresponding quantisation value.

where dbe denotes the least integer not less than b, bbc denotes the greatest integer not greater than b and

ρ ,
C − 2

C
. (3.60)

For a vector a ∈ R
p, we denote, with a slight abuse of notation, by I(a) the vector [I(a1) · · · I(ap)]

T .

The reduced dimension quantiser q̊ : R
p → R

p is then constructed as follows:

q̊(a) =







0 if a = 0, (3.61a)

ρj(‖a‖∞)I
(

aρ−j(‖a‖∞)
)

if a 6= 0. (3.61b)

This quantiser has the form depicted in Figure 3.2 when p = 2 and C = 5. To gain additional insight

into the quantiser q̊ defined by (3.61), we next derive several results that will later allow us to give a

simple interpretation of q̊.

Figure 3.3 depicts the function I : R → 2
C−1Z. Note that I is a uniform scalar quantiser and satisfies

4

C − 1

2

C − 1

3

C − 1

1

C − 1
b

I(b)

Figure 3.3: The function I : R → 2
C−1Z.

I(b) = −I(−b), for all b ∈ R.
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The following lemma derives properties of I and j.

Lemma 3.19 Let C ≥ 3 be an odd integer, let b ∈ R+ and a ∈ R
p, consider ρ as defined in (3.60) and

the functions I and j defined in (3.58) and (3.59), respectively. Then,

i) j(b) = 0 ⇔ I(b) = 1 ⇔ C − 2

C − 1
< b ≤ C

C − 1
.

ii) j(ρkb) = j(b) + k, for all k ∈ Z.

iii) ‖I(a)‖∞ = I(‖a‖∞).

iv) If a 6= 0, then
∥
∥I
(
aρ−j(‖a‖∞)

)∥
∥
∞ = 1.

Proof. i) From (3.59) and (3.60), we have

j(b) = 0 ⇔ 0 ≤
ln

C

(C − 1)b

ln
C

C − 2

< 1.

Since C ≥ 3, then ln
C

C − 2
> 0 and it follows that

j(b) = 0 ⇔ 0 ≤ ln
C

(C − 1)b
< ln

C

C − 2
,

whence

j(b) = 0 ⇔ 1 ≤ C

(C − 1)b
<

C

C − 2
.

Hence,

j(b) = 0 ⇔ C − 2

C − 1
< b ≤ C

C − 1
.

From (3.58), note that

I(b) =
C − 1

C − 1
= 1 ⇔ C − 2

C − 1
< b ≤ C

C − 1
.

We have thus established i).

ii) Note that

ln
C

(C − 1)ρkb
= ln

C

(C − 1)b
+ k ln

1

ρ
.

Then, using (3.59), we have, for k ∈ Z,

j(ρkb) =








ln
C

(C − 1)ρkb

ln
1

ρ








=








ln
C

(C − 1)b

ln
1

ρ

+ k








=








ln
C

(C − 1)b

ln
1

ρ








+ k = j(b) + k,

which establishes ii).

iii) By definition of infinity norm and since I(a) = [I(a1) · · · I(ap)]
T , we have

‖I(a)‖∞ = max
i

|I(ai)|. (3.62)
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Since I : R → R satisfies I(b) = −I(−b), then |I(b)| = |I(−b)| = |I(|b|)|, for all b ∈ R. Moreover,

since I(b) ≥ 0 whenever b ≥ 0, then |I(b)| = I(|b|), for all b ∈ R. Therefore,

max
i

|I(ai)| = max
i

I(|ai|). (3.63)

Since I : R → R is nondecreasing, it follows that

max
i

I(|ai|) = I(max
i

|ai|) = I(‖a‖∞). (3.64)

Then iii) follows by combining (3.62)–(3.64).

iv) From (3.59)–(3.60), we have

ln

(
C

(C − 1) ‖a‖∞

)

ln

(
C

C − 2

) − 1 < j(‖a‖∞) ≤
ln

(
C

(C − 1) ‖a‖∞

)

ln

(
C

C − 2

) , (3.65)

whence, since C > C − 2 > 0,

ln

(
C − 2

(C − 1) ‖a‖∞

)

< j(‖a‖∞) ln

(
C

C − 2

)

≤ ln

(
C

(C − 1) ‖a‖∞

)

. (3.66)

Using (3.60) and operating on (3.66), we obtain

C − 2

C − 1
< ‖a‖∞ ρ−j(‖a‖∞) ≤ C

C − 1
. (3.67)

From i) and (3.67), we have

I
(

‖a‖∞ ρ−j(‖a‖∞)
)

= 1.

From iii) and the equation above, then

∥
∥
∥I
(

aρ−j(‖a‖∞)
)∥
∥
∥
∞

= I
(

‖a‖∞ ρ−j(‖a‖∞)
)

= 1, (3.68)

establishing iv) and concluding the proof. �

Taking advantage of Lemma 3.19, we next give a useful interpretation of q̊ by analysing its quantisa-

tion regions and corresponding values. Recall (3.58)–(3.61) and consider an arbitrary nonzero a ∈ R
p.

Then, ‖a‖∞ > 0 and thus note that j(‖a‖∞) is well defined. We first consider the case when a satisfies

j(‖a‖∞) = 0. Lemma 3.19 i) shows that j(‖a‖∞) = 0 if and only if C−2
C−1 < ‖a‖∞ ≤ C

C−1 . The

set of all a ∈ R
p that satisfy j(‖a‖∞) = 0 is thus a region contained between the two (hyper)cubical

surfaces in R
p of equations ‖a‖∞ = C−2

C−1 and ‖a‖∞ = C
C−1 . Recalling (3.60), note that C−2

C−1 = ρ C
C−1 .

By (3.61b), if j(‖a‖∞) = 0 then q̊(a) = I(a). Then, Lemma 3.19 iv) shows that ‖I(a)‖∞ = 1 and

hence ‖q̊(a)‖∞ = 1. Therefore, if j(‖a‖∞) = 0 then q̊(a) is located on the unit (hyper)cube. Note that,

since ‖a‖∞ ≤ C
C−1 , then |ai| ≤ C

C−1 , for i = 1, . . . , p. From (3.58) and Figure 3.3, then I(ai) can only

take one of C different values, namely 0,± 2
C−1 , . . . ,± C−1

C−1 (recall that C is an odd integer). In addition,
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|I(ai)| = I(|ai|) = 1 for at least one value of i in {1, . . . , p}, because ‖I(a)‖∞ = I(‖a‖∞) = 1. Note

then that the number of different values I(a) is finite whenever j(‖a‖∞) = 0. Figure 3.4 a) shows the

region j(‖a‖∞) = 0, for p = 2. Figure 3.4 b) shows the quantisation regions and values of q̊, whenever

a is such that j(‖a‖∞) = 0 and for C = 5. Note that, if I(a1) = 1 and j(‖a‖∞) = 0, then I(a2) only

takes one of C = 5 different values [see the shaded set in Figure 3.4 b)].
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Figure 3.4: a) The set {a ∈ R
2 : j(‖a‖∞) = 0}. b) Values (circles) and regions (solid-line squares) of

q̊ for a : j(‖a‖∞) = 0, the unit (hyper)cube (dashed line) and the set {a ∈ R
2 : I(a1) = 1, j(‖a‖∞) =

0} (shaded).

We next analyse the quantisation regions and corresponding values of q̊ when a ∈ R
p is nonzero

but otherwise arbitrary, that is, when it does not necessarily satisfy j(‖a‖∞) = 0. By Lemma 3.19 iv)

and iii), we have
∥
∥
∥I
(

aρ−j(‖a‖∞)
)∥
∥
∥
∞

= 1 = I
(

‖a‖∞ ρ−j(‖a‖∞)
)

,

and by i), then j
(
‖a‖∞ ρ−j(‖a‖∞)

)
= 0. Therefore, multiplying an arbitrary nonzero a ∈ R

p by

ρ−j(‖a‖∞) yields a point ã = aρ−j(‖a‖∞) satisfying j(‖ã‖∞) = 0. Hence, ã lies in the set depicted

in Figure 3.4 a) and we have already analysed the possible values I(ã). To produce q̊(a), recall from

(3.61b) that I(ã) is multiplied by ρj(‖a‖∞), where, by (3.59), j takes only integer values. Figure 3.5

depicts the functions j(b) and ρj(b) for C = 5. Figure 3.6 a) shows the regions corresponding to

j(‖a‖∞) = 0 (where q̊(a) = I(a)), j(‖a‖∞) = 1 (where q̊(a) = ρI(aρ−1)) and j(‖a‖∞) = 2

(where q̊(a) = ρ2I(aρ−2)). Finally, Figure 3.6 b) depicts the quantisation regions and values of q̊. The

quantisation regions are depicted by the solid-line squares and their corresponding values are the centres

of the squares, shown as circles. This figure coincides with Figure 3.2, as expected.

We have now gained some insight into the quantiser q̊ defined in (3.61). Before proceeding with the

design of a QS quantiser for system (3.1), we require two additional results.

Lemma 3.20 Let C ≥ 3 be an odd integer and let U(q̊) be the range of the quantiser q̊ : R
p → R

p
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Figure 3.5: The functions a) j(b) and b) ρj(b) for C = 5.
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Figure 3.6: a) Regions where j(‖a‖∞) = 0, j(‖a‖∞) = 1 and j(‖a‖∞) = 2. b) Quantisation regions

(solid-line squares) and values (circles) of q̊.

defined in (3.61). Then,

U(q̊) =

Cp−(C−2)p

⊎

i=1

{ρkūi : k ∈ Z} ∪ {0}, (3.69)

where ρ was defined in (3.60) and ūi 6= 0, for i = 1, . . . , Cp − (C − 2)p.

Proof. From (3.61), we have

U(q̊) =
{

ρj(‖a‖∞)I
(

aρ−j(‖a‖∞)
)

: a ∈ R
p \ {0}

}

∪ {0}. (3.70)

Fix a nonzero ā ∈ R
p. Note that

∥
∥ρkā

∥
∥
∞ = ρk ‖ā‖∞. By Lemma 3.19 ii), then j(

∥
∥ρkā

∥
∥
∞) =

j(ρk ‖ā‖∞) = j(‖ā‖∞) + k. Note then that ρkāρ−j(‖ρ
kā‖∞) = āρ−j(‖ā‖∞) and ρj(‖ρ

kā‖
∞

) =

ρkρj(‖ā‖∞), for all k ∈ Z. Therefore, we can rewrite (3.70) as

U(q̊) =
{

ρkI
(

aρ−j(‖a‖∞)
)

: k ∈ Z, a ∈ R
p \ {0}

}

∪ {0}.

From Lemma 3.19 iv), we know that
∥
∥I(aρ−j(‖a‖∞))

∥
∥
∞ = 1, for all nonzero a ∈ R

p. In addition,

given any c ∈ R
p such that ‖I(c)‖∞ = 1, then c 6= 0 and there exists a ∈ R

p \ {0} such that
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I(c) = I(aρ−j(‖a‖∞)). Indeed, using Lemma 3.19 iii), we have ‖I(c)‖∞ = I(‖c‖∞) = 1 and by

Lemma 3.19 i), it follows that j(‖c‖∞) = 0. Therefore, cρ−j(‖c‖∞) = c, showing that we may take

a = c. Hence, it follows that

U(q̊) =
{
ρkI(a) : k ∈ Z, a ∈ R

p, ‖I(a)‖∞ = 1
}
∪ {0}. (3.71)

Define the sets

C= , {I(a) : a ∈ R
p, ‖I(a)‖∞ = 1}, (3.72)

C≤ , {I(a) : a ∈ R
p, ‖I(a)‖∞ ≤ 1}, (3.73)

C< , {I(a) : a ∈ R
p, ‖I(a)‖∞ < 1}. (3.74)

Consider C≤ in (3.73). Note that ‖I(a)‖∞ ≤ 1 if and only if |I(ai)| ≤ 1, for all i = 1, . . . , p. Then,

C≤ = {I(a) : a ∈ R
p, |I(ai)| ≤ 1 for all i = 1, . . . , p}.

Define

E≤ , {I(b) : b ∈ R, |I(b)| ≤ 1}.

From (3.58), we have #E≤ = C (see also Figure 3.3). Note then that #C≤ = (#E≤)p = Cp. Also,

define

E< , {I(b) : b ∈ R, |I(b)| < 1},

and note from (3.58) that #E< = C − 2. Moreover, from (3.74) and using the same reasoning as for

C≤, it follows that #C< = (#E<)p = (C − 2)p. From (3.72)–(3.74), note that C= = C≤ \ C< and

C< ⊂ C≤. Therefore, #C= = #C≤ − #C< = Cp − (C − 2)p and using (3.71) we can write

U(q̊) =

Cp−(C−2)p

⋃

i=1

{ρkūi : k ∈ Z} ∪ {0}, (3.75)

where ūi, for i = 1, . . . , Cp − (C − 2)p, are the elements of C=. Note from (3.72) that ūi 6= 0, for

i = 1, . . . , Cp − (C − 2)p. To prove that the sets in (3.75) are disjoint, suppose that ρkūi = ρk
′

ūi′ ,

where ūi and ūi′ are two elements of C=. Then, ūi = ρk
′−kūi′ and ‖ūi‖∞ = ρk

′−k ‖ūi′‖∞. Note that

the ūi, which are the elements of C=, all satisfy ‖ūi‖∞ = 1. Hence, ρk
′−k = 1, whence k′ = k and

then ūi = ūi′ . Therefore, ρkūi = ρk
′

ūi′ only if ūi = ūi′ , showing that the sets in (3.75) are disjoint,

and establishing (3.69). �

Lemma 3.20 shows that the range of q̊ is a finite disjoint union of radially logarithmically spaced

values.

Lemma 3.21 Let C > 2 and consider the quantiser q̊ defined above in (3.61). Then,

‖a− q̊(a)‖∞ ≤ ρj(‖a‖∞)

C − 1
, (3.76)

for all nonzero a ∈ R
p.
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Proof. From (3.58), note that for all b ∈ R,

|b− I(b)| ≤ 1

C − 1
. (3.77)

From (3.61), we have

‖a− q̊(a)‖∞ =
∥
∥
∥ρj(‖a‖∞)aρ−j(‖a‖∞) − ρj(‖a‖∞)I

(

aρ−j(‖a‖∞)
)∥
∥
∥
∞

= ρj(‖a‖∞)
∥
∥
∥aρ−j(‖a‖∞) − I

(

aρ−j(‖a‖∞)
)∥
∥
∥
∞

≤ ρj(‖a‖∞)

C − 1
,

where the last line above follows from (3.77). �

3.5.2 QS Quantiser with Finite Density

We next show how to design a QS quantiser with finite density employing the quantiser q̊ constructed in

§3.5.1.

Theorem 3.22 Let D ∈ R
n×` have linearly independent columns and satisfy DTL−1D = I`, where

L was defined in (3.8) and ` is the number of positive eigenvalues of L. Let W ∈ R
m×` be such that

S , DTL−1MW = −I`, with M as defined in (3.8), and such that J , −W THW > 0, where H

was defined in (3.31). Let λ denote the smallest eigenvalue of the matrix J , and let C be an odd integer

satisfying C ≥ 3 and

C > 1 +
√

`/λ. (3.78)

Then, the quantiser q defined by

q(x) = Wq̊
(
DTx

)
, (3.79)

with q̊ : R
` → R

` as defined in (3.61) and (3.58)–(3.60) in §3.5.1 setting p = `, is QS and has a

quantisation density given by

η(q) =
C` − (C − 2)`

ln C − ln(C − 2)
. (3.80)

Proof. We begin by proving that q is QS. Note that conditions i)—ii) of Theorem 3.14 are satisfied.

Let R0 denote the quantisation region of q that contains the origin. From (3.79) and (3.61a), we have

q(0) = 0 and hence the value of q corresponding to R0 is u = 0. Note that since S is invertible, then the

matrix W ∈ R
m×` has full column rank. From (3.79), then q(x) = 0 if and only if q̊(DTx) = 0 which

by (3.61) happens if and only if DTx = 0. Consequently, condition i) of Theorem 3.17 is satisfied. In

addition, note that A0 = {0} is a quantisation region of q̊ with corresponding value ū0 = 0.

Let Ai and ūi, for all i ∈ Z \ {0}, denote the remaining quantisation regions and corresponding

values of q̊. For all a ∈ Ai, we have, since DTL−1D = I` and S = −I`,

(a+ Sūi)
T (DTL−1D)−1(a+ Sūi) = (a− ūi)

T (a− ūi) = ‖a− q̊(a)‖2
2 , (3.81)
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for all i ∈ Z \ {0}. In addition, using an inequality relating the two-norm and the infinity-norm, and

applying Lemma 3.21, yields

‖a− q̊(a)‖2
2 ≤ ` ‖a− q̊(a)‖2

∞ ≤ `

(C − 1)2
ρ2j(‖a‖∞). (3.82)

From (3.78), it follows that (C − 1)2 > `/λ. Hence, from (3.82), we have

‖a− q̊(a)‖2
2 < λρ2j(‖a‖∞). (3.83)

Also, since λ is the smallest eigenvalue of J > 0, then ūTi Jūi ≥ λ ‖ūi‖2
2. Using ūi = q̊(a) for all

a ∈ Ai, where q̊(a) is given by (3.61b), then

ūTi Jūi ≥ λρ2j(‖a‖∞)
∥
∥
∥I
(

aρ−j(‖a‖∞)
)∥
∥
∥

2

2
≥ λρ2j(‖a‖∞)

∥
∥
∥I
(

aρ−j(‖a‖∞)
)∥
∥
∥

2

∞
. (3.84)

Using Lemma 3.19 iv) in (3.84), we obtain

ūTi Jūi ≥ λρ2j(‖a‖∞). (3.85)

Combining (3.81), (3.83) and (3.85), yields

(a+ Sūi)
T (DTL−1D)−1(a+ Sūi) < ūTi Jūi, (3.86)

for all a ∈ Ai, for all i ∈ Z \ {0}. Therefore, Theorem 3.17 shows that q is QS.

We next establish (3.80). Let q̄ : R
n → R

` be the quantiser defined by q̄(x) = q̊(DTx). Since D

has linearly independent columns, then U(q̄) , {q̄(x) : x ∈ R
n} and U(q̊) , {q̊(a) : a ∈ R

`} are

equal. Therefore, η(q̄) = η(q̊) because quantisation density depends only on the range of a quantiser

[recall (2.12)–(2.14) in Chapter 2]. From (3.79) and since W has linearly independent columns, then

Lemma 2.15 establishes that η(q) = η(q̊). Then, using Lemma 3.20 and Theorem 2.12, yields

η(q) =
C` − (C − 2)`

− ln ρ
.

Eq. (3.80) then follows by substituting (3.60) into the equation above. �

Remark 3.23 The conditions imposed by Theorem 3.22 on the matrices W and D, in addition to con-

ditions i)—ii) of Theorem 3.14, incur no loss of generality. Indeed, suppose that we would like to design

a quantiser q̃(x) = W̃˚̃q(D̃Tx), where W̃ and D̃ satisfy conditions i)—ii) of Theorem 3.14 but are

otherwise arbitrary. Theorem 3.22 can then be employed to design a quantiser q̃(x) = W̃˚̃q(D̃Tx) by

using D = D̃(D̃TL−1D̃)−1/2 and W = −W̃ S̃−1(D̃TL−1D̃)1/2, where S̃ , D̃TL−1MW̃ . Note then

that DTL−1D = I` and DTL−1MW = −I`, and Theorem 3.22 yields a finite-density QS quantiser

q(x) = Wq̊(DTx) = W̃˚̃q(D̃Tx), where ˚̃q(a) = −S̃−1(D̃TL−1D̃)1/2q̊((D̃TL−1D̃)−1/2a).
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Theorem 3.22 provides a means to design finite-density quantisers that quadratically stabilise a

system with respect to the given CLF. Moreover, the densities of these quantisers are given explicitly

by (3.80). Eq. (3.80) reveals that in order to minimise the density of a quantiser constructed according

to Theorem 3.22 for a given CLF, the value of C needs to be as low as possible. This follows since

` is constrained to be equal to the number of positive eigenvalues of L = ATPA − P , which does

not change if both the system and the CLF are fixed. On the other hand, the parameter C needs to be

high enough to satisfy both C ≥ 3 and (3.78). Therefore, the best choice for C in terms of quantisation

density is the least odd integer that satisfies both C ≥ 3 and (3.78). The constraint C ≥ 3 is imposed by

the geometry of the construction of §3.5.1. On the other hand, the constraint (3.78) is required to yield

a QS quantiser. If 1 +
√

`/λ > 3, then maximising λ may allow the use of lower values of C. Recall

that λ is the smallest eigenvalue of J = −W THW and hence different matrices W may yield different

values of λ. When W and D satisfy the conditions of Theorem 3.22, pre- and post-multiplying (3.42)

in Lemma 3.13 by W T and W , respectively, yields J < I, whence λ < 1. Therefore, it follows that if

` ≥ 4, then 1+
√

`/λ > 3 and if C satisfies (3.78) then C will automatically satisfy C ≥ 3. This implies

that when the number ` of positive eigenvalues of L is greater than 4, then constructing q̊ according to

§3.5.1 does not directly impose a lower limit on the achievable quantisation density.

We next summarise the steps involved in the suggested construction of a finite-density multivariable

QS quantiser.

Finite-density QS Quantiser Construction

(a) Given the system and CLF matricesA ∈ R
n×n, B ∈ R

n×m and P ∈ R
n×n such thatA is unstable,

(A,B) is stabilisable and P = P T > 0.

(b) Compute L and M from (3.8), and Q from (3.10).

(c) Verify that V (x) = xTPx is a CLF by checking that Q > 0 (Lemma 2.4)2.

(d) Verify that L is nonsingular3.

(e) Compute `, the number of positive eigenvalues of L.

(f) Compute H from (3.31).

(g) Choose D̃ ∈ R
n×` and W̃ ∈ R

m×` satisfying D̃TL−1D̃ > 0 and W̃THW̃ < 0. These matrices

can be computed, for example, by factoring the matrixG in the proof of Theorem 3.2 asG = W̃ D̃T

(see also the example in §3.5.3 below).

2If Q 6> 0 then choose another P and start again.
3If L is singular, then our method is not applicable. Choosing a different P may yield a nonsingular L. However, in some

cases no choice of P will cause L to be nonsingular (for example, if A = I). This is a limitation of the proposed method.
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(h) Compute D = D̃(D̃TL−1D̃)−1/2 and W = −W̃ S̃−1(D̃TL−1D̃)1/2, where S̃ = D̃TL−1MW̃ .

We now have DTL−1D = I` and DTL−1MW = −I` (recall Remark 3.23).

(i) Compute J = −W THW and its smallest eigenvalue, λ.

(j) Choose an odd integer C ≥ 3 satisfying (3.78)4.

(k) Consider the quantiser q̊ : R
` → R

` defined in (3.61) and (3.58)–(3.60) in § 3.5.1.

(l) The required finite-density QS quantiser q : R
n → R

m is defined by q(x) = Wq̊(DTx). Its density

is given by (3.80).

3.5.3 Example

Consider system (3.1) with matrices

A =














2 1 0 0 0

0 2 0 0 0

0 0 2 0 0

0 0 0 2 1

0 0 0 0 3














, B =














1 1 0 0

1 0 1 0

0 1 0 0

0 0 1 0

0 0 0 1














, (3.87)

and the quadratic function V (x) = xTPx with

P =














16.6561 −7.2172 −15.3227 −0.1282 −0.08183

−7.2172 4.4423 7.2172 0.04159 0.02651

−15.3227 7.2172 16.6561 0.1282 0.08183

−0.1282 0.04159 0.1282 21.5906 10.7047

−0.08183 0.02651 0.08183 10.7047 6.6030














. (3.88)

We would like to design a quantiser q : R
5 → R

4 with finite density that renders V a Lyapunov function

for the closed-loop system x(k + 1) = Ax(k) +Bq(x(k)).

We hence follow steps (a)–(l) above. We readily check that the matricesA, B and P given above are

such thatA is unstable, (A,B) is stabilisable and P = P T > 0 [step (a)]. We compute L = ATPA−P ,

M = ATPB and Q = M(BTPB)−1MT − L [step (b)]. We check that Q > 0 and hence we verify

that the given V is a CLF [step (c)]. We next check that L is nonsingular [step (d)] and compute the

number of positive eigenvalues of L [step (e)]. This yields ` = 3, which is the dimension required for

the reduced-dimension quantiser. We compute H = BTPB −MTL−1M [step (f)].

The next step [step (g)] is to find matrices W̃ ∈ R
4×3 and D̃ ∈ R

5×3 satisfying D̃TL−1D̃ > 0

and W̃THW̃ < 0. We may find these matrices as follows. From Lemma 3.1, we know that if a

4In terms of quantisation density, the smaller C is, the better (recall discussion on page 58).
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linear feedback u = W̃ D̃Tx, with W̃ and D̃ having the required dimensions and linearly independent

columns, quadratically stabilises the system with respect to V , then there exists a quantised feedback of

the form u = W̃ q̊(D̃Tx) that is QS with respect to V . It then follows by Theorem 3.14 that such W̃ and

D̃ satisfy D̃TL−1D̃ > 0 and W̃THW̃ < 0. We then recall Remark 3.5 and calculate the matrix G in

the proof of Theorem 3.2. Since such G has rank equal to the number of positive eigenvalues of L, we

may factor G as G = W̃ D̃T , where W̃ and D̃ have the required dimensions and properties. We hence

compute K = (BTPB)−1/2MT , we find the singular value decomposition KQ−1/2 = S1ΣS
T
2 , and

compute, from (3.12):

W̃ = −(BTPB)−1/2S1




Σ1:3

01×3



 , D̃T =
[

I3 03×1

]

ST2 Q
1/2. (3.89)

This concludes step (g).

We proceed with step (h) and compute

D = D̃(D̃TL−1D̃)−1/2 and W = −W̃ S̃−1(D̃TL−1D̃)1/2, (3.90)

where S̃ , D̃TL−1MW̃ .

Computing J = −W THW and calculating its smallest eigenvalue yields λ ≈ 0.01767 [step (i)].

The least odd integer C that satisfies C ≥ 3 and (3.78), where ` = 3, is C = 15 [step (j)]. We then

implement the quantised feedback u(k) = q(x(k)) = Wq̊(DTx(k)), with q̊ as described in (3.61),

and (3.58)–(3.60) in §3.5.1 [steps (k) and (l)]. The design of a finite-density QS quantiser for the given

system is now complete.

We simulated the resulting closed-loop system from the arbitrary initial condition

x(0) =
[

−0.3911 0.4368 0.0111 −0.2887 −0.0789
]T

.

The simulation results are shown in Figures 3.7–3.9. Figures 3.7 and 3.8 show the evolution of the five

components of the system state and of the three components of the output of the reduced-dimension

quantiser, respectively. Figure 3.9 shows the evolution of V (x) = xTPx. Note that V (x(k)) decreases

as the time k increases, verifying that the quantiser q(x) = Wq̊(DTx) is QS.

Remark 3.24 At step (g), any matrices W̃ ∈ R
m×` and D̃ ∈ R

n×` satisfying D̃TL−1D̃ > 0 and

W̃THW̃ < 0 can be chosen. Choosing these matrices by factoring the matrix G in the proof of

Theorem 3.2, as suggested, yields a matrix D of the form (3.6) at step (h), as follows from (3.89)

and (3.90). This choice is advantageous in relation to quantisation density (recall Theorem 2.17 in

Chapter 2).
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Figure 3.7: System state: x.
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ū
2

ū
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Figure 3.8: Reduced-dimension quantiser output: ū = q̊(DTx).

3.6 Chapter Summary

In this chapter, we have derived an explicit geometric characterisation of quadratically stabilising state

feedback laws that are based on the use of multivariable quantisers of minimum dimension. This charac-
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Figure 3.9: V (x).

terisation consists in a set of necessary and sufficient conditions for a quantised static state feedback to

render a given quadratic function a Lyapunov function for the closed-loop system. These necessary and

sufficient conditions, derived in Theorems 3.14 and 3.17, provide a means to analyse and design such

quantised feedback laws and were derived from a set inclusion condition that is necessarily satisfied by

the quantisation regions and values of a quadratically stabilising quantiser.

We have then designed quantisers with finite density that are able to quadratically stabilise a multiple-

input system with respect to a given CLF. We believe that this is the first method that has been proposed

for explicitly constructing quantisers having finite density and that are able to quadratically stabilise

systems having an arbitrary number of inputs. The design of such quantisers required results from

Chapter 2, jointly with the necessary and sufficient conditions derived in this chapter in Theorems 3.14

and 3.17.



Chapter 4

State-space Approach to Quantiser

“Coarseness” for Single-input Systems

4.1 Overview

In Chapters 2 and 3, we have analysed the problem of deriving a least dense quantiser over all quantisers

that quadratically stabilise a given system. As we have seen, the density of a quantiser depends on the

separation (in some sense) of its quantisation values. In the setting that we consider, the values of a

quantiser constitute the control input values that are applied to the system, since we have u = q(x). In

this sense, we may say that the concept of quantisation density considered so far is input-space-based.

By contrast, in this chapter we explore a different notion of quantisation density, based on the sepa-

ration of the quantisation regions of a quantiser, rather than of its values. The derivations of this chapter

will focus exclusively on single-input systems. To avoid confusion with the standard quantisation den-

sity concept, we shall refer to the concept in this chapter as quantisation coarseness. The intuitive idea

behind our exploration is that a quantiser is coarse (least dense) if its quantisation regions are as large as

possible. We will introduce a novel type of quantisers, namely CAQS (Coarse-Almost-Quadratically-

Stabilising) quantisers, and analyse different links between the proposed state-space approach and the

input-space-based quantisation density concept considered in previous chapters.

The remainder of this chapter is organised as follows. In §4.2, we particularise the setting consid-

ered to single-input systems and define the type of quantised feedback that will be employed. In §4.3,

we provide some preliminary results. The main results of the chapter are presented in §4.4 and §4.5,

where we explore quantiser coarseness from a state-space standpoint, introduce CAQS quantisers and

analyse the connections with the standard concept of quantisation density. We present a quantiser design

example in §4.6 and a summary in §4.7.
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4.2 Single-input Systems

We consider a single-input system of the form

x(k + 1) = Ax(k) +Bu(k), (4.1)

where A ∈ R
n×n, B ∈ R

n×1, x ∈ R
n and u ∈ R. As in previous chapters, we deal with quadratic

stabilisation of the system by means of quantised static feedback u = q(x), where q : R
n → R. We

will exclusively focus on quantisers q : R
n → R of the specific form

q(x) = q̊(dTx), (4.2)

where q̊ : R → R is a scalar quantiser and d ∈ R
n. Figure 4.1 shows the setting that we consider.

dT ·
a ∈ R

q̊(·)

x+ = Ax+Bu

︸ ︷︷ ︸

q(·)

x ∈ R
nu ∈ R

Figure 4.1: The quantised feedback considered: u = q(x) = q̊(dTx).

Remark 4.1 When dealing with single-input systems, the quantised feeback structure u = q(x) =

q̊(dTx) coincides with the structure considered in Chapter 3. For a single-input system, Chapter 3

considers quantised feedbacks u = q(x) = Wq̊(DTx), with W ∈ R
1×p and D ∈ R

n×p both having

linearly independent columns, q̊ : R
p → R

p, and p being as low as possible. For open-loop-unstable

single-input systems, the minimum value of p is 1, and hence W ∈ R, D ∈ R
n and q̊ : R → R. Note

then that there is no loss of generality in selecting W = 1, hence yielding the structure u = q̊(DTx) =

q̊(dTx), which we consider in this chapter.

Since q satisfies q(x) = q̊(dTx), for all x ∈ R
n, the quantisation regions of q have a specific shape.

We will refer to the quantisation regions of such q as parallel-hyperplane regions and to q as a parallel-

hyperplane quantiser. This terminology is motivated by the fact that the quantisation regions of q are all

limited by parallel hyperplanes. We will thus employ the following definitions.

Definition 4.2 (Parallel-hyperplane Region) Let d ∈ R
n, d 6= 0. A parallel-hyperplane region R with

direction d is a set that satisfies

R =
⋃

a∈A
{x ∈ R

n : dTx = a}, (4.3)

for some A ⊆ R.
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Remark 4.3 The vector d and the set A that define a parallel-hyperplane region R are not unique. It is

straightforward to check that if R has direction d, then it also has direction αd for any nonzero α ∈ R.

Definition 4.4 (Parallel-hyperplane Quantiser) Fix d ∈ R
n, d 6= 0. A parallel-hyperplane quantiser

q with direction d is a quantiser whose quantisation regions, Ri, for all i ∈ Z, are parallel-hyperplane

regions with (the same) direction d.

4.3 Preliminary Results

We next present some preliminary results that will be needed in the sequel. Since the quantiser structure

that we consider in this chapter is a special case of that considered in the geometric approach of Chap-

ter 3, we will utilise some of the results of that chapter. Recall that the geometric approach of Chapter 3

utilises a quadratic CLF

V (x) = xTPx, where P = P T > 0 (4.4)

and the matrices

L , ATPA− P, M , ATPB and H , BTPB −MTL−1M. (4.5)

Other tools from Chapter 3 that we will employ in this chapter are: the decomposition of L as

L = UTΛU, where UUT = In and Λ = diag(λ1, . . . , λn), (4.6)

where λ1, . . . , λn ∈ R are the eigenvalues of L; the invertible transformation

Tu(x) , U(x+ L−1Mu); (4.7)

the increment of V along the trajectories of system (4.1),

∆V (x, u) , V (Ax+Bu) − V (x) = xTLx+ 2xTMu+ uTBTPBu; (4.8)

the sets

X(u) , {x ∈ R
n : ∆V (x, u) < 0}, and (4.9)

X0(u) , {x ∈ R
n : ∆V (x, u) ≤ 0}, (4.10)

and their images through Tu:

X̃(u) = {x̃ ∈ R
n : x̃TΛx̃+ uTHu < 0}, (4.11)

X̃0(u) = {x̃ ∈ R
n : x̃TΛx̃+ uTHu ≤ 0}. (4.12)

Remark 4.5 From Remark 3.3, we recall that, since we deal with open-loop unstable systems and we

assume thatL is invertible, thenL necessarily has at least one positive eigenvalue. Then, particularising

Remark 3.4 to single-input systems, we conclude that L has one positive and n−1 negative eigenvalues.
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The following result gives a property of H for single-input systems.

Lemma 4.6 For a single-input system, the quantity H defined in (4.5) is a real number and satisfies

H < 0.

Proof. That H is a real number follows straightforwardly since the matrices in (4.5) have real entries

and B ∈ R
n×1. Let u = Kx, where K ∈ R

1×n, be quadratically stabilising with respect to the CLF V ,

that is, ∆V (x,Kx) < 0 for all nonzero x ∈ R
n. Define

P(ū) , {x ∈ R
n : Kx = ū} (4.13)

and note that ∆V (x, 0) < 0 for all nonzero x ∈ P(0). Therefore, we have P(0) \ {0} ⊂ X(0) [see

(4.9)]. Transforming P(ū) through Tū, [see (4.7)], we obtain

P̃(ū) , Tū(P(ū)) = {x̃ ∈ R
n : KUT x̃ = (1 +KL−1M)ū}. (4.14)

Since Tū is invertible and T0(0) = 0, then P(0) \ {0} ⊂ X(0) if and only if P̃(0) \ {0} ⊂ X̃(0). Then,

applying Theorem 3.10 part 1 to (4.14) with ū = 0 proves that KUTΛ−1UKT > 0. For any ū 6= 0, we

have P(ū) ⊂ X(ū) and hence P̃(ū) ⊂ X̃(ū). Then, applying Theorem 3.10 part 3 to (4.14) with ū 6= 0

shows that

(1 +KL−1M)2ū2(KUTΛ−1UKT )−1 < −Hū2.

Since (1 + KL−1M)2 ≥ 0, ū2 > 0 and KUTΛ−1UKT > 0, it then follows that 0 < −H , whence

H < 0. �

For future reference, whenever d, d̃ ∈ R
n, we define

γ ,
√

−HdTL−1d, γ̃ ,

√

−H d̃
T

Λ−1d̃ and β , −dTL−1M, (4.15)

with L, M and H as defined in (4.5) and with Λ as in (4.6).

In Chapter 3, Theorem 3.10 provided the main tool for the geometric approach developed. The

following theorem gives additional results that will also serve as a main tool for our development in this

chapter.

Theorem 4.7 Let Λ = diag(λ1, . . . , λn) ∈ R
n×n, where λ1, . . . , λn−1 < 0 and λn > 0. Let d̃ ∈

R
n \ {0}, u ∈ R and ã ∈ R, and define P̃ , {x̃ ∈ R

n : d̃
T
x̃ = ã}. Let X̃(u) and X̃0(u) be the sets

defined in (4.11) and (4.12), respectively, where H < 0, and consider the quantity γ̃ defined in (4.15).

Then,

1. If d̃
T

Λ−1d̃ = 0 and u 6= 0, then P̃ ⊂ X̃(u) if and only if ã = 0.

2. There exists p̃ ∈ P̃ such that p̃ /∈ X̃(u) and P̃ \ {p̃} ⊂ X̃(u) if and only if

d̃
T

Λ−1d̃ > 0, and (4.16)

ã2 = γ̃2u2. (4.17)
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Also, if such a p̃ exists, then

p̃T Λp̃+Hu2 = 0. (4.18)

Proof. See Appendix A. �

The following is the last preliminary result that we require.

Lemma 4.8 Let d ∈ R
n satisfy d 6= 0 and dTL−1d ≥ 0, and consider γ and β as defined in (4.15).

Then, |β| > γ.

Proof. Note that H < 0 by Lemma 4.6. Then, since dTL−1d ≥ 0, we have γ ∈ R and the inequality

|β| > γ is well defined.

If dTL−1d > 0, then Lemma 3.13 shows that

β2(dTL−1d)−1 > −H,

whence β2 > γ2. Then, the result follows by taking square root.

If dTL−1d = 0, note that γ = 0 and consider P(0) as defined in (4.13), where K ∈ R
1×n satisfies

∆V (x,Kx) < 0 for all nonzero x ∈ R
n. Fix 0 6= u ∈ R and consider the set X(u) in (4.9). Since

∆V (0, u) = BTPBu2 ≥ 0, then 0 /∈ X(u). Note that 0 ∈ P(0) and hence P(0) 6⊂ X(u). Transform

P(0) through Tu to obtain

Tu(P(0)) = {x̃ ∈ R
n : dTUT x̃ = dTL−1Mu}. (4.19)

Since Tu is invertible, then Tu(P(0)) 6⊂ X̃(u). Note that 0 = dTL−1d = dTUTΛ−1Ud from (4.6).

Then, applying Theorem 4.7 part 1, it follows from (4.19) and since u 6= 0, that dTL−1Mu 6= 0. Using

(4.15), then −βu 6= 0, whence |β| > 0. Since γ = 0, the result follows. �

4.4 Quantiser Coarseness

In this section, we explore the concept of coarseness of a quantiser from a state-space standpoint. Recall

the setting of Figure 4.1. Given a quadratic CLF V , we seek parallel-hyperplane quantisers q that are

QS with respect to V . In addition, we would like to impose the condition that the quantisation regions

of q be as large as possible.

In §4.4.1, we follow this intuitive idea by defining coarse-QS pairs. We then show that defining a

coarse-QS quantiser in a corresponding sense is not useful. This motivates us to relax the QS constraint

by defining and characterising coarse-almost-QS (CAQS) pairs. In §4.4.2, we define and characterise

CAQS quantisers, showing that CAQS quantisers have logarithmically spaced quantisation values. We

then show how to build logarithmic QS quantisers whose spacing between quantisation values is ar-

bitrarily close to that of a given CAQS quantiser. In §4.5, we analyse connections with quantisation

density.
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4.4.1 Coarse-QS and CAQS Pairs

We begin by defining coarse-QS pairs.

Definition 4.9 (Coarse-QS Pair) Let R be a parallel-hyperplane region with direction d and let u ∈ R.

We say that the pair (u,R) is coarse-QS if (a) the pair (u,R) is QS and (b) whenever R ⊆ R?, where

R? is a parallel-hyperplane region with direction d and (u,R?) is QS, then R? = R.

The rationale of this definition is that a pair (u,R) is coarse-QS if the region R is as large as possible,

subject to the constraints that R be a parallel-hyperplane region with direction d and that the pair (u,R)

be QS. By extension, if we could find a parallel-hyperplane quantiser with direction d such that all

of its pairs (u,R) were coarse-QS, then it would be natural to define such a quantiser as a coarse-QS

quantiser. However, one of the consequences of the following lemma is that such a quantiser does not

exist.

Lemma 4.10 (Characterisation of Coarse-QS Pairs) Let d ∈ R
n satisfy dTL−1d > 0, R satisfy (4.3)

for some nonempty A ⊆ R, and u ∈ R. Then, (u,R) is coarse-QS if and only if one of the following

statements holds:

1) u = 0 and A = {0},

2) u 6= 0 and A = (βu− γ|u|, βu+ γ|u|),

with L as defined in (4.5), and γ and β in (4.15).

Proof. By definition, a coarse-QS pair is QS. If u = 0, then Theorem 3.12 part 1) establishes that

(u,R) is QS if and only if 1) holds, whence it straightforwardly follows that (u,R) is coarse-QS if

and only if 1) holds. If u 6= 0, Theorem 3.12 part 2) establishes that (u,R) is QS if and only if

(a + dTL−1Mu)2 < −H(dTL−1d)u2, for all a ∈ A. Using (4.15) it follows that (u,R) is QS if and

only if (a − βu)2 < γ2u2 for all a ∈ A. Note that (a − βu)2 < γ2u2 if and only if βu − γ|u| < a <

βu+ γ|u|. Therefore, we have that (u,R) is QS if and only if A ⊆ (βu− γ|u|, βu + γ|u|). Hence, it

straightforwardly follows that (u,R) is coarse-QS if and only if 2) holds. �

We now verify that there can exist no parallel-hyperplane quantiser having all its quantisation

value/region pairs coarse-QS. For a contradiction, suppose that q is a parallel-hyperplane quantiser with

direction d all of whose quantisation value/region pairs are coarse-QS. Then, Lemma 3.7 shows that

q is QS. Then, Theorem 3.14 shows that D = d must necessarily satisfy dTL−1d > 0. Let Ri and

ui, for all i ∈ Z denote the quantisation regions and corresponding values of such a quantiser. From

Definition 2.5, we require that

⋃

i∈Z

Ri = R
n and Ri ∩Rj = ∅ whenever i 6= j. (4.20)
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Since the Ri are parallel-hyperplane regions with direction d, they all satisfy

Ri =
⋃

a∈Ai

{x ∈ R
n : dTx = a}.

By Lemma 4.10, the sets Ai satisfy Ai = (βui − γ|ui|, βui + γ|ui|) whenever ui 6= 0, and Ai = {0}
for the unique i ∈ Z such that ui = 0. To satisfy (4.20), the sets Ai must satisfy

⋃

i∈Z
Ai = R and

Ai ∩ Aj = ∅, which is not possible, since the Ai are all bounded open intervals, except for the unique

one satisfying Ai = {0}.

This fact motivates the following definition.

Definition 4.11 (CAQS Pair) Let d ∈ R
n, let R be a parallel-hyperplane region with direction d and

let u ∈ R. We say that the pair (u,R) is coarse-almost-QS (CAQS) if (a) there exists p ∈ R, such that

(u,R\ {p}) is QS and (b) whenever R ⊆ R?, where R? is a parallel-hyperplane region with direction

d such that there exists p? ∈ R? satisfying (u,R? \ {p?}) is QS, then R? = R.

If (u,R) is CAQS, R may contain at most one point that makes the pair (u,R) not QS. In addition,

there exists no other region that contains R and has this property. We will see that Definition 4.11 does

allow us to define a CAQS quantiser as a quantiser all of whose pairs (ui,Ri) are CAQS. The following

proposition is needed in the subsequent characterisation of CAQS pairs.

Proposition 4.12 Let u ∈ R, R be a parallel-hyperplane region, 0 ∈ R and (u,R) be CAQS. Then,

(u,R) is QS.

Proof. For a contradiction, suppose that (u,R) is CAQS but not QS. Then, there exists p ∈ R, p 6= 0,

such that p /∈ X(u) and (u,R \ {p}) is QS. From Definition 3.6 and since 0 ∈ R \ {p}, we then have

u = 0 and R \ {p, 0} ⊂ X(0). Since R is a parallel-hyperplane region, it satisfies (4.3) for some

nonzero d ∈ R
n and some A ⊆ R. Note that 0 ∈ A since 0 ∈ R. Define

P(a) , {x ∈ R
n : dTx = a}

and note that P(0) ∈ R and P(0) \ {p, 0} ⊂ X(0).

If p ∈ P(0), then δp ∈ P(0) for all δ ∈ R. Eqs. (4.9) and (4.8) show that X(0) = {x ∈ R
n :

xTLx < 0}. Since p /∈ X(0), then δp /∈ X(0) for all δ ∈ R. Hence, P(0) \ {p, 0} 6⊂ X(0), reaching a

contradiction.

If p /∈ P(0), then let b = dT p, note that b 6= 0 and consider P(b). Note that P(b) ⊂ R and,

since R \ {p, 0} ⊂ X(0) and 0 /∈ P(b), then P(b) \ {p} ⊂ X(0). Since Tu is invertible, we have

P(b) \ {p} ⊂ X(0) if and only if T0(P(b)) \ {T0(p)} ⊂ X̃(0). Using (4.7) yields

T0(P(b)) = {x̃ ∈ R
n : dTUT x̃ = b}.

Then, (4.17) in Theorem 4.7 shows that b = 0. Contradiction.

Therefore, we have established that (u,R) is QS. �
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Lemma 4.13 (Characterisation of CAQS Pairs) Let d ∈ R
n satisfy dTL−1d > 0, with L as in (4.5),

let R satisfy (4.3) for some nonempty A ⊆ R, and let u ∈ R. Then, (u,R) is CAQS if and only if one of

the following statements holds:

1) u = 0 and A = {0},

2) u 6= 0 and either A = [βu− γ|u|, βu+ γ|u|) or A = (βu− γ|u|, βu+ γ|u|],

where γ and β were defined in (4.15).

Proof. Necessity.

• If 0 ∈ R, then Proposition 4.12 shows that (u,R) is QS and Theorem 3.12 establishes 1).

• If 0 /∈ R, then consider the sets P(a) = {x ∈ R
n : dTx = a}, where a ∈ R. Since A is

nonempty, there exists 0 6= a2 ∈ A and hence P(a2) ⊆ R, for any such a2. Since (u,R) is

CAQS, then either

(i) (u,P(a2)) is QS or

(ii) there exists p ∈ P(a2), p /∈ X(u), such that (u,P(a2) \ {p}) is QS.

If (i) is true, then Theorem 3.12 shows that u 6= 0. If (ii) is true, then P(a2) \ {p} ⊂ X(u) and

hence Tu(P(a2)) \ Tu({p}) ⊂ X̃(u). Note that Tu(p) /∈ X̃(u), since p /∈ X(u). Using (4.7) and

(4.15), we have

Tu(P(a)) = {x̃ ∈ R
n : dTUT x̃ = a− βu}. (4.21)

Then, from Theorem 4.7 and (4.6), we prove that (a2 − βu)2 = γ̃2u2. The latter implies that

u 6= 0, since otherwise a2 = 0. We have thus proved that if 0 /∈ R, then u 6= 0.

Recall that R =
⋃

a∈A P(a) and that we have either (i) or (ii) above.

a) From Theorem 3.12, (i) is true if and only if βu− γ|u| < a2 < βu+ γ|u|.

b) Using (4.21) and Theorem 4.7, (ii) is true if and only if either a2 = βu − γ|u| or a2 =

βu+ γ|u|.

Therefore, 2) follows straightforwardly from a) and b) above and Definition 4.11.

This completes the necessity part of the proof.

Sufficiency. Consider the sets P(a) defined in the necessity part of the proof and let

R? =
⋃

a∈A?

P(a),

where A ⊆ A? and hence R ⊆ R?. Assume that there exists p? ∈ R? such that R?\{p?} ⊂ X(u). Let

a? be such that P(a?) ⊆ R?. Then, either (u,P(a?)) is QS or (u,P(a?) \ {p?}) is QS and p? /∈ X(u).

We next show that (a) and (b) in Definition 4.11 hold.
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If 1) is true, then Theorem 3.12 shows that (u,R) is QS. Then, given any p ∈ R, (u,R \ {p}) also

is QS, establishing (a). Using (4.21) and Theorem 4.7, we obtain a? = 0, thus proving that R? = R
and establishing (b).

If 2) is true, let a2 ∈ R satisfy P(a2) ⊆ R. If βu−γ|u| < a2 < βu+γ|u|, then Theorem 3.12 shows

that (u,P(a2)) is QS. If a2 = βu−γ|u| or a2 = βu+γ|u|, then using (4.21) and Theorem 4.7, it follows

that there exists p ∈ P(a2), p /∈ X(u) such that (u,P(a2) \ {p}) is QS. Since R =
⋃

a∈A P(a), with

A as in 2), then we see that there exists p ∈ R such that (u,R \ {p}) is QS, establishing (a). Applying

to R? the same reasoning that was applied to R in the necessity proof, we can prove that A? = A and

hence R? = R, which establishes (b).

This proves that (u,R) is CAQS and concludes the sufficiency proof. �

4.4.2 CAQS Quantisers

In this section, we define and characterise CAQS quantisers. We show that CAQS quantisers are loga-

rithmic and show how to construct logarithmic QS parallel-hyperplane quantisers having a logarithmic

base that is arbitrarily close to that of a given CAQS quantiser. We shall henceforth consider only

symmetric quantisers, that is, quantisers that satisfy q(x) = −q(−x), for all x.

Definition 4.14 (CAQS Quantiser) Let q be a parallel-hyperplane quantiser with direction d ∈ R
n.

Let Ri and ui, for all i ∈ Z, be its quantisation regions and corresponding quantisation values, respec-

tively. We say that q is CAQS if (ui,Ri) is CAQS, for all i ∈ Z.

The following proposition is needed to achieve the characterisation of CAQS quantisers in Theo-

rem 4.16.

Proposition 4.15 Let q be a parallel-hyperplane quantiser with direction d ∈ R
n and let q be CAQS.

Then, dTL−1d > 0.

Proof. Since q is parallel-hyperplane with direction d, then d 6= 0. Let R be the quantisation region of

q that contains the origin, and let u be the corresponding value. By Definition 4.14, (u,R) is CAQS. By

Proposition 4.12, then (u,R) is QS. Consider P , {x ∈ R
n : dTx = 0}. Note that P ⊆ R and hence

(u,P) also is QS. Then, Lemma 3.11 establishes that dTL−1d > 0. �

Theorem 4.16 (Characterisation of CAQS Quantisers) Let d ∈ R
n, d 6= 0, consider β and γ as

defined in (4.15), and define

ρ ,
|β| − γ

|β| + γ
. (4.22)

Let q be a parallel-hyperplane quantiser with direction d, satisfying q(x) = −q(−x) for all x ∈ R
n.

Then, q is CAQS if and only if dTL−1d > 0, 0 < ρ < 1, |β| ± γ > 0 and there exists u0 ∈ R, βu0 > 0,
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such that q satisfies

q(x) =







0 if x ∈ R̄, (4.23a)

ui if x ∈ Ri, (4.23b)

−ui if x ∈ −Ri, (4.23c)

R̄ = {x ∈ R
n : dTx = 0}, (4.24)

ui = ρ−iu0, (4.25)

Ri = ρ−iR0, (4.26)

σ0 = βu0 − γ|u0|. (4.27)

R0 = {x ∈ R
n : σ0 < dTx ≤ ρ−1σ0}, or (4.28a)

R0 = {x ∈ R
n : σ0 ≤ dTx < ρ−1σ0}, (4.28b)

for all i ∈ Z.

Proof. Sufficiency. Since βu0 > 0 and |β| ± γ > 0, using (4.27) we have σ0 > 0. Since dTL−1d > 0,

then d 6= 0. It is then straightforward to check that q, as defined above, is indeed a parallel-hyperplane

quantiser with direction d. We next prove that q is CAQS. Since dTL−1d > 0, from (4.24), Lemma 4.13

shows that (0, R̄) is CAQS. Suppose that R0 has the form (4.28a). Using (4.27) and (4.22), and since

βu0 > 0, we can straightforwardly show that

R0 = {x ∈ R
n : βu0 − γ|u0| < dTx ≤ βu0 + γ|u0|}. (4.29)

By Lemma 4.13, we see that (u0,R0) is CAQS. From (4.22), (4.25), (4.26), (4.29) and the facts that

0 < ρ and βu0 > 0, it follows that

Ri = {x ∈ R
n : βui − γ|ui| < dTx ≤ βui + γ|ui|}.

Then, Lemma 4.13 shows that (ui,Ri) is CAQS for all i ∈ Z. The same follows by considering R0 in

(4.28b) and a similar procedure can be used to prove that (−ui,−Ri) is CAQS for i ∈ Z. Recalling

Definition 4.14, the sufficiency proof is concluded.

Necessity. Since q is a CAQS parallel-hyperplane quantiser with direction d, then Proposition 4.15

establishes that dTL−1d > 0. Let R̄ denote the quantisation region of q that contains the origin and

let ū denote its corresponding value. Since q(x) = −q(−x), then q(0) = 0 and hence ū = 0. Since q

is CAQS, then (ū, R̄) is CAQS and Lemma 4.13 shows that R̄ = {x ∈ R
n : dTx = 0}, establishing

(4.23a) and (4.24). Using Lemma 4.6 and (4.15), we have γ > 0 and from Lemma 4.8, we prove

that |β| ± γ > 0 and 0 < ρ < 1. Since q is CAQS and q(x) = −q(−x), using Lemma 4.13 it is
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straightforward to check that q must have at least one quantisation value u0 satisfying βu0 > 0 (note

that β 6= 0 since |β| > γ > 0). Let R0 denote the quantisation region of q whose corresponding value

is u0. Since (u0,R0) is CAQS, using Lemma 4.13 we obtain

R0 = {x ∈ R
n : βu0 − γ|u0| < dTx ≤ βu0 + γ|u0|}, or (4.30a)

R0 = {x ∈ R
n : βu0 − γ|u0| ≤ dTx < βu0 + γ|u0|}. (4.30b)

Since βu0 > 0, then βu0 − γ|u0| = (|β| − γ)|u0| and βu0 + γ|u0| = (|β|+ γ)|u0|. Using (4.22), then

βu0 + γ|u0| = ρ−1(βu0 − γ|u0|). Defining then σ0 to satisfy (4.27), it follows that (4.30) establishes

(4.28). We now proceed to prove (4.23b), (4.25) and (4.26) for all i ∈ Z by induction. Let j ∈ Z+,0,

and assume that q contains a region of the form (4.26) for i = j. Note that this assumption is satisfied

when j = 0.

Using (4.26) and (4.30), we have

Rj = {x ∈ R
n : ρ−j(βu0 − γ|u0|) < dTx ≤ ρ−j(βu0 + γ|u0|)} or (4.31a)

Rj = {x ∈ R
n : ρ−j(βu0 − γ|u0|) ≤ dTx < ρ−j(βu0 + γ|u0|)}, (4.31b)

where (4.31a) corresponds to (4.30a) and (4.31b) to (4.30b). Let uj denote the value of q corresponding

to Rj . Since (uj ,Rj) is CAQS, using Lemma 4.13 and (4.31), we obtain

ρ−j(βu0 − γ|u0|) = βuj − γ|uj | and ρ−j(βu0 + γ|u0|) = βuj + γ|uj |. (4.32)

From (4.32) and the facts that ρ > 0, βu0 > 0 and |β|±γ > 0, it follows that βuj > 0 and uj = ρ−ju0,

which establishes (4.25) for i = j. We next show that (4.23b), (4.25) and (4.26) hold for i = j + 1.

If Rj has the form (4.31a), let x? ∈ R
n satisfy

dTx? = ρ−j(βu0 + γ|u0|) + ε = βuj + γ|uj | + ε, (4.33)

for some ε > 0 (arbitrarily small) such that x? /∈ Rj . Let R?
1 be the quantisation region of q that

contains x? and let u?1 be the value of q corresponding to R?
1. Since (u?1,R?

1) is CAQS, we have, using

Lemma 4.13,

R?
1 = {x ∈ R

n : βu?1 − γ|u?1| < dTx ≤ βu?1 + γ|u?1|}, or (4.34a)

R?
1 = {x ∈ R

n : βu?1 − γ|u?1| ≤ dTx < βu?1 + γ|u?1|}. (4.34b)

Since x? /∈ Rj , x? ∈ R?
1 and R?

1 ∩ Rj = ∅, it follows from (4.31), (4.33) and (4.34) that ρ−j(βu0 +

γ|u0|) ≤ βu?1 − γ|u?1|. Note that 0 < ρ−j(βu0 + γ|u0|) because ρ > 0, βu0 > 0 and |β| > γ > 0.

Then, βu?1 − γ|u?1| > 0 and βu?1 > 0.

Recall that we have selected ε > 0 arbitrarily small. For a contradiction, suppose that βu?1−γ|u?1| 6=
ρ−j(βu0 + γ|u0|). Then, q must have a quantisation region, R?

2, satisfying R?
2 ⊆ R?

3, where

R?
3 = {x ∈ R

n : ρ−j(βu0 + γ|u0|) ≤ dTx ≤ (βu?1 − γ|u?1|)}.
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Since x? ∈ R?
1 and satisfies (4.33), using (4.34) we have

βu?1 − γ|u?1| − ρ−j(βu0 + γ|u0|) ≤ ε. (4.35)

Let u?2 denote the value of q corresponding to R?
2. Using the same argument as for u?1, we can prove

that βu?2 > 0. Since (u?2,R?
2) is CAQS, using Lemma 4.13, we obtain

R?
2 = {x ∈ R

n : βu?2 − γ|u?2| < dTx ≤ βu?2 + γ|u?2|}, or (4.36a)

R?
2 = {x ∈ R

n : βu?2 − γ|u?2| ≤ dTx < βu?2 + γ|u?2|}, (4.36b)

where, since R?
2 ⊆ R?

3,

βu?2 − γ|u?2| ≥ ρ−j(βu0 + γ|u0|), (4.37)

βu?2 + γ|u?2| ≤ βu?1 − γ|u?1|. (4.38)

From (4.35), (4.37) and (4.38), we have

βu?2 + γ|u?2| − (βu?2 − γ|u?2|) = 2γ|u?2| ≤ ε. (4.39)

Since γ > 0, then (4.39) can be written as |u?2| ≤ ε/2γ. Since u?2 6= 0 because βu?2 > 0, then we reach

a contradiction by selecting ε > 0 small enough. Then, βu?1 − γ|u?1| = βuj + γ|uj | and since R?
1 and

Rj must be disjoint, we have, using (4.22),

R?
1 = {x ∈ R

n : βuj + γ|uj | < dTx ≤ ρ−1(βuj + γ|uj |)}. (4.40)

If Rj has the form (4.31b), then let x? ∈ R
n satisfy

0 < dTx? = ρ−j(βu0 + γ|u0|) = βuj + γ|uj |, (4.41)

and note that x? /∈ Rj . Let R?
1 be the quantisation region of q that contains x? and let u?1 be the

corresponding value. Since (u?1,R?
1) is CAQS, then Lemma 4.13 shows that R?

1 satisfies (4.34b). Then,

βu?1 − γ|u?1| = βuj + γ|uj | and

R?
1 = {x ∈ R

n : βuj + γ|uj | ≤ dTx < ρ−1(βuj + γ|uj |)}. (4.42)

Substituting uj = ρ−ju0 into (4.40) or (4.42), and defining Rj+1 , R?
1 and uj+1 , u?1, we obtain

Rj+1 = ρ−(j+1)R0 and uj+1 = ρ−(j+1)u0, which establishes (4.23b), (4.25) and (4.26) for i = j + 1.

Hence, we have established that if q contains a region of the form (4.26), for i = j, then it must also

contain a region of the form (4.26), for i = j + 1. Also, we have established that the values of q

corresponding to these regions satisfy (4.25). Hence, we have proved by induction that (4.23b), (4.25)

and (4.26) hold for all i ∈ Z+,0. In a similar manner, we can prove that if q contains a region of the form

(4.26), for i = j, then it must also contain a region of the form (4.26), for i = j − 1. This establishes
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(4.23b), (4.25) and (4.26) for all i ∈ Z. Then, (4.23c) follows since q(x) = −q(−x) for all x ∈ R
n by

assumption. This concludes the proof. �

Theorem 4.16 shows how we may build a CAQS quantiser for a given direction d. This theorem also

shows that a CAQS quantiser is logarithmic, with a logarithmic base given by ρ in (4.22). We next show

how to construct logarithmic QS quantisers having a logarithmic base that is arbitrarily close to that of

any given CAQS quantiser. Before proving Theorem 4.18, we need the following result, whose proof is

straightforward and is therefore omitted.

Lemma 4.17 Let R ⊂ R
n, and u, ρ ∈ R. If (u,R) is QS, then (ρu, ρR) is QS.

Theorem 4.18 Let d ∈ R
n satisfy dTL−1d > 0 and consider β and γ as defined in (4.15). Then

|β| ± γ > 0. Let ε > 0 satisfy

0 <
|β| − γ

|β| + γ
+ ε < 1, (4.43)

and define ρ ,
|β|−γ
|β|+γ + ε. Let σ0, u0 ∈ R satisfy βu0 > 0 and

βu0 − γ|u0| < σ0 < ρ(βu0 + γ|u0|). (4.44)

Let q : R
n → R be a quantiser defined as in (4.23)–(4.26) and (4.28). Then, q is QS.

Proof. Since dTL−1d > 0 and using Lemma 4.6, then γ > 0. From Lemma 4.8 then |β| ± γ > 0. We

next establish that q is QS. Consider R̄ in (4.24). By Theorem 3.12 and the fact that dTL−1d > 0, we

have that (0, R̄) is QS. Since βu0 > 0 and |β| ± γ > 0, then βu0 − γ|u0| > 0 and from (4.44) then

σ0 > 0. Also, since 0 < ρ < 1, multiplying the second inequality in (4.44) by ρ−1 > 1, and combining

with the first inequality in (4.44), yields βu0 − γ|u0| < σ0 < ρ−1σ0 < βu0 + γ|u0|. Then, from (4.28)

and the fact that dTL−1d > 0, Theorem 3.12 shows that (u0,R0) is QS. Then, using Lemma 4.17 it

follows from (4.25) and (4.26) that (ui,Ri) and (−ui,−Ri) are QS, for all i ∈ Z. By Lemma 3.7, the

result follows. �

4.5 CAQS Quantisers and Quantisation Density

We next discuss the relationship between CAQS quantisers and the standard concept of quantisation

density, which we have considered in previous chapters.

Recall from Chapter 2 that the density of a quantiser q : R
r → R

s, denoted η(q), is defined as

η(q) , lim sup
ε→0

#[U(q) ∩ Cs(ε)]
−2 ln ε

, (4.45)

where #[·] denotes the number of elements of a set, U(q) denotes the range of q, and Cs(ε) , {u ∈
R
s : ε ≤ ‖u‖2 ≤ 1/ε}.
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The first link between CAQS quantisers and quantisation density is given in the following theorem,

which shows that the density of a CAQS quantiser with direction d is the infimum over all QS parallel-

hyperplane quantisers with direction d [with respect to a given and fixed CLF V (x) = xTPx].

Theorem 4.19 Let qd : R
n → R be a CAQS quantiser with direction d ∈ R

n. Then, η(qd) = η?, where

η? = inf η(q), subject to (4.46)

q is QS parallel-hyperplane with direction d, (4.47)

and η(·) denotes the density of a quantiser, as defined in (4.45).

Proof. Recall that the density of a quantiser depends only on its values and not on its regions. Then,

considering (4.22), (4.23) and (4.25) in Theorem 4.16, we have to prove that η?, as defined in (4.46)–

(4.47), coincides with the density of a quantiser having logarithmically spaced values with logarithmic

base ρ = |β|−γ
|β|+γ , with β and γ as defined in (4.15).

Let q be a QS parallel-hyperplane quantiser with direction d. Then Theorem 3.14 shows that

dTL−1d > 0. From Lemma 4.6, Lemma 4.8 and (4.15), then |β| > γ > 0. Let u0, u1 ∈ R be

adjacent quantisation values of q, that is, u0 6= u1 and q has no other quantisation values in the interval

(min{u0, u1},max{u0, u1}). Suppose, without loss of generality, that βu0 > 0. Note that this implies

that u0 6= 0. Let R0 and R1 denote the quantisation regions of q with corresponding values u0 and u1,

respectively. Since q is QS, then Lemma 3.7 shows that (u0,R0) and (u1,R1) are QS. We next proceed

to find the maximum separation between the adjacent values u0 and u1 of q, subject to the constraints

that (u0,R0) and (u1,R1) are QS. Since q is parallel-hyperplane with direction d, we have

Ri =
⋃

a∈Ai

{x ∈ R
n : dTx = a}, (4.48)

for i = 0, 1. Since (u0,R0) is QS, dTL−1d > 0 and u0 6= 0, Theorem 3.12 imposes that

Ai ⊆ (βui − γ|ui|, βui + γ|ui|), (4.49)

for i = 0.

Claim A): ρ < u1/u0 < ρ−1, with ρ as defined in (4.22).

Proof of Claim A). Note that since |β| > γ > 0, then ρ > 0. Since u0 and u1 are adjacent, u0 6= 0

and q is QS, then u1/u0 ≥ 0, since otherwise u0 and u1 would not be adjacent because 0 necessarily is

a value of q. Suppose for a contradiction that ρ ≥ u1/u0. Since u1/u0 ≥ 0, βu0 > 0 and ρ ≥ u1/u0,

then

βu1 ≤ ρβu0 and |u1| ≤ ρ|u0|. (4.50)

Using (4.50), (4.22), and since γ > 0 and βu0 > 0, we obtain

βu1 + γ|u1| ≤ ρ(βu0 + γ|u0|) = βu0 − γ|u0|. (4.51)
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Let x ∈ R
n satisfy dTx = βu0 − γ|u0|. From (4.48) and (4.49), it follows that x /∈ R0. If u1 6= 0,

then Theorem 3.12 part 2) imposes (4.49) for i = 1 because (u1,R1) is QS. Then, from (4.49) and

(4.51), it follows that x /∈ R1. If u1 = 0, then note that x /∈ R1 from Theorem 3.12 part 1) and since

βu0 − γ|u0| > 0. Therefore, x /∈ R0 and x /∈ R1. Thus, let R2 be the quantisation region of q that

contains x and let u2 be its corresponding value. Since q is parallel-hyperplane, then R2 has the form

(4.48) with i = 2. Since q is QS, then Lemma 3.7 shows that (u2,R2) is QS. Since βu0 − γ|u0| > 0

and βu0 − γ|u0| ∈ A2, then from Theorem 3.12 part 1), it follows that u2 6= 0. Then, Theorem 3.12

part 2) establishes (4.49) with i = 2. Since x ∈ R2, it follows that

βu2 − γ|u2| < βu0 − γ|u0| < βu2 + γ|u2|. (4.52)

Since |β| > γ and βu0−γ|u0| > 0, then the second inequality in (4.52) implies that βu2 > 0. Operating

on the first inequality in (4.52) yields

(|β| − γ)|u2| < (|β| − γ)|u0|.

Therefore, since |β| > γ, then |u2| < |u0|, whence |β||u2| < |β||u0| and then βu2 < βu0. From (4.51)

and (4.52), we have

βu1 + γ|u1| ≤ βu0 − γ|u0| < βu2 + γ|u2|, (4.53)

whence βu1 < βu2. Note also that u1/u0 ≥ 0 and βu0 > 0 imply that βu1 ≥ 0. Therefore, we

have 0 ≤ βu1 < βu2 < βu0 and hence min{u0, u1} < u2 < max{u0, u1}, showing that u0 and u1

are not adjacent, and reaching a contradiction. We have thus proved that ρ < u1/u0. The proof that

u1/u0 < ρ−1 follows similar arguments. This concludes the proof of Claim A).

Claim A) proves that any two adjacent values u0 and u1 of a QS parallel-hyperplane quantiser

necessarily satisfy
|β| − γ

|β| + γ
< u1/u0 <

|β| + γ

|β| − γ

Moreover, note that, for any ε > 0 arbitrarily small, we can always build a logarithmic QS quantiser

whose adjacent values satisfy

|β| − γ

|β| + γ
+ ε < u1/u0 <

( |β| − γ

|β| + γ
+ ε

)−1

using Theorem 4.18. Hence, it follows that the infimum density η? is equal to the density of a logarithmic

quantiser with base ρ = |β|−γ
|β|+γ . This concludes the proof. �

The link between CAQS quantisers and quantisation density given by Theorem 4.19 can be directly

exploited to design static output feedback laws that employ a quantiser with infimum density, as the

following theorem shows.
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Theorem 4.20 Consider system (4.1) with a single output

y(k) = Cx(k), (4.54)

where C ∈ R
1×n. Suppose that a linear feedback u = αy exists that stabilises the single-input system

(4.1) with the single-output (4.54), and that V (x), defined in (4.4), is a Lyapunov function for the linear

closed-loop system x(k + 1) = (A+ αBC)x(k). Let qd be a CAQS quantiser with direction d = CT .

Then η(qd) = η?, where

η? = inf η(q̊), subject to (4.55)

q̊ is such that V is a Lyapunov function for x(k + 1) = Ax(k) +Bq̊(Cx(k)), (4.56)

and η(·) denotes the density of a quantiser, as defined in (4.45).

Proof. Define q : R
n → R by q(x) = q̊(Cx). Since the range of q, namely U(q), satisfies U(q) =

{q(x) : x ∈ R
n} = {q̊(a) : a ∈ R} = U(q̊), then η(q) = η(q̊). Note also that q is parallel-hyperplane

with direction d = CT . We can then rewrite (4.55)–(4.56) as

η? = inf η(q), subject to (4.57)

q is QS and parallel-hyperplane with direction d = CT . (4.58)

Using Theorem 4.19, the result follows. �

The link between CAQS quantisers and quantisation density given by Theorem 4.19 can be ex-

ploited further to recover the result of Elia and Mitter (2001, Theorem 2.1), which derives the optimum

quantisation density over all quantisers that are QS for a single-input system with respect to a given

CLF.

Theorem 4.21 Consider the matrix M defined in (4.5), and let qM be a CAQS quantiser with direction

M . Then,

η(qM ) = inf η(q), subject to (4.59)

q is QS. (4.60)

Proof. Note that we have to prove that η(qM ) is the solution to Problem 2.16 in Chapter 2, when we

consider the single-input system (4.1). By Theorem 2.17 and Remark 2.20, it follows that we need

to optimise density only over parallel-hyperplane quantisers with direction αM , where α ∈ R. By

Remark 4.3, then we need to optimise density only over parallel-hyperplane quantisers with direction

M . Therefore, we have



inf η(q), subject to

q is QS



 =




inf η(q), subject to

q is QS parallel-hyperplane with direction M



 . (4.61)
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By Theorem 4.19, the result then follows. �

Theorem 4.21 shows that a CAQS quantiser with direction M = ATPB optimises density over

all QS quantisers. In Theorem 2.1 of Elia and Mitter (2001), it is shown that a logarithmic parallel-

hyperplane quantiser with direction KT
GD = −ATPB(BTPB)−1 optimises density over all QS quan-

tisers. Recalling Remark 4.3 and since 0 6= BTPB ∈ R, it follows that a parallel-hyperplane quantiser

with direction M also has direction KT
GD. Thus, Theorem 4.21 recovers the optimum density result in

Theorem 2.1 of Elia and Mitter (2001).

We next verify that the expressions for the optimum quantisation density derived according to the

results in this thesis and according to Elia and Mitter (2001) actually yield identical values. From (4.23)

and (4.25) in Theorem 4.16, a CAQS quantiser with direction d has a range U satisfying

U = {ρku0 : k ∈ Z} ] {−ρku0 : k ∈ Z} ∪ {0}, (4.62)

where ρ satisfies (4.22), with β and γ as in (4.15). By Theorem 2.12, then the density of a CAQS

quantiser with direction d is 2/ − ln ρ. From Theorem 2.1 of Elia and Mitter (2001), the optimum

density is 2/− ln ρ̃, where

ρ̃ ,

√
BTPAQ−1ATPB

BTPB
− 1

√
BTPAQ−1ATPB

BTPB
+ 1

, (4.63)

with

Q = P −ATPA+ATPB(BTPB)−1BTPA. (4.64)

The following result then verifies that the density of a CAQS quantiser with direction M coincides

with the optimum density given in Theorem 2.1 of Elia and Mitter (2001).

Theorem 4.22 Consider β and γ, defined in (4.15), with d = M , where M was defined in (4.5). Let ρ

be defined in (4.22). Then, ρ = ρ̃, where ρ̃ is given in (4.63) with Q satisfying (4.64).

Proof. From (4.22), (4.15), and setting d = M , we have

ρ =
|β| − γ

|β| + γ
=

|β|/γ − 1

|β|/γ + 1
=

√

β2

γ2
− 1

√

β2

γ2
+ 1

=

√

MTL−1M

−H − 1
√

MTL−1M

−H + 1

. (4.65)

Using (4.5), we can rewrite (4.64) as:

Q = M(BTPB)−1MT − L.

Using a matrix inversion formula yields

Q−1 = −
[
L−1 + L−1M(BTPB −MTL−1M)−1MTL−1

]
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Then,

BTPAQ−1ATPB

BTPB
=
MTQ−1M

BTPB
= −M

TL−1M

BTPB

[

1 +
MTL−1M

BTPB −MTL−1M

]

= −M
TL−1M

BTPB

BTPB

BTPB −MTL−1M

=
MTL−1M

−H , (4.66)

where we have used (4.5). From (4.65) and (4.66), the result follows. �

Theorem 4.22 thus verifies that the optimum density as given in Elia and Mitter (2001, Theorem 2.1)

and the one corresponding to a CAQS quantiser with direction d = M are identical. When the given

direction is M or a scalar multiple of it, then Theorem 4.18 becomes the state-space-based counterpart

to the construction of quadratically stabilising logarithmic quantisers with density arbitrarily close to

the infimum in Theorem 2.1 of Elia and Mitter (2001).

The fact that a CAQS quantiser with direction M optimises quantisation density can be derived

directly by optimising density over QS parallel-hyperplane quantisers, as shown by the following result.

Theorem 4.23 Consider the matrix M defined in (4.5), and let qM be a CAQS quantiser with direction

M . Then,

η(qM ) = inf η(q), subject to (4.67)

q is QS and parallel-hyperplane. (4.68)

Proof. Note that inf η(q) subject to (4.68) is equivalent to

inf
d∈Rn, d6=0




inf η(q), subject to

q is QS and parallel-hyperplane with direction d



 .

Using Theorem 4.19, then inf η(q) subject to (4.68) is equivalent to

inf
d∈Rn, d6=0

η(qd),

where qd is CAQS with direction d. From Proposition 4.15, it follows that in order that qd be CAQS,

then dTL−1d > 0. Hence, inf η(q) subject to (4.68) is equivalent to

inf
d:dTL−1d>0

η(qd),

where qd is CAQS with direction d. By Theorem 4.16, the range of qd, namely U(qd), satisfies

U(qd) = {ρju0 : j ∈ Z} ∪ {−ρju0 : j ∈ Z} ∪ {0},

with 0 < ρ < 1. Then, from Theorem 2.12 it follows that η(qd) = −2/ ln ρ. Minimising η(qd) is then

equivalent to minimising ρ = |β|−γ
|β|+γ .
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Since dTL−1d > 0 and, by Lemma 4.6 H < 0, then γ, defined in (4.15), is real and positive.

Therefore,
|β| − γ

|β| + γ
=

|β|/γ − 1

|β|/γ + 1
. (4.69)

Using Lemma 4.8, and since γ > 0, then |β|/γ > 1. The function g(|β|/γ) defined by the right-

hand side of (4.69) is strictly increasing for |β|/γ ≥ 1 and hence minimising (4.69) is equivalent to

minimising |β|/γ. In turn, this is also equivalent to minimising β2/γ2. From (4.15), it follows that

f(d) ,
β2

γ2
=
dTL−1MMTL−1d

−HdTL−1d
. (4.70)

From Lemma 4.8, we have |β| > γ, even in the case when dTL−1d = 0. Hence, the infimum of (4.70)

over dTL−1d > 0 cannot occur at a point d? satisfying dT? L
−1d? = 0. Therefore, any d? that minimises

(4.70) necessarily satisfies ∇f(d?) = 0. We have

∇f(d?) = 2
(dT? L

−1d?)L
−1MMTL−1d? − (dT? L

−1MMTL−1d?)L
−1d?

−H(dT? L
−1d?)2

= 0 (4.71)

From (4.71), then

[
(dT? L

−1d?)MMTL−1 − (dT? L
−1MMTL−1d?)I

]
d? = 0, (4.72)

and hence

det
[
(dT? L

−1d?)MMTL−1 − (dT? L
−1MMTL−1d?)I

]
=

(−dT? L−1MMTL−1d?)
n + (−dT? L−1MMTL−1d?)

n−1(dT? L
−1d?)M

TL−1M = 0, (4.73)

whence

dT? L
−1MMTL−1d? = (dT? L

−1d?)M
TL−1M. (4.74)

Substituting (4.74) into (4.72) and since dT? L
−1d? > 0, yields

[
MMTL−1 − (MTL−1M)I

]
d? = 0,

and it follows that any d? that satisfies (4.71) necessarily has the form d? = αM , for some nonzero

α ∈ R. Note that f(αd) = f(d) for all nonzero α ∈ R and all nonzero d ∈ R
n. In particular, f(αM) =

f(M), for all nonzero α ∈ R. Let S denote the bounded set {d ∈ R
n : ‖d‖2 = ‖M‖2} and let fS denote

the restriction of f to the set S. Note that given any nonzero d ∈ R
n, f(d) = fS(‖M‖2 d/ ‖d‖2) =

fS(−‖M‖2 d/ ‖d‖2). Also, note then that M is a minimiser of f if and only if M is a minimiser of

fS . The function fS is defined over the bounded set D , {d ∈ R
n : ‖d‖2 = ‖M‖2 , d

TL−1d > 0},

is differentiable in D and tends to infinity whenever d approaches any point in the boundary of D from

within D. Since f , and hence fS , is bounded below by 1, it follows that the only points of fS where its

gradient vanishes, M and −M , must correspond to a minimum of fS . This proves that d? = M is a

minimiser of (4.70) and the proof is concluded. �
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As pointed out in Elia and Mitter (2001), there are an infinite number of ways to define a quantiser

so that its density is optimal in the sense that it is the infimum over QS quantisers. The results in this

chapter have shown that CAQS quantisers are among those quantisers whose density is optimal. In

particular, CAQS quantisers are the ones whose quantisation regions are of the parallel-hyperplane form

and contain at most one point at which the increment of the CLF V (x) = xTPx is nonnegative.

4.6 Example

Consider system (4.1) with the output y = Cx, where

A =








0 1 0

0 0 1

2 3 1







, B =








−1

2

1







, CT =








−1

−1

−1







. (4.75)

Next, consider the quadratic function V (x) = xTPx, where

P =








34.0053 −3.8006 −18.8372

−3.8006 14.3579 8.6933

−18.8372 8.6933 15.0464







. (4.76)

The aim is to design an output quantizer, q̊, such that the resulting closed-loop system, x(k + 1) =

Ax(k) + Bq̊(Cx(k)), admits V as a Lyapunov function. In addition, we would like the quantisation

density of q̊ to be as low as possible. We will achieve this aim by employing Theorems 4.16, 4.18 and

4.20.

First, we can readily verify that the matrixA is unstable and the pair (A,B) is stabilisable (otherwise

the whole stabilisation problem would be trivial). Next, note that the matrix L = ATPA − P is

invertible, which is required in our approach. In addition, the feedback u = αy with α = 0.49 stabilises

the system, and V is a Lyapunov function for the linear closed-loop system x(k+1) = (A+αBC)x(k).

This enables application of Theorem 4.20. According to this theorem, the infimum quantisation density,

η?, over all output quantizers q̊ that render V a Lyapunov function for the closed-loop system x(k+1) =

Ax(k)+Bq̊(Cx(k)) coincides with that of a CAQS quantiser with direction d = CT . We next compute

this infimum quantisation density, η?.

From Theorem 4.16, the quantisation values of a CAQS quantiser with direction d = CT satisfy

(4.25), where ρ satisfies (4.22). Using (4.15) with d = CT and (4.5), we obtain

γ = 0.1698, β = 2.0376,
|β| − γ

|β| + γ
= 0.8462.

By Theorem 2.12, the quantisation density of such a quantiser is −2/ ln 0.8462. It then follows that the

infimum quantisation density over all output quantisers that render the given V a Lyapunov function for
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the resulting closed-loop system is given by

η? =
−2

ln 0.8462
= 11.9752.

Having computed the infimum quantisation density η?, we will next construct the required output

quantiser. Recall that the composition of the output equation y = Cx and the output quantiser u = q̊(y)

yields u = q̊(Cx) = q(x), where q is a parallel-hyperplane quantiser with direction d = CT . As we

have previously explained, a CAQS quantiser may not quadratically stabilise the system because each

of its quantisation regions may contain a point where the increment of V is nonnegative. However, we

may construct a QS quantiser having a density arbitrarily close to η? by means of Theorem 4.18. We

thus select ε = 0.0038, yielding

ρ =
|β| − γ

|β| + γ
+ 0.0038 = 0.85.

We will next construct a QS parallel-hyperplane quantiser q with direction d = CT and with density

η(q) = −2/ ln 0.85 = 12.3063. From Theorem 4.18, the required quantiser, q, satisfies (4.23)–(4.26),

and (4.28). We choose u0 = 1, so that βu0 > 0, and σ0 = 1.87, so that (4.44) is satisfied. Finally, we

choose the form (4.28b) for R0.

Having constructed q, note that the required output quantiser q̊ is then given by q̊(Cx) = q(x).

Figure 4.2 depicts the output quantiser q̊.

u0

ρu0

ρ−1u0

ρ−2u0

σ0ρσ0ρ2σ0 ρ−1σ0 ρ−2σ0 ρ−3σ0· · ·

...

Cx

u = q̊(Cx)

R0 R1 R2R−1R−2

ρ2u0

Figure 4.2: Input u = q̊(Cx) as a function of Cx with u0 = 1, σ0 = 1.87 and ρ = 0.85.

We simulated the closed-loop system x(k + 1) = Ax(k) + Bq̊(Cx(k)) from the initial condition

x(0) = [1.015 1.015 1.015]T . Figure 4.3 (a) shows the evolution of the components of the state

vector and Figure 4.3 (b) the evolution of the input and CLF. Note from Figure 4.3 (b) that the values

V (x(k)) decrease to zero as k increases, a consequence of the fact that the output quantiser q̊ renders V

a Lyapunov function for the closed-loop system.
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Figure 4.3: Simulation results.

4.7 Chapter Summary

In this chapter, we have dealt with quadratic stabilisation of single-input systems by means of quantised

static feedback. We have explored the concept of quantiser coarseness from a state-space standpoint. We

followed the intuitive idea that the quantisation regions of a coarse quantiser must be as large as possible

within the constraints of interest. These constraints refer to the fact that we seek quantisers that are able

to quadratically stabilise a system with respect to a given CLF. We have defined CAQS quantisers and

analysed connections with the standard concept of quantisation density. We have shown that a CAQS

quantiser with direction d optimises quantisation density over all parallel-hyperplane quantisers with

direction d that are quadratically stabilising with respect to the given CLF. We have also shown how

CAQS quantisers can be employed to design quadratically stabilising static output feedback laws that

utilise quantisers of infimum density. In addition, we have recovered a result of Elia and Mitter on

infimum quantisation density through the use of CAQS quantisers.

In conclusion, this chapter has derived precise connections for single-input systems between quan-

tisers whose quantisation regions are as large as possible and quantisers having quantisation values

as separated as possible. Our derivations were made possible by imposing a specific structure on the

quantisers considered, namely parallel-hyperplane quantisers.



Chapter 5

Quantisation Density and

Multiple-input Systems: A Special

Case

5.1 Overview

In the first part of Chapter 3, we have derived necessary and sufficient conditions for quantisers of a

specific form to quadratically stabilise a given multiple-input system with respect to a given CLF. We

have considered quantisers formed by linear operations and a “reduced-dimension” quantiser. The key

feature of the quantisers considered is that the reduced-dimension quantisers operate between spaces

having the minimum dimension possible.

In this chapter, we focus on the case when the reduced-dimension quantiser operates between one-

dimensional spaces. In this setting, we will derive the infimum density over all quantisers that quadrati-

cally stabilise a system with respect to a given CLF. The derivation of this infimum density will require

results from previous chapters, including Chapter 4, where we have dealt with single-input systems.

We will show that the infimum density problem considered in this chapter is a special case of a

problem considered in Elia and Frazzoli (2002). We will also show, by means of a numerical example,

that Theorem 1 of Elia and Frazzoli (2002) is incorrect. Our result will then provide a partial replacement

for Theorem 1 of Elia and Frazzoli (2002).
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5.2 Problem Statement

As in previous chapters, we consider a system of the following form

x(k + 1) = Ax(k) +Bu(k), (5.1)

where A ∈ R
n×n, B ∈ R

n×m, x(k) ∈ R
n and u(k) ∈ R

m. We assume that A is unstable, B has full

column rank and (A,B) is stabilisable.

The problem that we address in this chapter is the derivation of the infimum quantisation density

over all symmetric QS quantisers that have the form q(x) = wq̊(dTx), with w ∈ R
m, d ∈ R

n and

q̊ : R → R. We formulate this problem more precisely as follows.

Problem 5.1 Given system (5.1) and a CLF

V (x) = xTPx, where P = P T > 0, (5.2)

such that the matrix

L , ATPA− P (5.3)

is invertible, solve

η? = inf η(q), subject to: (5.4)

C1) There exist w ∈ R
m, d ∈ R

n and a quantiser q̊ : R → R such that q(x) = wq̊(dTx), for all

x ∈ R
n,

C2) q is QS with respect to V ,

C3) q(x) = −q(−x) for all x ∈ R
n,

and where η(q) denotes the quantisation density of q.

We thus consider the setting of Figure 5.1. In Chapter 3, Theorem 3.2 states that the lowest possible

x+ = Ax+Bu

w ·

︸ ︷︷ ︸

q(·)

q̊(·)
ū ∈ R a ∈ R

dT ·

x ∈ R
nu ∈ R

m

Figure 5.1: The quantised feedback considered: u = q(x) = wq̊(dTx).

value of the dimension p for a feedback of the form q(x) = Wq̊(DTx) withW ∈ R
m×p andD ∈ R

n×p

to be QS is the number of positive eigenvalues of the matrix L in (5.3). Moreover, recalling Remark 3.3,

we know that L necessarily has one nonnegative eigenvalue because system (5.1) is open-loop unstable.



5.3 Problem Solution 87

Therefore, solving Problem 5.1 is meaningful only when the given CLF (5.2) is such that L in (5.3)

has only one positive eigenvalue, or else there would not exist any quantiser q satisfying constraints

C1)–C3). This follows because, from C1), we seek QS quantisers of the form q(x) = wq̊(dTx), with

w ∈ R
m×1 and d ∈ R

n×1.

5.3 Problem Solution

From Theorem 3.14, it follows that a quantiser q̊ : R → R that causes q(x) = wq̊(dTx) to be QS exists

if and only if dTL−1d > 0 and −wTHw > 0, with L as in (5.3), and

M , ATPB and H , BTPB −MTL−1M. (5.5)

In addition, the quantiser q̊ has to satisfy the conditions of Theorem 3.17. We may thus recast constraint

C2) of Problem 5.1 as follows:

C2) The vectors w ∈ R
m and d ∈ R

n satisfy dTL−1d > 0 and −wTHw > 0, and the quantiser q̊

satisfies the conditions of Theorem 3.17, with M and H as defined in (5.5).

Figure 5.1 shows that, conceptually, there exists a single-input system between the fictitious input ū

and the state x. This observation motivates us to divide Problem 5.1 into the following two subproblems.

First, we assume that some “feasible” w ∈ R
m is given and consider the following single-input system:

x(k + 1) = Ax(k) + B̄ū(k), B̄ = Bw. (5.6)

The results of Chapter 4 can be used to obtain the infimum quantisation density for this single-input

system over all quantisers of the form q̊(dTx) that are QS with respect to the given CLF. The resulting

infimum density is a function of the input matrix B̄ = Bw and hence a function of w. Second, we

optimise density over all “feasible” vectors w ∈ R
m. We next show that this procedure indeed leads to

the solution to Problem 5.1.

Let q̄ : R
n → R be the quantiser defined by q̄(x) , q̊(dTx) for all x ∈ R

n. Then, we have

q(x) = wq̊(dTx) = wq̄(x). If w 6= 0, then Lemma 2.15 shows that η(q) = η(q̄). We can then divide

Problem 5.1 into the following two subproblems.

Subproblem 1 For a given w ∈ R
m and CLF V as in (5.2), where the number of positive eigenvalues

of the matrix L in (5.3) is 1, solve

ηw = inf η(q̄), subject to:

C1’) There exists d ∈ R
n and a quantiser q̊ : R → R such that q̄(x) = q̊(dTx) for all x ∈ R

n.

C2’) The vector d ∈ R
n satisfies dTL−1d > 0, and the quantiser q̊ satisfies the conditions of Theo-

rem 3.17.
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C3’) q̄(x) = −q̄(−x) for all x ∈ R
n.

Subproblem 2

η? = inf ηw, subject to:

• w ∈ R
m, and −wTHw > 0,

and where ηw is the solution to Subproblem 1.

The solution to Subproblem 2 is also the solution to Problem 5.1.

Remark 5.2 At this point, we can straightforwardly note that the solution to Problem 5.1 is the density

of a single-input system of the form (5.6), derived from the given multiple-input system (5.1). This

fact is imposed by the constraints of the problem and does not necessarily imply that the solution to

Problem 5.1 is the infimum density over all quantisers that are QS with respect to the given CLF. In

other words, even if the given CLF is such that L has only one positive eigenvalue, we are imposing

the additional constraint that we optimise density only over quantisers q : R
n → R

m involving a

one-dimensional reduced-dimension quantiser q̊.

5.3.1 Solution to Subproblem 1

Note that w in Subproblem 1 is fixed. Therefore, ηw is the infimum density over all QS quantisers q̄

for the single-input system (5.6). We have dealt with the optimisation of quantisation density for single-

input systems in Chapter 4. Then, we may apply the results of Chapter 4 to find ηw. First, we must bear

in mind that the results of Chapter 4 will be applied to the single-input system (5.6), and hence B must

be replaced by B̄, yielding M̄ = ATPB̄ = Mw and H̄ = M̄TL−1M̄ − B̄TPB̄ = wTHw.

Theorem 4.21 then shows that ηw is the density of a CAQS quantiser with direction d = M̄ = Mw,

and from Theorem 4.16 and Theorem 2.12, we have

ηw = −2/ ln
|β(w)| − γ(w)

|β(w)| + γ(w)
, (5.7)

where

β(w) , wTMTL−1Mw = M̄TL−1M̄, γ(w) ,

√

−wTHwβ(w) =
√

−H̄β(w), (5.8)

L was defined in (5.3), and M and H in (5.5).

5.3.2 Solution to Subproblem 2

We are now ready to state the main result of the chapter:



5.3 Problem Solution 89

Theorem 5.3 The solution to Subproblem 2, and hence to Problem 5.1, is given by

η? = −2/ ln
β(w?) − γ(w?)

β(w?) + γ(w?)
, where (5.9)

w? = (BTPB)−1/2v?, (5.10)

β and γ are defined in (5.8), and v? is an eigenvector corresponding to the greatest eigenvalue of the

matrix

(BTPB)−1/2MTL−1M(BTPB)−1/2, (5.11)

with L as defined in (5.3) and M as in (5.5).

Proof. Since the density of a quantiser is always nonnegative, we have ηw ≥ 0 and thus any

optimiser of Subproblem 2 is also an optimiser of [see (5.7)]

inf
|β(w)| − γ(w)

|β(w)| + γ(w)
, (5.12)

subject to wTHw < 0. From (5.5), and since P > 0 and B has full column rank, then wTHw < 0

implies that wTMTL−1Mw > 0 and hence β(w) > 0 [see (5.8)]. Then, γ(w) 6= 0 and (5.12) is

equivalent to

inf
β(w)/γ(w) − 1

β(w)/γ(w) + 1
. (5.13)

Also, we have γ2(w) = −wTHwβ(w) = [β(w) − wTBTPBw]β(w) and then γ2(w) < β2(w).

Combining this last inequality with the fact that β(w) > 0 and γ(w) > 0 whenever wTHw < 0, then

β(w) > γ(w) > 0, and thus β(w)/γ(w) > 1 whenever wTHw < 0. Since the expression to be

optimised in (5.13), considered as a function of β(w)/γ(w), is increasing for β(w)/γ(w) > 1, then any

optimiser is also an optimiser of inf β(w)/γ(w), which in turn is an optimiser of

inf
β2(w)

γ2(w)
= inf

wTMTL−1Mw

wTMTL−1Mw − wTBTPBw
, (5.14)

subject to wTHw < 0. Since wTBTPBw > 0, (5.14) is equivalent to

inf

wTMTL−1Mw

wTBTPBw
wTMTL−1Mw

wTBTPBw
− 1

, (5.15)

and since wTHw < 0, using (5.5) then wTMTL−1Mw
wTBTPBw

> 1 and any optimiser of (5.15) is also an

optimiser of

sup
wTMTL−1Mw

wTBTPBw
. (5.16)

Let v = (BTPB)1/2w and substitute into (5.16) to obtain

sup
vT (BTPB)−1/2MTL−1M(BTPB)−1/2v

vT v
. (5.17)

Note that any optimiser v? of (5.17) is an eigenvector corresponding to the greatest eigenvalue of the

matrix (5.11). Therefore, w? = (BTPB)−1/2v? and the result follows. �
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Remark 5.4 Theorem 5.3 solves a quantisation density optimisation problem over all QS quantisers

that involve a one-dimensional reduced-dimension quantiser (̊q), when the CLF is given and is such

that the matrix L in (5.3) has only one positive eigenvalue. As anticipated in Remark 5.2, the solution

to Problem 5.1 is the infimum density of a single-input system derived from the original multiple-input

system. This single-input system is system (5.6) with w = w?. Optimising the solution to Problem 5.1

over all quadratic CLFs that are such that L has only one positive eigenvalue yields the result in Theo-

rem 2.2 of Elia and Mitter (2001). It is important to interpret the correct meaning of the infimum density

so derived for the multiple-input system considered. This density is the infimum over all CLFs such that

L has only one positive eigenvalue, provided we impose the additional constraint that the QS quantisers

(over which density is optimised) have values in a one-dimensional subspace of the input space. This

resulting density only depends on the unstable eigenvalues of A, that is, it is independent of the input

matrix B̄ = Bw, so long as (A,Bw) is stabilisable.

5.4 Relationship to a Similar Claim in the Literature

In this section, we review Theorem 1 of Elia and Frazzoli (2002) in order to be able to compare that

claim to the one above.

Elia and Frazzoli (2002) define a CLF of the form V (x) = xTPx to be of TypeJ if the number

of strictly positive eigenvalues of the matrix L = ATPA − P , defined in (5.3), is J . Then, the CLF

considered in this chapter is of Type1. For simplicity, we next restate Theorem 1 in p. 183 of Elia and

Frazzoli (2002) using the current notation.

Theorem 5.5 (Theorem 1 in p. 183 of Elia and Frazzoli (2002)) Let V (x) = xTPx, P > 0, be a

CLF of Type1 for system (5.1). Then V (x) is also a CLF for the single-input system (5.6) obtained

by replacing B with B̄ = Bw\ where w\ = (BTPB)−1BTPAv\, and v\ denotes the eigenvector

associated with the only positive eigenvalue of L = ATPA − P . Moreover the coarsest (infimum

density) quantiser for system (5.1) with respect to such a V is given by

q(x) = w\q̄(x)

where q̄(x) is the coarsest quantiser for system (5.6) with w = w\.

According to this theorem, the infimum density η\ , η(q̄) can be obtained from Elia and Mitter

(2001) as:

η\ = −2/ ln ρ, (5.18)

where

ρ =

√

B̄TPAQ−1ATPB̄

B̄TPB̄
− 1

√

B̄TPAQ−1ATPB̄

B̄TPB̄
+ 1

, (5.19)
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and

Q = P −ATPA+
ATPB̄B̄TPA

B̄TPB̄
, (5.20)

with B̄ = Bw\.

In the next section, we show that the result of Theorem 1 of Elia and Frazzoli (2002) is incorrect,

and we show to what extent the solution to Problem 5.1 replaces that result.

5.5 Comparison of Results

In this section, we compare the solution to Problem 5.1 obtained in Theorem 5.3 with the claim in

Theorem 1 of Elia and Frazzoli (2002) (Theorem 5.5 above) by means of a numerical example. Let

system (5.1) be defined with matrices

A =








2 1 0

0 2 0

0 0 3







, B =








0 0

1 0

0 1







,

and consider the CLF V (x) = xTPx, where

P =








1744 3901 −4574

3901 8809 −10356

−4574 −10356 12187







.

Note that P = P T , and P > 0 since the eigenvalues of P are approximately 1, 25 and 22714. The

eigenvalues of the matrix L defined in (5.3) are approximately -253, -1 and 146756, showing that L has

only one positive eigenvalue and is invertible. According to Elia and Frazzoli (2002), then V (x) is a

CLF of Type1.

Evaluating η? according to Theorem 5.3, that is, according to (5.9) and (5.10), gives

η? = −2/ ln 0.9318 ≈ 28.3, with

w? =
[

0.712 0.7022
]T

.

Also, the same result is obtained by means of (5.18)–(5.20), with B̄ = Bw?. If we evaluate the density

using Theorem 5.5, that is, according to Theorem 1 of Elia and Frazzoli (2002), we obtain

w\ =
[

−0.8509 0.5254
]T

,

and the argument of the square root in (5.19) is negative, approximately equal to −7.2773, which results

in an inconsistent (complex) value of the density. Note also that in this case, V (x) = xTPx is not a CLF

for the single-input system (5.6) with B̄ = Bw\, since Q in (5.20) is not positive definite. The reason

for this inconsistency seems to stem from the fact that, in the proof of Theorem 1 of Elia and Frazzoli
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(2002), the authors study the increment of V only along the direction of the eigenvector corresponding

to the positive eigenvalue of L = ATPA− P .

We have thus shown that Theorem 1 of Elia and Frazzoli (2002) is incorrect. The solution to Prob-

lem 5.1, given by Theorem 5.3, replaces Theorem 1 of Elia and Frazzoli (2002) only partially. This is so

because, as we have previously mentioned in Remark 5.2, we are imposing the additional constraint that

quantisation density be optimised over QS quantisers that have levels in a one-dimensional subspace.

On the other hand, Theorem 1 of Elia and Frazzoli (2002) claims that, given a CLF of Type1 and im-

posing no additional constraints, the infimum density over all QS quantisers for the given multiple-input

system corresponds to the infimum density for a single-input system derived from the original multiple-

input system. Therefore, Theorem 1 of Elia and Frazzoli (2002) claims that, given a CLF of Type1, the

infimum density over all QS quantisers for the given multiple-input system corresponds to the density

of a quantiser that has levels in a one-dimensional subspace. Although intuitively this may seem to be

the case, at this point we have no proof that such a claim is true (recall also Remark 2.21 in Chapter 2).

Elia and Frazzoli (2002) interpret their Theorem 1 by stating that the results of Elia and Mitter

(2001) for single-input systems cannot be improved by the presence of more than one input, when the

given CLF is of Type1. We emphasise that we still have no proof of this claim, though it intuitively

seems to be true. Elia and Frazzoli (2002) also derive lower bounds on the infimum density with respect

to CLFs of Type2. These latter results are not affected by the fact that their results for CLFs of Type1 are

incorrect. However, one would have to stress, when referring to the lower bounds derived by Elia and

Frazzoli (2002), that they are valid only over CLFs of Type2. Similar considerations have to be born in

mind for the results of Elia (2002), as well.

5.6 Chapter Summary

We have derived a new result on infimum quantisation density for linear time-invariant multiple-input

systems that can be stabilised using a one-dimensional subspace of the input space. Specifically, we

have derived the infimum density over all quantisers that have levels in a one-dimensional subspace and

are QS with respect to a given CLF. The infimum density derived was shown to differ from a previously

published claim (Elia and Frazzoli, 2002, Theorem 1). This discrepancy was explored by means of a nu-

merical example that shows that the previously published claim is incorrect. This previously published

claim also suggests that the infimum density over all quantisers that are QS with respect to a given CLF

of a specific type corresponds to the infimum density for a single-input system derived from the original

multiple-input system. Whether this latter claim is true or not still remains unanswered.
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Chapter 6

Componentwise Ultimate Bounds for

Quantised Systems

6.1 Introduction

6.1.1 Overview of Part II

Part I of the thesis dealt with quadratic stabilisation by means of static feedback employing quantisers.

In order to quadratically stabilise a given system by means of such feedback, quantisers having an in-

finite number of levels were needed. In addition, the required quantisers needed increasingly greater

precision towards the origin. For scalar quantisers, these requirements were met by, so-called, logarith-

mic quantisers.

When quantisers do not have increasingly greater precision towards the origin, asymptotic stabilisa-

tion of an open-loop unstable system is not possible, even if the quantisers still have an infinite number

of levels (like, for example, uniform quantisers). In this case, however, global practical stabilisation of

the system may be possible, that is, any arbitrary initial state may evolve into a bounded region con-

taining the origin. The size of this bounded region is a measure —though not the only one— of the

system performance. A typical setting where estimating the size of this bounded region is of interest is

when estimating the effects of quantisation on steady-state error specifications in digital control systems

(Miller et al., 1989).

When nonlinearities such as quantisers are present, the computation of the smallest bounded region

to which the state of the system asymptotically converges is a difficult task. Therefore, different methods

exist that obtain bounds on this region (Yakowitz and Parker, 1973; Green and Turner, 1988; Miller et al.,

1989; Farrell and Michel, 1989). A feature that is common to all these works is that a quantised signal

is regarded as a perturbed copy of the corresponding unquantised signal. This viewpoint contrasts with
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that adopted in Part I of the thesis, and gives the impression that disregarding the precise information

provided by a quantised signal must necessarily lead to conservativeness in the approach. However, Fu

and Xie (2005) have shown that for single-input systems, regarding a logarithmic quantiser as a sector-

bound nonlinearity (and hence disregarding precise information on the system state) is not a conservative

approach in the context of quadratic stabilisation of discrete-time linear systems.

In this part of the thesis, we regard a quantised variable as a perturbed copy of the unquantised vari-

able. This approach turns a system involving quantisers into a perturbed system. Our goal is then

to derive ultimate bounds for perturbed systems. We deal with continuous-time, discrete-time and

sampled-data systems and aim to obtain ultimate bounds that are as tight as possible. A key feature

of our approach is that we seek componentwise ultimate bounds on the system state. Our approach is

motivated by the work of Yakowitz and Parker (1973), who obtained componentwise ultimate bounds

on the system state by analysing the Jordan canonical form of the system evolution matrix. This work

dealt with discrete-time linear time-invariant systems affected by uniform quantisation.

In this chapter, we provide a number of extensions of the approach of Yakowitz and Parker (1973).

Specifically, we derive componentwise global ultimate bounds for discrete-time and sampled-data sys-

tems involving different types of quantisers. A very important feature of our results is that they can

directly accommodate feedback schemes where quantisers of different characteristics and/or types af-

fect different signals in the same system. We further show that our results have application in a recently

analysed setting aimed at efficiently utilising available data-rate in networked control systems.

In Chapter 7, we will consider discrete- and continuous-time perturbed systems with more general

componentwise perturbation bounds. We will also derive componentwise ultimate bounds for these

systems but the global feature of the bounds will be lost. This latter extension of the approach to more

general perturbation bounds allows the application of the method to a class of nonlinear systems. We

will demonstrate this via several examples.

6.1.2 Ultimate Bound Computation Tools

A standard tool for computing ultimate bounds is based on the use of Lyapunov functions (see, for

example, Khalil, 2002, §9.2). This approach is very general and powerful although there is an inherent

difficulty associated with the selection of a suitable Lyapunov function. For linear systems, however,

quadratic Lyapunov functions can be easily computed and ultimate bounds can be obtained in the form of

balls by using the system state 2-norm. This approach is based on bounding the norm of the perturbation

and may lead to conservative bounds if information on the perturbation structure is lost when bounding

its norm.

A closely related approach to estimate ultimate bounds is via the input-to-state stability (ISS) frame-

work for systems with disturbances (Sontag, 1989; Sontag and Wang, 1995; Jiang and Wang, 2001).
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Using this framework, ultimate bounds on the system state trajectories as a function of the disturbance

bound can be computed using the system disturbance-to-state asymptotic gain. This gain can be ob-

tained, for example, from a Lyapunov-like characterisation of ISS. As is the case with the Lyapunov-

function-based approach, the ISS approach also requires a bound on the norm of the perturbation.

A different approach to estimate ultimate bounds for perturbed continuous-time linear time-invariant

(LTI) systems was introduced in Kofman (2005). The latter work derived a closed-form ultimate bound

formula based on componentwise analysis of the system in modal coordinates. The result of Kof-

man (2005) requires componentwise constant perturbation bounds and exploits the system geometry

as well as the perturbation structure without utilising a bound on the norm of the perturbation. The

examples in Kofman (2005) show that the bounds provided by this method may, in some cases, be

much tighter than those obtained by means of the Lyapunov-function-based approach using quadratic

functions. The results of Kofman (2005) apply to continuous-time LTI systems and cannot be directly

applied to discrete-time or sampled-data systems.

The approach of Kofman (2005) can be seen as the continuous-time counterpart to that of Yakowitz

and Parker (1973). The results derived in both works can be applied only to perturbed systems having

constant perturbation bounds. However, Kofman (2005) suggests a possible extension of the approach

to continuous-time systems with state-dependent perturbation bounds.

In the remainder of this chapter, we derive componentwise ultimate bounds for quantised discrete-

time and sampled-data systems. Our approach is based on the analysis of the system dynamics in modal

coordinates. In this sense, our results for discrete-time systems can be regarded as extensions of the

results of Yakowitz and Parker (1973).

A strong motivation for considering sampled-data systems involving quantisation arises in the con-

trol of systems over communication networks (see Antsaklis and Baillieul, Guest Eds., 2004, and the

references therein). Quantised sampled-data systems, where a continuous-time plant is controlled via

some controller through the use of quantisers and sample and hold devices, have been considered ex-

plicitly in, for example, Elia and Mitter (2001); Ishii and Francis (2002b, 2003); Ishii et al. (2004); Ishii

and Başar (2005); Fu and Hara (2005). Most of these works deal with the design of quantised control

strategies to achieve different objectives in sampled-data systems. Our focus in this part of the thesis

is on the analysis, rather than on the design, of a given quantised sampled-data scheme in terms of the

computation of componentwise ultimate bounds on the state trajectories.

The remainder of the chapter is organised as follows. In §6.1.3, we introduce notation and some

preliminary tools that will be used in the sequel. In §6.2, we present the quantised discrete-time and

sampled-data schemes that we consider. In §6.3, we derive the perturbation bounds to utilise when

different types of quantisers are employed. In §6.4, we derive componentwise ultimate bounds for the

schemes considered. In §6.5, we apply the previous results to several examples. We conclude this

chapter in §6.6.
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6.1.3 Notation and Preliminary Tools

Notation

If M is a matrix with (real or complex) entries Mi,j , then |M | and Re(M) denote its elementwise

magnitude and real part, respectively, that is, |M | is the matrix with entries |Mi,j | and Re(M), the one

with entries Re(Mi,j).

If x, y ∈ R
n, then x � y and x ≺ y denote the sets of componentwise inequalities xi ≤ yi and

xi < yi, respectively, for i = 1, . . . , n, and similarly for x � y and x � y. The expression ‘x 6� y’

is used as equivalent to ‘x � y is not true’. Thus, x 6� y does not necessarily imply that x � y.

If M,N ∈ R
m×n, then M � N , M ≺ N , M � N and M � N also denote the corresponding

componentwise inequalities.

According to these definitions, it is easy to show that1

|x+ y| � |x| + |y|, |M x| � |M | · |x|, (6.1)

|x| � |y| ⇒ |M | · |x| � |M | · |y|, (6.2)

whenever x, y ∈ C
n and M ∈ C

m×n.

R
n
+ and R

n
+,0 denote the sets of vectors in R

n with positive and nonnegative components, respec-

tively. Consequently, if x ∈ R
n then x ∈ R

n
+ ⇔ x � 0 and x ∈ R

n
+,0 ⇔ x � 0. Similarly for R

m×n
+

and R
m×n
+,0 .

1n denotes the vector in R
n all of whose components are equal to 1.

ρ(·) denotes the spectral radius of a square matrix.

For x, y ∈ R
n, we use the notation max{x, y} = z to denote the vector z ∈ R

n with components

zi = max{xi, yi}, for i = 1, . . . , n.

Ultimate Boundedness

Since our results aim at exploiting the system and perturbation structures, we employ a nonstandard

definition of ultimate boundedness that is better suited to this goal. We next provide a standard definition

of ultimate boundedness, adapted from Khalil (2002), and derive a preliminary result that links the

results obtained later in the chapter to this definition.

Definition 6.1 The solutions of ẋ = f(t, x) are said to be uniformly ultimately bounded with ultimate

bound d if there exist a vector norm ‖ · ‖ and positive constants d and c, independent of t0 ≥ 0, and for

every α ∈ (0, c) there is T = T (α, d) ≥ 0, independent of t0, such that

‖x(t0)‖ ≤ α⇒ ‖x(t)‖ ≤ d, ∀t ≥ t0 + T . (6.3)

1For an introduction to the properties of matrices with nonnegative entries, see, for example, Horn and Johnson (1985, §8).
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In essence, the results that we will derive guarantee that if |U−1x(t0)| � β, then the following

implicit ultimate bound holds:

|U−1x(t)| � c, for all t ≥ t0 + T , (6.4)

where β, c ∈ R
n
+, U ∈ C

n×n is a nonsingular matrix and T ∈ R+,0. Since (6.4) implies the componen-

twise bound

|x(t)| � |U | · |U−1x(t)| � |U |c, for all t ≥ t0 + T ,

then the following Lemma shows that such results lead to ultimate bounds in the sense of Definition 6.1.

Lemma 6.2 Consider the system ẋ = f(t, x), where x(t) ∈ R
n, and suppose that there exist β, b ∈ R

n
+,

T ∈ R+,0 and a nonsingular matrix U ∈ C
n×n such that, irrespective of t0,

|U−1x(t0)| � β ⇒ |x(t)| � b, ∀t ≥ t0 + T .

Then, the solutions of ẋ = f(t, x) are uniformly ultimately bounded.

Proof. Let βmin , mini βi, bmax , ‖b‖∞, where ‖·‖∞ denotes the infinity norm of a vector and the

corresponding induced norm for a matrix. Note that βmin > 0. Then, for any α ∈ (0, βmin/
∥
∥U−1

∥
∥
∞),

we have

‖x(t0)‖∞ < α⇒
∥
∥U−1x(t0)

∥
∥
∞ <

∥
∥U−1

∥
∥
∞ α

⇒
∥
∥U−1x(t0)

∥
∥
∞ < βmin

⇒ |U−1x(t0)| ≺ β

⇒ |x(t)| � b⇒ ‖x(t)‖∞ ≤ bmax,

for all t ≥ t0 + T . This concludes the proof. �

The discrete-time counterparts to Definition 6.1 and Lemma 6.2 are straightforward.

6.2 Quantised System Description

In this section, we present the quantised discrete-time and sampled-data schemes that we consider. The

main feature of these schemes is that each individual signal connecting plant and controller may be

affected by an independent scalar quantiser. The scalar quantisers affecting the different signals can be

of different types and characteristics. In §6.2.1 and §6.2.2, we present the quantised discrete-time and

sampled-data schemes, respectively.
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6.2.1 Quantised Discrete-time Scheme

We consider a discrete-time plant connected to a discrete-time controller, as shown in Figure 6.1. Each

component of the plant and controller outputs has an independent scalar quantiser, which can be of

any of the following three types: uniform, logarithmic, and semitruncated logarithmic (see §6.3). Our

derivations do not require all quantisers to have the same features, nor to be of the same type. In addition,

cases where quantisation affects some (but not necessarily all) connecting signals are also directly dealt

with by our method. The plant and controller in Figure 6.1 can be described by the following equations:

yp

Quantisation
Plant

Ap, Bp, Cp

Controller

Discrete Time
Ac, Bc, Cc, Dc

yc uc

Quantisation

up Discrete Time

Figure 6.1: Quantised discrete-time control scheme.

xp(k + 1) = Apxp(k) +Bpup(k), (6.5a)

yp(k) = Cpxp(k), (6.5b)

xc(k + 1) = Acxc(k) +Bcuc(k), (6.5c)

yc(k) = Ccxc(k) +Dcuc(k), (6.5d)

where xp(k) ∈ R
Np , up(k) ∈ R

M and yp(k) ∈ R
P are the plant state, input and output, respectively, and

xc(k) ∈ R
Nc , uc(k) ∈ R

P and yc(k) ∈ R
M are the controller state, input and output, respectively. For

future reference, we define n as the total number of system states (plant + controller), and S as the total

maximum number of quantised signals:

n , Np + Nc, S , P + M. (6.6)

We may express the connections between controller and plant as follows:

uc(k) = yp(k) + ∆yp(k), (6.7a)

up(k) = yc(k) + ∆yc(k), (6.7b)
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where ∆yp and ∆yc are the perturbations introduced by the quantisers at the plant and controller outputs,

respectively. Defining

xk ,




xp(k)

xc(k)



 ∈ R
n, ∆yk ,




∆yp(k)

∆yc(k)



 ∈ R
S, (6.8)

and combining (6.5) and (6.7), we can write

xk+1 = Adxk +Bd∆yk, (6.9)

where

Ad =




Ap +BpDcCp BpCc

BcCp Ac



 , Bd =




BpDc Bp

Bc 0



 . (6.10)

6.2.2 Quantised Sampled-data Scheme

We consider the sampled-data system of Figure 6.2, where an LTI continuous-time plant is controlled via

a discrete-time controller using quantisers, and sampling and zero-order hold devices. As in the discrete-

Hold
yp

Quantization
Plant

Continuous Time
Ap, Bp, Cp

Controller

Discrete Time
Ac, Bc, Cc, Dc

yc uc

Quantization

up

Sampling
T

Figure 6.2: Quantised sampled-data control scheme.

time scheme in §6.2.1, each component of the plant and controller outputs has an independent scalar

quantiser, which can be of any of the following three types: uniform, logarithmic, and semitruncated

logarithmic (see §6.3).

The plant and controller in Figure 6.2 can be described by the following equations:

ẋp(t) = Apxp(t) +Bpup(t), (6.11a)

yp(t) = Cpxp(t), (6.11b)

xc(k + 1) = Acxc(k) +Bcuc(k), (6.11c)

yc(k) = Ccxc(k) +Dcuc(k), (6.11d)

where xp(t) ∈ R
Np , up(t) ∈ R

M and yp(t) ∈ R
P are the continuous-time plant state, input and output,

respectively, and xc(k) ∈ R
Nc , uc(k) ∈ R

P and yc(k) ∈ R
M are the discrete-time controller state, input
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and output, respectively. As in the purely discrete-time case, we define n and S as the total number

of system states (plant + controller) and the total maximum number of quantised signals, respectively.

Recall that n and S satisfy (6.6). We may express the connections between controller and plant as

follows, where we also take account of sampling and hold:

uc(k) = yp(tk) + ∆yp(k), (6.12a)

up(t) = yc(k) + ∆yc(k), tk ≤ t < tk + T, (6.12b)

where T is the sampling period,

tk = kT, k = 0, 1, . . . ,

and ∆yp and ∆yc are the perturbations introduced by the quantisers at the plant and controller outputs,

respectively. Combining (6.11b), (6.11d) and (6.12) yields

uc(k) = Cpxp(tk) + ∆yp(k),

up(t) = Ccxc(k) +DcCpxp(tk) +Dc∆yp(k) + ∆yc(k), for tk ≤ t < tk+1.

The model of the system of Figure 6.2 at the sampling instants is

xk+1 = Adxk +Bd∆yk, (6.13)

where we have defined

xk ,




xp(tk)

xc(k)



 ∈ R
n, ∆yk ,




∆yp(k)

∆yc(k)



 ∈ R
S, (6.14)

and Ad and Bd can be readily obtained from (6.11) and (6.12) as

Ad =




A11 A12

BcCp Ac



 , Bd =




B11 B12

Bc 0



 , (6.15)

with

A11 , eApT + Ψ(T)BpDcCp, (6.16)

A12 , Ψ(T)BpCc, (6.17)

B11 , Ψ(T)BpDc, B12 , Ψ(T)Bp, (6.18)

Ψ(t) ,

∫ t

0

eApτdτ. (6.19)

Remark 6.3 The derivation of ultimate bounds for the sampled-data scheme of Figure 6.2 will be per-

formed in two stages. In the first stage, we derive ultimate bounds that are valid only at the sampling

instants by analysing system (6.13). The second stage then derives bounds on the continuous-time plant

states that are valid at all times greater than a finite time, that is, not just at the sampling instants.

Since (6.13) is identical to (6.9), it is clear that the first stage will directly employ the results derived for

discrete-time systems.
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6.3 Quantiser Perturbations

In this section, we show how to bound the different perturbations introduced by the quantisers, according

to the type of quantiser employed. Recall that, in the schemes that we consider, each component of the

plant and controller outputs may have an independent scalar quantiser. In §6.3.1, we derive the different

perturbation bounds for the three types of scalar quantisers considered, in terms of the corresponding

unquantised signal. In §6.3.2, we show how to utilise these bounds to express componentwise bounds

on the quantiser perturbation vector ∆yk [defined in (6.8) or (6.14)], in a form suitable to the subsequent

derivations.

6.3.1 Single Scalar Quantiser

Given a scalar quantiser q : R → R, we regard the quantised variable q(s) as a perturbed copy of the

unquantised variable s:

q(s) = s+ ∆s.

We next explain the different quantiser types considered (uniform, logarithmic, and semitruncated log-

arithmic) and derive the corresponding bounds on ∆s. For simplicity, we introduce the different quan-

tiser types using symmetric quantisers, that is, quantisers that satisfy q(s) = −q(−s), for all s ∈ R.

Note however that our derivations hold for any quantiser whose corresponding perturbation ∆s can be

bounded according to the expression that we derive [see (6.24)].

Uniform quantiser

A uniform quantiser has uniformly spaced levels, as shown in Figure 6.3. In this case, the quantiser

a) b)

q(s)

α

q(s)

α

s s

s s

Figure 6.3: Uniform quantisers: a) Midrise. b) Midtread.

perturbation ∆s = q(s) − s can be bounded by

|∆s| ≤ u◦ , α/2, (6.20)

where α is the quantisation step, as shown in Figure 6.3.
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Logarithmic quantiser

A symmetric logarithmic quantiser has levels in a set W ⊂ R satisfying

W = {±ρ−iu◦, i = 0,±1,±2, . . . } ∪ {0}, (6.21)

where 0 < ρ < 1 and u◦ > 0. We will consider logarithmic quantisers as that depicted in Figure 6.4 a)

for positive values of the unquantised variable. For this type of quantiser, the corresponding quantiser

(1 − δ)s(1 − δ)s

q(s) (1 + δ)s

ρ−1u◦

u◦

s

s

b)a)

q(s) (1 + δ)s

u◦

ρu◦

s

s u◦

1+δ

ρ−1u◦

...

...
...

Figure 6.4: a) Logarithmic quantiser. b) Semitruncated logarithmic quantiser.

perturbation ∆s = q(s) − s satisfies

|∆s| ≤ δ|s|. (6.22)

Thus, the quantity δ represents the maximum relative error of the logarithmically quantised variable.

From Figure 6.4 a), it can easily be verified that

δ =
1 − ρ

1 + ρ
. (6.23)

Semitruncated logarithmic quantiser

Practical logarithmic quantisers arise from truncating a logarithmic quantiser so that the resulting quan-

tiser has only a finite number of levels. We consider a semitruncated quantiser in the sense that it is

truncated only towards the origin, that is, it has values in the following set [cf. (6.21)]:

W = {±ρ−iu◦, i = 0, 1, . . .} ∪ {0},

where 0 < ρ < 1 and u◦ > 0. This form of quantiser is illustrated in Figure 6.4 b) for positive values

of the unquantised variable. As seen from this figure, the quantiser perturbation ∆s = q(s)− s satisfies

|∆s| ≤ max

{

δ|s|, u◦

1 + δ

}

. (6.24)

Note that (6.24) encompasses the three types of quantiser perturbations considered, that is, (6.20) can

be obtained from (6.24) by setting δ = 0 and u◦ = α/2, and (6.22) can be obtained by setting u◦ = 0.
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6.3.2 Quantiser Perturbations in Vector Form

We next utilise the bounds derived in §6.3.1 to express a bound on the quantiser perturbation vector

∆yk, defined in (6.8) or (6.14), in a form that is needed in §6.4 for the derivation of componentwise

ultimate bounds. Let ∆ypi
, for i = 1, . . . , P, denote the i-th component of ∆yp, and ∆ycj

, for j =

1, . . . ,M, denote the j-th component of ∆yc, where ∆yp and ∆yc are the perturbations introduced by

the quantisers at the plant and controller outputs, respectively [recall (6.7) and (6.12)]. Since (6.24)

encompasses (6.20) and (6.22) as special cases, irrespective of the type of quantiser affecting each

signal, we can write

|∆ypi
(k)| ≤ max

{

δi|ypi
(k)|, u◦i

1 + δi

}

, (6.25)

|∆ycj
(k)| ≤ max

{

δj+P|ycj
(k)|,

u◦j+P

1 + δj+P

}

, (6.26)

for i = 1, . . . , P, j = 1, . . . ,M and all k ≥ 0. In (6.25) and (6.26), δi and δj+P correspond to the

quantiser at the i-th plant output and j-th controller output, respectively, and are zero if that plant or

controller output is uniformly quantised or if they are not quantised. Similarly, u◦
i and u◦j+P correspond

to the quantiser at the i-th plant output and j-th controller output, respectively, and are zero if that plant

or controller output is logarithmically quantised or if they are not quantised. Recalling (6.6) and defining

Γp , diag(δ1, . . . , δP), (6.27)

Γc , diag(δP+1, . . . , δS), (6.28)

θp ,

[
u◦

1

1+δ1
· · · u◦

P

1+δP

]T

, (6.29)

θc ,

[
u◦

P+1

1+δP+1
· · · u◦

S

1+δS

]T

, (6.30)

we can express (6.25) and (6.26) in vector form as

|∆yp(k)| � max{Γp|yp(k)|, θp}, (6.31)

|∆yc(k)| � max{Γc|yc(k)|, θc}, (6.32)

where the maximum is taken componentwise. In (6.31)–(6.32), yp(k) and yc(k) satisfy, from (6.5) and

(6.7),

yp(k) = Cpxp(k), (6.33)

yc(k) = Ccxc(k) +DcCpxp(k) +Dc∆yp(k). (6.34)

In §6.4, we will need bounds on ∆yp(k) and ∆yc(k) in terms of a linearly transformed version of the

state. Therefore, let U ∈ C
n×n denote an arbitrary invertible matrix and consider the transformation

xk = Uzk, where U is partitioned according to xk in (6.8) as

U =




Up

Uc



 , with Up ∈ C
Np×n and Uc ∈ C

Nc×n. (6.35)
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Operating on (6.31)–(6.34), and using (6.35) yields

|∆yp(tk)| � max{Θp|zk|, θp}, (6.36a)

|∆yc(k)| � max
{

Θc|zk| + Θs max{Θp|zk|, θp}, θc
}

, (6.36b)

where we have used properties (6.1) and (6.2), and defined

Θp , Γp|CpUp|, (6.37)

Θc , Γc|CcUc +DcCpUp|, (6.38)

Θs , Γc|Dc|. (6.39)

Remark 6.4 We emphasise that our approach allows for any combination of uniform, logarithmic,

semitruncated logarithmic and no quantisation at the plant and controller outputs, that is, the quantisers

need not be all of the same type, need not all have the same features, and not all signals need to be

quantised. The corresponding perturbation bound of the form (6.36) can be obtained by adjusting the

entries of Γp, Γc, θp and θc to match the type of quantisation used for each signal, as explained before.

6.4 Componentwise Ultimate Bounds for Quantised Systems

In this section, we derive upper bounds on the individual components of the system state. Our derivations

utilise the componentwise perturbation bound (6.36). In §6.4.1, we deal with the quantised discrete-time

system depicted in Figure 6.1. In §6.4.2, we treat the sampled-data system of Figure 6.2.

6.4.1 Discrete-time Systems

We next derive componentwise global ultimate bounds on the state of the discrete-time perturbed system

(6.8)–(6.9) when the perturbation ∆yk is bounded as in (6.36). In essence, our results stem from the

application of a comparison principle to each component of the state vector, as follows. Given a discrete-

time system x(k + 1) = Ax(k) + v(k), where |v(k)| � b for all k, then |x(k)| � b(k), where the

sequence b(k) satisfies b(0) = |x(0)| and b(k + 1) = |A|b(k) + b. To prove this by induction, note that

|x(0)| � b(0) by definition. Then, assume that |x(k)| � b(k). We have:

|x(k + 1)| = |Ax(k) + v(k)| � |Ax(k)| + |v(k)| � |A||x(k)| + b

� |A|b(k) + b = b(k + 1),

which establishes by induction that |x(k)| � b(k) for all k ≥ 0. Note that we cannot directly apply this

procedure to derive ultimate bounds for the discrete-time perturbed system considered because (a) the

perturbation bound (6.36) has a more complicated form and (b) the matrix |A| may not be stable even if

A is, causing limk→∞ b(k) to not be finite. However, the foregoing explanation captures the essence of

the following theorem.
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Theorem 6.5 Consider system (6.8)–(6.9) and express Ad in Jordan canonical form as Ad = UΛU−1.

Let ∆yk be bounded as in (6.36) for all k ≥ 0, where zk = U−1xk and Θp ∈ R
P×n
+,0 , Θc ∈ R

M×n
+,0 ,

θp ∈ R
P
+,0, θc ∈ R

M
+,0 and Θs ∈ R

M×P
+,0 . Define

M , |Λ| + |U−1Bd|Θ, (6.40)

Θ ,




Θp

Θc + ΘsΘp



 , (6.41)

θ ,




θp

θc + Θsθp



 , (6.42)

and suppose that ρ(M) < 1, where ρ(·) denotes the spectral radius of a square matrix. Then,

ρ(|Λ|) < 1. Define

β , (I −M)
−1 |U−1Bd| θ, (6.43)

γ , (I − |Λ|)−1 |U−1Bd| [θTp θTc ]T . (6.44)

Then, β ∈ R
n
+,0 and γ ∈ R

n
+,0. Consider the map T : R

n
+,0 → R

n
+,0 defined by

T (w) = |Λ|w + |U−1Bd|




max{Θpw, θp}

max
{

Θcw + Θs max{Θpw, θp}, θc
}



 (6.45)

and the sequence {br}∞r=0 defined by

b0 , β, br , T (br−1), for r = 1, 2, . . . . (6.46)

Then,

1. 0 � br � br−1 for r = 1, 2, . . . , and b∞ , limr→∞ br exists and satisfies γ � b∞ � β.

2. If |U−1x0| � br for some 0 ≤ r ≤ ∞, then, for all k ≥ 0,

a) |U−1xk| � br.

b) |xk| � |U |br.

3. Given any ε ∈ R
n
+ and x0 ∈ R

n, there exists ` = `(ε, x0) ≥ 0 such that, for all k ≥ ` and all

0 ≤ r ≤ ∞,

a) |U−1xk| � br + ε.

b) |xk| � |U |br + |U | ε.

Proof. Note that |Λ|, |U−1Bd|, Θ and M all have nonnegative entries. Then, from (6.40), it follows that

ρ(M) ≥ ρ(|Λ|)+ρ(|U−1Bd|Θ) (see, for example, Horn and Johnson, 1985, §8.1), and by assumption,
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ρ(M) < 1. Since the spectral radius is a nonnegative quantity, it follows that ρ(|Λ|) < 1. Note then

that I −M and I − |Λ| are invertible and β and γ in (6.43) and (6.44), respectively, are well defined.

Define the maps TM : R
n
+,0 → R

n
+,0 and TΛ : R

n
+,0 → R

n
+,0 as

TM (w) = Mw + |U−1Bd| θ and TΛ(w) = |Λ|w + |U−1Bd|




θp

θc



 . (6.47)

Note that, for any w ∈ R
n
+,0, TM (w) � 0 and TΛ(w) � 0, and hence T rM (w) � 0 and T rΛ(w) � 0, for

all r ≥ 0 and allw ∈ R
n
+,0. Since ρ(M) < 1 and ρ(|Λ|) < 1, then limr→∞ T rM (w) and limr→∞ T rΛ(w)

exist and satisfy

lim
r→∞

T rM (w) = β � 0 and lim
r→∞

T rΛ(w) = γ � 0, (6.48)

for all w ∈ R
n
+,0. This establishes that β ∈ R

n
+,0 and γ ∈ R

n
+,0.

1. Since the matrices |Λ|, |U−1Bd|, Θp, Θc, and Θs, and the vectors θp and θc all have nonnegative

entries, it follows that the maps T in (6.45), and TM and TΛ in (6.47) have the following property:

w1 � w2 =⇒







T (w1) � T (w2),

TM (w1) � TM (w2),

TΛ(w1) � TΛ(w2),

(6.49)

for all w1, w2 ∈ R
n
+,0. Since Θp � 0 and θp � 0, it follows that

0 � θp � max{Θpw, θp} � Θpw + θp, (6.50)

for all w ∈ R
n
+,0. In addition, using (6.50) and since Θc � 0, Θs � 0 and θc � 0, then

0 � θc � max
{

Θcw + Θs max{Θpw, θp}, θc
}

� (Θc + ΘsΘp)w + (θc + Θsθp), (6.51)

for all w ∈ R
n
+,0. Using (6.40)–(6.42), (6.45), (6.47), (6.50), and (6.51), we then have

TΛ(w) = |Λ|w + |U−1Bd|
[
θp

θc

]

� T (w) � |Λ|w + |U−1Bd|(Θw + θ) = TM (w), (6.52)

for all w ∈ R
n
+,0. Also, note that (6.49) and (6.52) imply that

T rΛ(w) � T r(w) � T rM (w), for all w ∈ R
n
+,0, for r = 1, 2, . . . . (6.53)

From (6.43) and (6.44), note that β and γ satisfyMβ+ |U−1Bd|θ = β and |Λ|γ+ |U−1Bd|[θTp θTc ]T =

γ, and using (6.47), then

β = TM (β) and γ = TΛ(γ). (6.54)

Using (6.46), (6.52) and (6.54), it follows that b1 = T (β) � TM (β) = β = b0, whence b1 � b0.

Applying (6.49) iteratively to the latter inequality yields br = T r(β) � T r−1(β) = br−1. The se-

quence {br}∞r=0 is thus componentwise nonincreasing. Moreover, this sequence is lower bounded by

the convergent sequence T rΛ(β). Hence, {br}∞r=0 converges to some point b∞ = limr→∞ br satisfying

γ = lim
r→∞

T rΛ(β) � b∞ � β.
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This establishes 1.

Let xk = Uzk and substitute into (6.9) to obtain

zk+1 = Λzk + U−1Bd∆yk.

Taking magnitudes and using (6.8) and (6.36) yields

|zk+1| � |Λ| |zk| + |U−1Bd||∆yk|

� |Λ| |zk| + |U−1Bd|




max{Θp|zk|, θp}

max
{

Θc|zk| + Θs max{Θp|zk|, θp}, θc
}



 = T (|zk|), (6.55)

where the equality above follows from (6.45).

2. We next proceed by induction on k. Note that 2 a) holds for k = 0 by assumption. Suppose now

that 2 a) holds for some k ≥ 0. Note that zk = U−1xk and hence |zk| = |U−1xk|. From 2 a), we have

|zk| � br and by (6.49), applying T to this inequality yields T (|zk|) � T (br) = br+1 � br, where we

have used part 1. Combining this inequality with (6.55), we obtain

|zk+1| � T (|zk|) � br.

Since |zk+1| = |U−1xk+1|, then 2 a) holds for k + 1 and we have proved by induction that 2 a) holds

for all k ≥ 0, concluding the proof of part 2 a). To prove 2 b), note that |xk| � |U | · |U−1xk| and use

2 a).

3. We first prove that 3 a) and 3 b) hold for r = ∞. Define

β̄ , max{β, |z0|}, (6.56)

where z0 = U−1x0, and note that β̄ � β and |z0| � β̄. From (6.55), we have |zk+1| � T (|zk|), for all

k ≥ 0, and using (6.49) then

|zk| � T k(|z0|) � T k(β̄), for all k ≥ 0. (6.57)

Claim: Let w, y ∈ R
n
+,0 and suppose that w � y � 0. Then, 0 � T (w) − T (y) �M(w − y).

Proof: Since w � y � 0, then 0 � T (w) − T (y) follows directly from (6.49). From (6.45) we have

T (w) − T (y) = |Λ|(w − y)+

|U−1Bd|




max{Θpw, θp}−max{Θpy, θp}

max
{

Θcw + Θs max{Θpw, θp}, θc
}

−max
{

Θcy + Θs max{Θpy, θp}, θc
}



 . (6.58)

We next prove that the expression between square brackets above is less than or equal to Θ(w− y). Let

(·)i denote the i-th component of a vector.

• If (Θpy)i ≥ (θp)i, then (Θpw)i ≥ (θp)i, since w � y � 0 and Θp has nonnegative entries. Then,

(max{Θpw, θp} − max{Θpy, θp})i = (Θp(w − y))i.
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• If (Θpy)i < (θp)i, then

– if (Θpw)i < (θp)i, then

(max{Θpw, θp} − max{Θpy, θp})i = 0 ≤ (Θp(w − y))i.

– if (Θpw)i ≥ (θp)i, then

(max{Θpw, θp} − max{Θpy, θp})i = (Θpw)i − (θp)i < (Θp(w − y))i.

Hence, we have proved that

max{Θpw, θp} − max{Θpy, θp} � Θp(w − y). (6.59)

• If (Θcy + Θs max{Θpy, θp})i ≥ (θc)i, then (Θcw + Θs max{Θpw, θp})i ≥ (θc)i, since w �
y � 0 and all the matrices and vectors involved have nonnegative entries. Then,

(

max
{

Θcw + Θs max{Θpw, θp}, θc
}

− max
{

Θcy + Θs max{Θpy, θp}, θc
})

i

=
(

Θc(w − y) + Θs

[

max{Θpw, θp} − max{Θpy, θp}
])

i

≤ ((Θc + ΘsΘp)(w − y))i,

where in the last line above we have used (6.59).

• If (Θcy + Θs max{Θpy, θp})i < (θc)i, then

– if (Θcw + Θs max{Θpw, θp})i < (θc)i, then
(

max
{

Θcw + Θs max{Θpw, θp}, θc
}

− max
{

Θcy + Θs max{Θpy, θp}, θc
})

i

= 0 ≤ ((Θc + ΘsΘp)(w − y))i.

– if (Θcw + Θs max{Θpw, θp})i ≥ (θc)i, then
(

max
{

Θcw + Θs max{Θpw, θp}, θc
}

− max
{

Θcy + Θs max{Θpy, θp}, θc
})

i

= (Θcw + Θs max{Θpw, θp} − θc)i

< (Θcw + Θs max{Θpw, θp} − Θcy − Θs max{Θpy, θp})i

≤ ((Θc + ΘsΘp)(w − y))i,

where in the last line above we have used (6.59).

Hence, we have proved that

max
{

Θcw + Θs max{Θpw, θp}, θc
}

− max
{

Θcy + Θs max{Θpy, θp}, θc
}

� (Θc + ΘsΘp)(w − y). (6.60)
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Using (6.40)–(6.41) and (6.58)–(6.60), it follows that T (w)− T (y) �M(w− y), concluding the proof

of the claim.

Since β̄ � β � 0, by the claim then 0 � T (β̄) − T (β) �M(β̄ − β). Then, T (β̄) � T (β) � 0 and

using the claim again yields T 2(β̄)−T 2(β) �M(T (β̄)−T (β)) �M2(β̄−β). Iterating this procedure

yields T k(β̄)−T k(β) �Mk(β̄−β) and since ρ(M) < 1, then limk→∞
(
T k(β̄) − T k(β)

)
= 0. Since

by part 1 limk→∞ T k(β) = b∞, then limk→∞ T k(β̄) = b∞. Therefore, given ε ∈ R
n
+, there exists

` ≥ 0 such that T k(β̄) � b∞ + ε, for all k ≥ `. Recalling (6.57) yields |zk| � b∞ + ε, for all k ≥ `. The

proof of part 3 a) for r = ∞ then follows by recalling that |zk| = |U−1xk| and noting that ` depends

on x0 since ` depends on β̄ and β̄ depends on |z0| = |U−1x0|. To prove 3 b) for r = ∞, note that

|xk| � |U | · |U−1xk| and use 3 a). For 0 ≤ r <∞, 3 a) and 3 b) follow straightforwardly using the fact

that 0 � b∞ � br � br−1 for all 0 ≤ r <∞. �

Theorem 6.5 gives a systematic method to compute componentwise ultimate bounds for a discrete-

time system of the form (6.8)–(6.9) where the perturbation ∆yk is bounded as in (6.36). In particular, if

the matrices in (6.36) have the form (6.37)–(6.39), then Theorem 6.5 provides componentwise ultimate

bounds for the quantised discrete-time system of Figure 6.1. Note, however, that the result of Theo-

rem 6.5 is valid irrespective of the form of the matrices Θp, Θc and Θs, provided they have nonnegative

entries. The tightest ultimate bound given by this theorem is obtained using b∞. In addition, the ultimate

bounds corresponding to br, for r < ∞, may be more conservative but require only r iterations of the

map T .

Remark 6.6 Under the assumption that M in (6.40) has all its eigenvalues in the open unit disc

(ρ(M) < 1), part 2 of Theorem 6.5 characterises a bounded invariant region in the state space of

the discrete-time system (6.8) and part 3 shows that its state trajectories asymptotically converge to

this region from any initial condition. Thus, the assumption that ρ(M) < 1 is a sufficient condition

for global practical stability of the discrete-time system (6.9), that is, for its trajectories to be ulti-

mately bounded from any initial condition. Since ρ(M) < 1 implies that ρ(|Λ|) < 1, and since

ρ(|Λ|) = ρ(Λ) = ρ(Ad), it follows that ρ(M) < 1 implies that ρ(Ad) < 1. Hence, a necessary

condition for application of Theorem 6.5 is that the unperturbed (closed-loop) discrete-time system

xk+1 = Adxk be stable.

Remark 6.7 If the perturbation ∆yk arises from the use of uniform quantisers in all signals, then

Θ = 0 in (6.41), since Γp = 0 and Γc = 0 in (6.37)–(6.39) from (6.27)–(6.28). Then, the map T in

(6.45) reduces to

T (w) = |Λ|w + |U−1Bd|[θTp θTc ]T ,

and M in (6.40) to M = |Λ|. Then, β = γ and there is no need to iterate the map T since T (β) =

β = γ. In this case, ρ(Ad) < 1 is a necessary and sufficient condition for the discrete-time model
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(6.9) to have ultimately bounded trajectories. If, on the contrary, ∆yk arises from the use of logarithmic

quantisers in all signals, then θ = 0 in (6.42), since θp = 0 and θc = 0 from (6.29)–(6.30). In this case,

provided ρ(M) < 1, then the ultimate bound is zero, since from (6.43) β = 0, implying that system

(6.9) is asymptotically stable. If ∆yk arises from the use of any combination of quantisers, the fact that

γ � br for all 0 ≤ r ≤ ∞ can be interpreted as saying that the ultimate bound provided by Theorem 6.5

can never be tighter than the one that would be obtained if all signals were uniformly quantised, where

each uniform quantiser had a half-step αi/2 equal to u◦i /(1 + δi), for i = 1, . . . , S.

6.4.2 Sampled-data Systems

We have seen that the analysis of the quantised sampled-data system of Figure 6.2 at the sampling

instants reduces to the analysis of a discrete-time system as that shown in Figure 6.1. Componentwise

ultimate bounds for this discrete-time system are provided by Theorem 6.5. To derive ultimate bounds

for the sampled-data system of Figure 6.2 that are valid at all time instants greater than a finite time,

we need to combine the bounds derived in Theorem 6.5 with bounds on the variation of the plant states

between sampling instants.

Theorem 6.8 Consider the perturbed sampled-data system of equations (6.11) and (6.12), and its

discrete-time description (6.13)–(6.19). Express Ad in Jordan canonical form as Ad = UΛU−1

and consider U partitioned as in (6.35). Let the perturbation ∆yk be bounded as in (6.36), where

zk = U−1xk and Θp ∈ R
P×n
+,0 , Θc ∈ R

M×n
+,0 , θp ∈ R

P
+,0, θc ∈ R

M
+,0 and Θs ∈ R

M×P
+,0 . Consider the

matrix M defined in (6.40)–(6.41) and suppose that ρ(M) < 1. Then, given any ε ∈ R
n
+ and x0 ∈ R

n,

there exists ` = `(ε, x0) ≥ 0 such that for all t ≥ t` = `T,

|xp(t)| � sup
0≤σ<T

[
x̄1
p(σ) + x̄2

p(σ) + x̄3
p(σ)

]
, (6.61)

where the supremum is taken componentwise,

x̄1
p(σ) ,

∣
∣
∣Up + Ψ(σ)

[

ApUp +Bp (DcCpUp + CcUc)
]∣
∣
∣ z̄, (6.62)

x̄2
p(σ) , |Ψ(σ)BpDc| ȳp, (6.63)

x̄3
p(σ) , |Ψ(σ)Bp| ȳc, (6.64)

z̄ , (br + ε), (6.65)

ȳp , max{Θpz̄, θp}, (6.66)

ȳc , max{Θcz̄ + Θsȳp, θc}, (6.67)

and br is given by Theorem 6.5, for any 0 ≤ r ≤ ∞.

Proof. The evolution of the plant state between sampling instants is given by

xp(t) = eAp(t−tk)xp(tk) +

∫ t−tk

0

eApτBpdτup(tk), for tk ≤ t < tk+1, (6.68)
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where

up(tk) = Ccxc(k) +DcCpxp(tk) +Dc∆yp(k) + ∆yc(k). (6.69)

Recalling that xp(tk) = Upzk and xc(k) = Uczk, (6.69) can be rewritten as

up(tk) = (CcUc +DcCpUp)zk +Dc∆yp(k) + ∆yc(k). (6.70)

Operating on (6.68), (6.70), and using (6.19) and the identity

eApt = I + Ψ(t)Ap,

we can obtain

|xp(t)| �
∣
∣
∣Up + Ψ(t− tk)

[

ApUp +Bp (DcCpUp + CcUc)
]∣
∣
∣ |zk|

+ |Ψ(t− tk)BpDc| |∆yp(k)|

+ |Ψ(t− tk)Bp| |∆yc(k)|, (6.71)

for tk ≤ t < tk+1. From Theorem 6.5 part 3, we know that for any ε ∈ R
n
+ and x0 ∈ R

n, there exists

` ≥ 0 such that

|zk| = |U−1xk| ≤ br + ε = z̄,

for all k ≥ `, for any 0 ≤ r ≤ ∞. From (6.36) and the bound above, we have, for all k ≥ `,

|∆yp(k)| � max{Θpz̄, θp} = ȳp, and

|∆yc(k)| � max{Θcz̄ + Θsȳp, θc} = ȳc.

Using the above bounds in (6.71) yields

|xp(t)| � x̄1
p(t− tk) + x̄2

p(t− tk) + x̄3
p(t− tk), (6.72)

for all k ≥ `, for all tk ≤ t < tk+1. Eq. (6.61) then follows by taking componentwise suprema in (6.72)

and noting that 0 ≤ t− tk < T for tk ≤ t < tk+1. �

The bound (6.61)–(6.67) given by Theorem 6.8 requires one to compute the componentwise suprema

of a function. This calculation has to be performed numerically, since in general the bound (6.61)–(6.67)

will not admit an explicit expression.

We next provide some alternative bounds that, though being more conservative than the bound

(6.61)–(6.67), allow explicit expressions.

Lemma 6.9 Consider the perturbed sampled-data system of equations (6.11) and (6.12), and its discrete-

time description (6.13)–(6.19). Express Ap and Ad in Jordan canonical form as Ad = UΛU−1 and

Ap = Ũ Λ̃Ũ−1, and consider U partitioned as in (6.35). Let the perturbation ∆yk be bounded as in
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(6.36), where zk = U−1xk and Θp ∈ R
P×n
+,0 , Θc ∈ R

M×n
+,0 , θp ∈ R

P
+,0, θc ∈ R

M
+,0 and Θs ∈ R

M×P
+,0 .

Consider the matrix M defined in (6.40)–(6.41) and suppose that ρ(M) < 1. Define

G ,

∫ T

0

eRe(Λ̃)τdτ. (6.73)

Then, given any ε ∈ R
n
+ and x0 ∈ R

n, there exists ` = `(ε, x0) ≥ 0 such that for all t ≥ t` = `T,

|xp(t)| �
(

|Up| + |Ũ |G
∣
∣
∣Ũ−1 [(Ap +BpDcCp)Up +BpCcUc]

∣
∣
∣

)

z̄

+ |Ũ |G|Ũ−1BpDc|ȳp + |Ũ |G|Ũ−1Bp|ȳc, (6.74)

with z̄, ȳp and ȳc as defined in (6.65)–(6.67), and br given by Theorem 6.5, for any 0 ≤ r ≤ ∞.

Proof. From Theorem 6.8, it follows that

|xp(t)| � sup
0≤σ<T

[
3∑

i=1

x̄ip(σ)

]

�
3∑

i=1

sup
0≤σ<T

x̄ip(σ). (6.75)

Consider x̄3
p(σ). Using (6.64) and (6.19), we have

x̄3
p(σ) =

∣
∣
∣
∣

∫ σ

0

eApτdτBp

∣
∣
∣
∣
ȳc

�
∫ σ

0

∣
∣eApτBp

∣
∣ dτ ȳc

� |Ũ |
∫ σ

0

∣
∣
∣eΛ̃τ

∣
∣
∣ dτ |Ũ−1Bp|ȳc. (6.76)

Substituting
∣
∣
∣eΛ̃τ

∣
∣
∣ = eRe(Λ̃)τ (which holds since Λ̃ is in Jordan form) into (6.76) and finding the supre-

mum yields

sup
0≤σ<T

x̄3
p(σ) � sup

0≤σ<T
|Ũ |
∫ σ

0

eRe(Λ̃)τdτ |Ũ−1Bp|ȳc

� |Ũ |
[

sup
0≤σ<T

∫ σ

0

eRe(Λ̃)τdτ |Ũ−1Bp|ȳc
]

� |Ũ |
[

sup
0≤σ<T

∫ σ

0

eRe(Λ̃)τdτ

]

|Ũ−1Bp|ȳc

� |Ũ |G|Ũ−1Bp|ȳc.

The last line above follows since eRe(Λ̃)τ � 0 for all 0 ≤ τ ≤ T. The bounds for sup0≤σ<T x̄
i
p(σ), for

i = 1, 2, are proved in a similar manner, and the result follows by substituting these bounds into (6.75).

�

Remark 6.10 The matrixG in (6.73) can be explicitly calculated and even admits a simple expression if

Re(Λ̃) is invertible. In addition, the result of Lemma 6.9 is still valid if we replaceG by a componentwise

upper bound G̃, such that G � G̃, though this again leads to more conservative ultimate bounds.
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6.5 Examples

6.5.1 Static Controller with a Single Quantiser

To illustrate the application of the method developed, we consider the magnetic ball levitation system

used as an application example in Ishii et al. (2004) and Ishii and Francis (2002a, §4.7). This system

consists of a steel ball that is suspended in the air by means of an electromagnet. The control objective

is to keep the position of the ball, y, at an equilibrium by controlling the voltage applied to the elec-

tromagnet, v. The current through the electromagnet’s coil is denoted by i. The plant state is taken as

xp = [y ẏ i]T and the input is ūp = v. We directly consider the same linearisation of the model as

in Ishii and Francis (2002a, §4.7) and Ishii et al. (2004), with the same numerical values for the system

parameters. This yields the quantised sampled-data system depicted in Figure 6.5, where the state of the

continuous-time plant with matrices

A =








0 1 0

2798 0 −19.6

0 0 −24.39







, B =








0

0

2.439







, (6.77)

is regularly sampled every T = 4.605 · 10−3 seconds. [This sampling period was used in Ishii et al.

(2004).] The state samples are multiplied by the feedback gain

K =
[

10315.67 195.02 −49.47
]

, (6.78)

and then passed through a scalar quantiser q to generate the control inputs at times tk = kT, for all

k ≥ 0. At times tk ≤ t < tk + T, the plant input is held at its value by means of a zero-order hold

device.

Hold

Plant

Continuous Time
A,B

Controller

ūp xp

Kq(·)
Sampling

T

Figure 6.5: Quantised sampled-data system in Ishii et al. (2004).

The quantiser q is defined as:

q(σ) = uj if and only if σ ∈ Ij , (6.79)



116 Componentwise Ultimate Bounds for Quantised Systems

for all j ∈ Z, where

uj =







0 if j = 0,

sgn(j)β0ρ
1−|j| if j 6= 0,

(6.80)

Ij =







(−α0, α0) if j = 0,

[sgn(j)α0ρ
1−|j|, sgn(j)α0ρ

−|j|) if j 6= 0,

(6.81)

β0 = 0.652, α0 = 0.451, ρ = 1/1.78 = 0.5618. (6.82)

Our aim is to apply the proposed ultimate bound estimation method to this magnetic levitation system.

To do this, we need to regard this system as a perturbed sampled-data system described by equations

(6.11) and (6.12), where the perturbations are introduced by the quantiser and are bounded as was de-

scribed in §6.3. The scalar quantiser q in (6.79)–(6.82), depicted in Figure 6.6 a), can be expressed as

q(s) = rq̃(s), where q̃ is a semitruncated logarithmic quantiser of the form considered in §6.3. Straight-

forward calculations yield r = β0(1 + ρ)/(2α0) = 1.1289. The quantiser q̃ is shown in Figure 6.6 b),

where β̃0 = β0/r = 0.5775.

q(s)...

ρ−2β0

ρ−1β0

β0

ρ−2β̃0

ρ−1β̃0

β̃0

α0

...s

s α0 s

(1 + δ)s

q̃(s) s

(1 − δ)s

a) b)

Figure 6.6: Quantiser rescaling.

We can now straightforwardly put the system into the form of equations (6.11) and (6.12), with the

perturbation bounded as in (6.36) by interchanging the scalar gain r with the hold device in Figure 6.5.

We then obtain a continuous-time plant of equations (6.11a) and (6.11b) with Ap = A, Bp = Br and

Cp = I3, and a static discrete-time controller of equation (6.11d) with Dc = K and zero Cc. We also

have (6.12) and note that Np = 3, Nc = 0, M = 1, P = 3, n = Np + Nc = 3 and S = P + M = 4. The

discrete-time model (6.13)–(6.19) is then given by

xk = xp(tk), Ad = A11, Bd = [B11 B12]. (6.83)

We express Ad in Jordan canonical form as Ad = UΛU−1 and note that the partition of U in (6.35) is

just U = Up ∈ C
3×3, since Nc = 0. From (6.27) and (6.29), and since there is no quantisation at the

plant outputs, we have Γp = 03×3 and θp = 03×1. Then, from (6.37), Θp = 03×3. From (6.28), (6.23)
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and Figure 6.6 b), we have Γc = (1 − ρ)/(1 + ρ) and θc = α0. Also, from (6.38), Θc = Γc|KUp|.
Then, ∆yk can be bounded as

|∆yp(k)| = 0, (6.84)

|∆yc(k)| ≤ max{Θc|zk|, θc} = max

{
1 − ρ

1 + ρ
|KUp||zk|, α0

}

. (6.85)

We can now readily compute the matrix M in (6.40) and verify that ρ(M) < 1. Then, using Theo-

rem 6.5, we have

β = [0.1121 0.0336 0.0507]T and γ = [6.067 1.817 2.745]T · 10−2.

Iteration of the map T defined in (6.45) from the initial condition β yields

b∞ = γ = [6.067 1.817 2.745]T · 10−2.

Application of Theorem 6.5 using ε = [1 1 1]T · 10−10 and b∞ shows that for any x0 = xp(0) ∈ R
3,

there exists ` = `(ε, x0) ≥ 0 such that

|xp(tk)| � [9.2 363.5 862.2]T · 10−4, (6.86)

for all k ≥ `. Moreover, application of Theorem 6.8 using b∞ and the same value of ε yields

|xp(t)| � [9.2 363.5 862.2]T · 10−4, (6.87)

and application of Lemma 6.9 yields

|xp(t)| � [13.7 544.2 1096.3]T · 10−4, (6.88)

both for all t ≥ t` = `T.

We observe some interesting features of this example. First, note that b∞ = γ and hence the lower

bound on the discrete-time componentwise ultimate bound provided by Theorem 6.5 is achieved. In

§6.5.2, we will see another quantised sampled-data scheme where this feature is not present. Second,

note that the bound (6.87), that takes account of intersample behaviour, is identical to the bound (6.86),

which is only valid at the sampling instants. The equality of these bounds shows that, in this example,

there is no conservativeness in the bounding procedure of Theorem 6.8.

In Ishii et al. (2004), a randomized algorithm is developed that reduces conservatism in the analysis

of sampled-data systems with quantisers. The approach in Ishii et al. (2004) can reduce conservatism

not only in the ultimate bounds for a system, but also in the required sampling period. In addition,

the approach considers a guaranteed decay rate to the ultimate bound. Here, we are only interested in

comparing the ultimate bound obtained in Ishii et al. (2004) with the componentwise bounds (6.87) and

(6.88). The ultimate bound obtained in Ishii et al. (2004) is, using our notation,

‖xp(t)‖2 ≤ 0.053, for t ≥ t`′ . (6.89)
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From (6.87), it follows that

‖xp(t)‖2 ≤ 0.0936, (6.90)

and from (6.88), that

‖xp(t)‖2 ≤ 0.1224, (6.91)

both for all t ≥ t`.

It is not surprising, perhaps, that the bound (6.89), obtained in Ishii et al. (2004), is better than (6.90),

since the algorithm in Ishii et al. (2004) involves the analysis of individual state trajectories. On the other

hand, note that the componentwise bound (6.87) gives a tighter bound on the first two components of

the state, which represent the position and velocity of the ball in the magnetic levitation system. In

particular, the ultimate bound on the ball position, 9.2 · 10−4, is more than 50 times lower than 0.053.

Also, the ultimate bound on the ball position given by (6.88), 13.7 · 10−4, is more than 35 times lower

than 0.053.

It is worth emphasising that the method we propose is completely systematic, and does not require

adjustment of any parameters or selection of, for example, appropriate probability density functions in

order to provide an ultimate bound for a system.

6.5.2 Static Controller with Mixed Quantisers

Consider the same example of §6.5.1, but assume now that, in addition to the quantiser of Figure 6.5,

the plant states are individually uniformly quantised before multiplication by the feedback gain K. For

this new scheme, the results of Ishii et al. (2004) are not directly applicable since we have quantisation

both at the plant and controller outputs.

We consider quantisation steps α1 = 2 · 10−4, α2 = 0.01 and α3 = 0.02 for the quantisers

corresponding to xp1 , xp2 and xp3 , respectively. For this new quantised sampled-data scheme, we have

δi = 0 and u◦i = αi/2 for i = 1, 2, 3 (see §6.3). Hence, from (6.27) and (6.29) we have Γp = 0 and

θp = [1 50 100]T ·10−4. Note from (6.40) that the matrix M is the same as in §6.5.1, since we consider

the same plant and feedback gain, and we did not add or modify any logarithmic or semitruncated

logarithmic quantisers. Then, using Theorem 6.5, we have

β = [0.9084 0.2721 0.4111]T and γ = [0.4915 0.1473 0.2224]T .

Iteration of the map T defined in (6.45) from the initial condition β yields

b∞ = [0.7963 0.2385 0.3603]T .

Application of Theorem 6.5 using ε = [1 1 1]T · 10−10 and b∞ shows that for any x0 = xp(0) ∈ R
3,

there exists ` = `(ε, x0) ≥ 0 such that

|xp(tk)| � [0.0120 0.4770 1.1317]T , (6.92)
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for all k ≥ `. Moreover, application of Theorem 6.8 using b∞ and the same value of ε yields

|xp(t)| � [0.0120 0.4770 1.1317]T , (6.93)

while application of Lemma 6.9 yields

|xp(t)| � [0.0180 0.7142 1.4389]T ,

both for all t ≥ t`. Note that, as with the example in §6.5.1, the bound that is valid only at the sampling

instants coincides with the one that takes intersample behaviour into account provided by Theorem 6.8.

However, as opposed to that example, in this case b∞ � γ.

6.5.3 Dynamic Controller with a Single Quantiser

Consider again the example of §6.5.1, but now assume that only xp1 , that is, only the ball position, can

be measured. To control the plant, we first designed, ignoring quantisation, a discrete-time partial state

observer to estimate the remaining plant states, xp2 and xp3 , at the sampling instants. The measured

state and the estimated states are multiplied by the feedback gain K given in (6.78) prior to being

quantised by the quantiser q defined in (6.79)–(6.82). For this setting, we could not find any location of

the observer poles that rendered ρ(M) < 1, with M as in (6.40). Since, in this case, our method cannot

be applied, we reduced the sampling period to T = 3.07 · 10−3, which is one of the values employed in

Ishii and Francis (2002a, §4.7).

After recalculating the discrete-time model of the plant for the new sampling period, placing the

discrete-time reduced state observer poles at −0.26 and −0.38, and taking account of the state feedback

gain K, the resulting controller has matrices

Ac =




−0.7715 −0.001495

29.011 −0.17693



 , Bc =




−1000.4

27423



 , (6.94)

Cc =
[

195.02 −49.465
]

, Dc = 5.691 · 105. (6.95)

The parameters Γp, Γc, θc and θp are the same as in §6.5.1. The matrix M in (6.40) now satisfies

ρ(M) < 1. Then, using Theorem 6.5, we have

β =














2.997 · 10−2

6.393 · 10−4

3.504

20.43

28.75














, γ =














6.470 · 10−3

1.381 · 10−4

0.7564

4.409

6.206














= b∞.

Application of Theorem 6.5 using ε = [1 1 1 1 1]T · 10−10 and b∞ shows that for any x0 =
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[xp(0)
T xc(0)

T ]T ∈ R
5, there exists ` = `(ε, x0) ≥ 0 such that

|xp(tk)| �








1.25

51.52

115.5







· 10−3, |xc(k)| �




0.7673

11.35



 ,

for all k ≥ `. Moreover, application of Theorem 6.8 using b∞ and the same value of ε yields

|xp(t)| � [1.25 51.52 115.5]T · 10−3, (6.96)

while application of Lemma 6.9 yields

|xp(t)| � [1.695 69.38 137.71]T · 10−3, (6.97)

both for all t ≥ t`.

As with the example in §6.5.1, note that b∞ = γ and the bound on the plant states that is valid only

at the sampling instants coincides with the bound that takes account of intersample behaviour given by

Theorem 6.8.

6.6 Chapter Summary

In this chapter, we have developed a novel systematic method to obtain componentwise ultimate bounds

for perturbed discrete-time and sampled-data systems, especially when the perturbations arise due to

the use of quantisers. The main features of the method are its systematic nature, whereby the method

can be readily computer coded without requiring adjustment of parameters, and its flexibility in dealing

with highly structured perturbation schemes, whereby the information on the perturbation structure is

directly incorporated into the method. This last feature distinguishes the method from other methods that

require a bound on the norm of the perturbation and thus may disregard information on the perturbation

structure. We have illustrated the simplicity and potential of the method with numerical examples.

Future research directions include the derivation of conditions under which the ultimate bounds obtained

admit even simpler forms, as observed in the examples when b∞ = γ or when the bound that is valid

only at the sampling instants coincides with the one that takes intersample behaviour into account, and

the extension of the framework to nonlinear systems.



Chapter 7

General Perturbation Bounds

7.1 Overview

In Chapter 6, we have derived componentwise global ultimate bounds for discrete-time and sampled-

data systems involving quantisers. Our derivations were based on regarding a quantised variable as a

perturbed copy of the corresponding unquantised variable. The perturbation introduced by a quantiser

was then bounded according to the type of quantiser. We have seen that the corresponding perturbation

bound may depend on the system state. In summary, Chapter 6 derived componentwise global ulti-

mate bounds for perturbed discrete-time and sampled-data systems having componentwise perturbation

bounds of a specific form.

In this chapter, we extend the approach of Chapter 6 to more general componentwise perturbation

bounds. We seek componentwise ultimate bounds for continuous- and discrete-time perturbed systems

having componentwise perturbation bounds that may depend on the system state. The perturbation

bounds considered in this chapter do not necessarily arise from quantisation, though the latter can be

seen as a special case of perturbation bounds that fit into the development of this chapter.

As in Chapter 6, our derivations involve the analysis of the system in modal coordinates. This

approach has been employed to derive componentwise ultimate bounds for systems having constant

perturbation bounds in Yakowitz and Parker (1973) for discrete-time systems and in Kofman (2005) for

continuous-time systems. The current work extends the approach of Yakowitz and Parker (1973) and

Kofman (2005) by allowing the perturbation bound to be a state-dependent function. Specifically, we

consider a system defined by

ẋ(t) = Ax(t) + u(t), (7.1)

where x(t) ∈ R
n denotes the system state, u(t) ∈ R

n a perturbation input and A ∈ R
n×n is Hurwitz

(has all its eigenvalues in the open left half-plane). The result of Kofman (2005), which applies only

when A is also diagonalisable, essentially consists in obtaining a componentwise ultimate bound on the
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state x, when the perturbation term u(t) is componentwise bounded as

|ui(t)| ≤ umi
, for i = 1, . . . , n.

Here, we derive ultimate bounds whenA is Hurwitz (not necessarily diagonalisable) and the perturbation

term is componentwise bounded by a (possibly) nonlinear function of the state, as follows

|ui(t)| ≤ δi(x(t)), for i = 1, . . . , n. (7.2)

We also derive a discrete-time counterpart of the method, considering a discrete-time system of the form

x(k + 1) = Ax(k) + u(k),

where A ∈ R
n×n has all its eigenvalues inside the unit circle and u(k) is componentwise bounded by a

state-dependent function.

These results are then utilised to derive ultimate bounds in perturbed nonlinear systems by regarding

such a system as a linear system having a (nonlinear) state-dependent perturbation term. In all cases, we

provide a systematic method for computing an ultimate bound and a set of initial states from which the

ultimate bound obtained is guaranteed. Thus, extending the results of Chapter 6 to more general per-

turbation bounds comes at the expense of the global feature of the ultimate bounds previously derived.

The method is based on the iteration of a map constructed from the modal decomposition of the matrix

A and from the perturbation bounds (7.2).

The selected structure, (7.1)–(7.2), permits one to represent most problems where estimation of an

ultimate bound is of practical importance. These problems include the presence of noise, the effect

of uniform or logarithmic quantisation, systems with parametric uncertainty (where the product of an

unknown matrix and the state can be modelled as a perturbation), etc. Notice that in these cases the

perturbation does not necessarily affect each component of the right-hand side of (7.1) in the same way

and hence it may be useful to bound the perturbation componentwise as in (7.2). Our method can also

be easily extended to systems of the form ẋ(t) = Ax(t)+Bu(t) or x(k+1) = Ax(k)+Bu(k), where

u ∈ R
m, with straightforward modifications of the derived expressions.

The remainder of the chapter is organised as follows. In §7.2 and §7.3, we derive componentwise

ultimate bounds for continuous- and discrete-time systems, respectively. Illustrative examples are pro-

vided in §7.4 and a summary is given in §7.5.

7.2 Ultimate Bounds for Continuous-time Systems

In this section, we develop a systematic method to obtain ultimate bounds for perturbed continuous-time

systems. In §7.2.1, we derive ultimate bound expressions when the perturbation input is componentwise

bounded by constants. This result is used as an intermediate tool to derive ultimate bound expressions
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at the beginning of §7.2.2, where the perturbation input is bounded by a state-dependent function. In

§7.2.2, we then proceed to develop the aforementioned systematic method. In §7.2.3, we show how the

results of §7.2.2 may be applied to nonlinear systems.

7.2.1 Constant Perturbation Bounds

In this section, we present ultimate bounds for a linear system when the perturbation bound is con-

stant. This result is presented in Theorem 7.3, which builds on the following two preliminary lemmas.

Lemma 7.1 derives a result for a perturbed scalar system and Lemma 7.2 a similar result for a system

whose evolution matrix consists of a single Jordan block.

Lemma 7.1 Consider the complex scalar system

ż(t) = λz(t) + v(t) (7.3)

where λ, z(t), v(t) ∈ C, and Re(λ) < 0. Let vm ∈ R+,0 and suppose that |z(0)| ≤
∣
∣[Re(λ)]−1

∣
∣ vm.

a) If |v(t)| ≤ vm for all 0 ≤ t ≤ τ , then |z(t)| ≤
∣
∣[Re(λ)]−1

∣
∣ vm for all 0 ≤ t ≤ τ .

b) If |v(t)| ≤ vm for all t ≥ 0, then |z(t)| ≤
∣
∣[Re(λ)]−1

∣
∣ vm for all t ≥ 0.

Proof. Express z(t) in polar form as z(t) = ρ(t) ejθ(t), where ρ(t) ∈ R+,0 and θ(t) ∈ R. Substituting

into (7.3) and multiplying by e−jθ(t) yields

ρ̇(t) + jρ(t) θ̇(t) = λρ(t) + v(t) e−jθ(t).

Taking real part and using the bound on v(t), we have

ρ̇(t) = Re(λ)ρ(t) + Re
(

v(t) e−jθ(t)
)

≤ Re(λ)ρ(t) + vm, (7.4)

where the inequality is valid for 0 ≤ t ≤ τ in a) or for t ≥ 0 in b). Define the auxiliary system

ẏ(t) = Re(λ)y(t) + vm, (7.5)

with initial condition y(0) , ρ(0) = |z(0)|. This linear differential equation can be solved as

y(t) = |z(0)|eRe(λ)t +
vm

|Re(λ)|
(

1 − eRe(λ)t
)

, (7.6)

where we have used the fact that Re(λ) < 0. Using the assumption |z(0)| ≤
∣
∣[Re(λ)]−1

∣
∣ vm in (7.6), it

follows that y(t) ≤
∣
∣[Re(λ)]−1

∣
∣ vm for all t ≥ 0. Applying the Comparison Lemma to (7.4) and (7.5)

(see, for example, Khalil, 2002, p.102), we conclude that |z(t)| ≤ y(t), for all 0 ≤ t ≤ τ in a) or for all

t ≥ 0 in b). The result follows. �
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Lemma 7.2 Consider the (possibly complex) system

ż(t) = Λz(t) + v(t) (7.7)

where z(t), v(t) ∈ C
r and Λ ∈ C

r×r is a Jordan block with eigenvalue λ satisfying Re(λ) < 0. Let

vm ∈ R
r
+,0 and suppose that |z(0)| �

∣
∣[Re(Λ)]−1

∣
∣ vm.

a) If |v(t)| � vm for all 0 ≤ t ≤ τ , then |z(t)| �
∣
∣[Re(Λ)]−1

∣
∣ vm for all 0 ≤ t ≤ τ .

b) If |v(t)| � vm for all t ≥ 0, then |z(t)| �
∣
∣[Re(Λ)]−1

∣
∣ vm for all t ≥ 0.

Proof. Since Λ is a Jordan block with eigenvalue λ, note that the matrix |[Re(Λ)]−1| satisfies

|[Re(Λ)]−1| =











|Re(λ)−1| |Re(λ)−2| . . . |Re(λ)−r|
0 |Re(λ)−1| . . . |Re(λ)−(r−1)|
...

...
. . .

...

0 0 . . . |Re(λ)−1|











. (7.8)

Define

a ,
∣
∣[Re(Λ)]−1

∣
∣ vm, (7.9)

and let ai and vmj
denote the i-th and j-th components of a and vm, respectively. Using (7.8) and (7.9),

we can write

ai =

r∑

j=i

∣
∣
∣[Re(λ)]−(j−i+1)

∣
∣
∣ vmj

, (7.10)

for i = 1, . . . , r. Let zi(t) denote the i-th component of z(t). We will prove by induction that

|zi(t)| ≤ ai, for i = 1, . . . , r, (7.11)

for 0 ≤ t ≤ τ in a) or for t ≥ 0 in b). By assumption, |z(0)| �
∣
∣[Re(Λ)]−1

∣
∣ vm, and using a as defined

above, we have

|zi(0)| ≤ ai, for i = 1, . . . , r. (7.12)

In particular, |zr(0)| ≤ ar =
∣
∣[Re(λ)]−1

∣
∣ vmr

. From (7.7) and the Jordan form of Λ, it follows that

żr(t) = λzr(t) + vr(t), with |vr(t)| ≤ vmr
for 0 ≤ t ≤ τ in a) or for t ≥ 0 in b). Applying Lemma 7.1

yields |zr(t)| ≤ |Re(λ)−1|vmr
= ar for 0 ≤ t ≤ τ in a) or for t ≥ 0 in b), proving (7.11) for i = r.

We next prove that if zi+1 satisfies (7.11), then zi also does. Thus, suppose that zi+1 satisfies (7.11).

This implies

|zi+1(t) + vi(t)| ≤ ai+1 + vmi
(7.13)
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for 0 ≤ t ≤ τ in a) or for t ≥ 0 in b). Using (7.10), the right-hand side of (7.13) satisfies

∣
∣[Re(λ)]−1

∣
∣ (ai+1 + vmi

) =
∣
∣[Re(λ)]−1

∣
∣





r∑

j=i+1

∣
∣
∣[Re(λ)]−(j−i)

∣
∣
∣ vmj

+ vmi





=
∣
∣[Re(λ)]−1

∣
∣

r∑

j=i

∣
∣
∣[Re(λ)]−(j−i)

∣
∣
∣ vmj

=
r∑

j=i

∣
∣
∣[Re(λ)]−(j−i+1)

∣
∣
∣ vmj

= ai. (7.14)

From (7.7) and the Jordan form of Λ, we have żi(t) = λzi(t) + zi+1(t) + vi(t), for i = 1, . . . , r − 1,

where the last two terms satisfy (7.13). From (7.12) and (7.14), we have

|zi(0)| ≤ ai =
∣
∣[Re(λ)]−1

∣
∣ (ai+1 + vmi

).

Applying Lemma 7.1 then yields

|zi(t)| ≤
∣
∣[Re(λ)]−1

∣
∣ (ai+1 + vmi

) = ai

valid for 0 ≤ t ≤ τ in a) or for t ≥ 0 in b). This shows that zi also satisfies (7.11).

Since we have already shown that zr satisfies (7.11), it follows that (7.11) is satisfied for i = 1, . . . , r

and the proof is complete. �

The following theorem provides ultimate bounds for linear systems having constant perturbation

bounds. This theorem extends the result of Kofman (2005) to the case where the system’s evolution

matrix is required to be only Hurwitz (not necessarily diagonalisable). The main feature of this result

is that it does not require the calculation of a Lyapunov function for the system and may yield tighter

bounds than those obtained via standard Lyapunov analysis using quadratic functions, as we will show

in §7.4.1 by means of a numerical example.

Theorem 7.3 Consider the system

ẋ(t) = Ax(t) + u(t) (7.15)

where x(t), u(t) ∈ R
n, and A ∈ R

n×n is a Hurwitz matrix with Jordan canonical form Λ = U−1AU .

Let um ∈ R
n
+,0 and define

S ,
∣
∣[Re(Λ)]−1

∣
∣ · |U−1|. (7.16)

i) Invariance. Suppose that |U−1x(0)| � Sum. If |u(t)| � um for 0 ≤ t ≤ τ , then the following

hold for 0 ≤ t ≤ τ and if |u(t)| � um for all t ≥ 0, then the following hold for all t ≥ 0:

a) |U−1x(t)| � Sum.

b) |x(t)| � |U |Sum.
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ii) Convergence. Suppose that |u(t)| � um for all t ≥ 0. Then, for each positive vector ε ∈ R
n
+, there

exists a continuous function tf (ε, ·) : R
n → R+,0 so that for each initial condition x(0) ∈ R

n, the

following hold for all t ≥ tf (ε, x(0)):

a) |U−1x(t)| � Sum + ε.

b) |x(t)| � |U |Sum + |U | ε.

Proof. Let x(t) = Uz(t) and v(t) , U−1u(t). Then, using (7.15) we have

ż(t) = Λz(t) + v(t), (7.17)

where v(t) satisfies

|v(t)| � vm , |U−1|um, either for 0 ≤ t ≤ τ or for all t ≥ 0. (7.18)

Note that (7.17) constitutes k (k ≤ n) uncoupled sets of differential equations of the form

żi(t) = Λizi(t) + vi(t), for 1 ≤ i ≤ k, (7.19)

where zi, vi ∈ C
ri , Λi ∈ C

ri×ri is a Jordan block, and ri is the multiplicity of the eigenvalue of the

i–th block. From (7.18), |vi(t)| � vmi
either for 0 ≤ t ≤ τ or for all t ≥ 0.

i) By assumption, |z(0)| = |U−1x(0)| � Sum. Using (7.16) and (7.18), then

|z(0)| �
∣
∣[Re(Λ)]−1

∣
∣ vm

and hence |zi(0)| �
∣
∣[Re(Λi)]

−1
∣
∣ vmi

, for i = 1, . . . , k. Applying Lemma 7.2 to (7.19), we obtain

|zi(t)| �
∣
∣[Re(Λi)]

−1
∣
∣ vmi

, for i = 1, . . . , k, (7.20)

for all 0 ≤ t ≤ τ . A compact expression for (7.20) is

|z(t)| �
∣
∣[Re(Λ)]−1

∣
∣ vm, for all 0 ≤ t ≤ τ, (7.21)

and the proof of i) a) for 0 ≤ t ≤ τ follows by recalling that z(t) = U−1x(t), vm = |U−1|um and

(7.16). The proof for all t ≥ 0 follows identical steps. To prove i) b) note that |x(t)| = |Uz(t)| �
|U | · |z(t)| and use (7.21). This completes the proof of i).

ii) Consider again system (7.17) with initial condition z(0) and with the perturbation term bounded

by (7.18) for all t ≥ 0. Let z̃(t) satisfy

˙̃z(t) = Λz̃(t), with z̃(0) = z(0). (7.22)

Since Λ is the Jordan form ofA, which is Hurwitz, then the equilibrium point z̃ = 0 of (7.22) is globally

exponentially stable. Hence, there exist positive constants k and λ such that (see, for example, Khalil,

2002, §4)

‖z̃(t)‖∞ ≤ k ‖z̃(0)‖∞ e−λt, for all t ≥ 0,
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for all z̃(0). It then follows that for any ξ ∈ R+, we have

‖z̃(t)‖∞ ≤ ξ, for all t ≥ max

{

0,
1

λ
ln
k ‖z̃(0)‖∞

ξ

}

. (7.23)

Therefore, given ε ∈ R
n
+ and selecting ξ = mini=1,...,n εi, it follows from (7.23) that

|z̃(t)| � ε, for all t ≥ tzf (ε, z̃(0)), (7.24)

where we have defined

tzf (ε, z̃) , max

{

0,
1

λ
ln

k ‖z̃‖∞
mini=1,...,n εi

}

. (7.25)

Define ẑ(t) , z(t) − z̃(t). Then, ẑ(t) verifies (7.17) and (7.18). Note also that |ẑ(0)| = 0 �
∣
∣[Re(Λ)]−1

∣
∣ vm. Thus, applying the result of part i), we conclude that |ẑ(t)| �

∣
∣[Re(Λ)]−1

∣
∣ vm for

all t ≥ 0. Then, using the definition of ẑ and (7.24), we obtain

|z(t)| � |ẑ(t)| + |z̃(t)| �
∣
∣[Re(Λ)]−1

∣
∣ vm + ε for all t ≥ tzf (ε, z̃(0)). (7.26)

Recalling that z(t) = U−1x(t), vm = |U−1|um, and (7.16), it follows from (7.26) that

|U−1x(t)| � Sum + ε for all t ≥ tzf (ε, z̃(0)). (7.27)

Recalling that z̃(0) = z(0) = U−1x(0), and defining tf (ε, x) , tzf (ε, U
−1x), it follows from (7.27)

that

|U−1x(t)| � Sum + ε for all t ≥ tf (ε, x(0)). (7.28)

This establishes ii) a). Part ii) b) follows from (7.28) and since |x(t)| � |U ||U−1x(t)|. From the

definition of tf and (7.25), note that tf (ε, ·) is continuous. This completes the proof of the theorem. �

Theorem 7.3 i) characterises a bounded invariant region in the state space, that is, a region with the

property that trajectories originating in that region remain in the region while the perturbation remains

bounded. Theorem 7.3 ii) shows that, if the perturbation is bounded for all t ≥ 0, then the trajectories

converge to the bounded invariant region from any initial condition.

Theorem 7.3 gives both implicit and componentwise ultimate bound estimations of LTI systems

when the perturbation bound is constant. The regions of the state space defined by the implicit bounds

given in Theorem 7.3 ii) a) are contained in the axis-aligned sets corresponding to Theorem 7.3 ii) b).

The latter provides componentwise ultimate bounds on the state.

7.2.2 State-dependent Perturbation Bounds

In this section, we present the main contribution of the chapter for continuous-time systems. We provide

ultimate bound expressions for linear systems with state-dependent perturbation bounds that satisfy a

monotonicity condition [see (7.30) and (7.31) below]. The ultimate bounds are derived in Theorem 7.4,
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which requires the existence of a point (xm) satisfying a certain condition. We subsequently provide

an algorithm to test whether this condition is satisfied, and a proof of the algorithm’s convergence. All

these results provide a systematic method to obtain ultimate bounds for continuous-time systems. As

we will see in the examples, the bounds provided by this systematic method may be tighter than those

obtained via standard Lyapunov analysis using quadratic functions, and can also be combined with the

latter methodology to improve on the bounds provided by either approach.

Theorem 7.4 Consider the system

ẋ(t) = Ax(t) + u(t), (7.29)

where x(t), u(t) ∈ R
n, and A ∈ R

n×n is Hurwitz with Jordan canonical form Λ = U−1AU . Suppose

that

|u(t)| � δ(x(t)) for all t ≥ 0, (7.30)

where δ : R
n → R

n
+,0 is a continuous map satisfying

|x| � |y| ⇒ δ(x) � δ(y) for all x, y ∈ R
n. (7.31)

Consider the map T : R
n → R

n
+,0 defined by

T (x) , |U |Sδ(x), (7.32)

with S as defined in (7.16). Suppose that there exists xm ∈ R
n satisfying T (xm) ≺ xm. Then,

i) b , limk→∞ T k(xm) exists and satisfies 0 � b ≺ xm.

ii) If |U−1x(0)| � Sδ(xm) then, given any positive vector ε ∈ R
n
+, a finite time tf = tf (ε, xm) ≥ 0

exists so that for all t ≥ tf ,

a) |U−1x(t)| � Sδ(b) + ε.

b) |x(t)| � b+ |U | ε.

Proof. By (7.16), (7.31), (7.32), and a property of matrices with nonnegative entries [see (6.2) in

Chapter 6], then T satisfies

|x| � |y| ⇒ T (x) � T (y) for all x, y ∈ R
n. (7.33)

i) Note that 0 � T (xm) ≺ xm and hence |T (xm)| ≺ |xm|. By (7.33), then T (T (xm)) � T (xm)

and applying T repeatedly we obtain

0 � T k(xm) � T k−1(xm) ≺ xm for all k ≥ 2. (7.34)

The sequence T k(xm) is thus componentwise nonincreasing and lower bounded by 0, and hence it must

converge to some point b = limk→∞ T k(xm) that satisfies 0 � b ≺ xm.
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ii) For any γ ∈ R
n
+,0, define the map Tγ : R

n → R
n
+,0 by

Tγ(x) , T (x) + |U | γ. (7.35)

To proceed with the proof of Theorem 7.4, we require the following four claims. The proofs of these

claims will be given later.

Claim 1 For any γ ∈ R
n
+,0 and k ∈ Z+,0, there exists t̄f = t̄f (k, γ, xm) ≥ 0 such that

|U−1x(t)| � Sδ(T kγ (xm)) + γ for all t ≥ t̄f (k, γ, xm). (7.36)

Claim 2 For any ξ ∈ R+, there exists η1 = η1(ξ) > 0 such that

‖δ(b+ ∆b) − δ(b)‖∞ < ξ whenever ‖∆b‖∞ < η1(ξ).

Claim 3 For any ξ ∈ R+, there exists N = N(ξ) ∈ Z+,0 such that

∥
∥T k(xm) − b

∥
∥
∞ < ξ whenever k ≥ N(ξ).

Claim 4 For any ξ ∈ R+ and k ∈ Z+,0, there exists η2 = η2(ξ, k) > 0 such that

∥
∥T kγ (xm) − T k(xm)

∥
∥
∞ < ξ whenever γ ∈ R

n
+,0 and ‖γ‖∞ < η2(ξ, k). (7.37)

We next show that for any ε ∈ R
n
+, we may select γ = γ(ε, xm) ∈ R

n
+ and k = k(ε, xm) ∈ Z+,0 so

that

Sδ(T kγ (xm)) + γ � Sδ(b) + ε. (7.38)

For the given xm, define

∆b(k, γ) , T kγ (xm) − b = T kγ (xm) − T k(xm) + T k(xm) − b (7.39)

and write

Sδ(T kγ (xm)) + γ = Sδ(b) + S [δ(b+ ∆b(k, γ)) − δ(b)] + γ

� Sδ(b) +
∣
∣
∣S [δ(b+ ∆b(k, γ)) − δ(b)] + γ

∣
∣
∣. (7.40)

For any ε ∈ R
n
+, define ξ , mini=1,...,n εi and select k = k(ε, xm) ∈ Z+,0 and γ = γ(ε, xm) ∈ R

n
+ to

satisfy

k = N

(
1

2
η1

(
ξ

2 ‖S‖∞

))

and (7.41)

‖γ‖∞ < min

{
ξ

2
, η2

(
1

2
η1

(
ξ

2 ‖S‖∞

)

, k

)}

, (7.42)

where η1(·), N(·), and η2(·, ·) are the functions given by Claims 2 to 4. We next show that these

selections yield (7.38).
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For k ∈ Z+,0, selected according to (7.41), note that, by (7.42) and Claim 4, we have

∥
∥T kγ (xm) − T k(xm)

∥
∥
∞ <

1

2
η1

(
ξ

2 ‖S‖∞

)

. (7.43)

By (7.41) and Claim 3, we have

∥
∥T k(xm) − b

∥
∥
∞ <

1

2
η1

(
ξ

2 ‖S‖∞

)

. (7.44)

From (7.39), it follows that

‖∆b(k, γ)‖∞ ≤
∥
∥T kγ (xm) − T k(xm)

∥
∥
∞ +

∥
∥T k(xm) − b

∥
∥
∞ . (7.45)

Combining (7.43), (7.44), and (7.45), yields

‖∆b(k, γ)‖∞ < η1

(
ξ

2 ‖S‖∞

)

. (7.46)

By (7.46) and Claim 2, it follows that

‖δ(b+ ∆b(k, γ)) − δ(b)‖∞ <
ξ

2 ‖S‖∞
. (7.47)

By (7.47) and since ‖γ‖∞ < ξ/2 by (7.42), it follows that

‖S‖∞ ‖δ(b+ ∆b(k, γ)) − δ(b)‖∞ + ‖γ‖∞ < ξ, (7.48)

which implies that

‖S [δ(b+ ∆b(k, γ)) − δ(b)] + γ‖∞ < ξ. (7.49)

From (7.49) and since ξ = mini=1,...,n εi, then

∣
∣
∣S [δ(b+ ∆b(k, γ)) − δ(b)] + γ

∣
∣
∣ ≺ ε. (7.50)

Therefore, using Claim 1 and (7.40) it follows that for any ε ∈ R
n
+ there exists tf = tf (ε, xm) ,

t̄f (k(ε, xm), γ(ε, xm), xm) ≥ 0 such that

|U−1x(t)| � Sδ(b) + ε for all t ≥ tf . (7.51)

This establishes ii a). Part ii) b) follows from (7.51) and since |x(t)| � |U ||U−1x(t)|. To complete the

proof of Theorem 7.4, we finally prove Claims 1 to 4.

Proof of Claim 1. We begin by establishing that |x(t)| � xm for all t ≥ 0. For a contradiction,

suppose that |x(td)| 6� xm, where 0 ≤ td <∞. Define

tc , inf t, subject to t ≥ 0 and |x(t)| 6� xm. (7.52)

Note that |x(0)| � |U | · |U−1x(0)| and by assumption and (7.32), then

|x(0)| � |U |Sδ(xm) = T (xm) ≺ xm.
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Hence, 0 < tc ≤ td and since x(t) is continuous we have |x(t)| � xm, for all 0 ≤ t ≤ tc. By (7.30)

and (7.31) then |u(t)| � δ(xm), for all 0 ≤ t ≤ tc. Applying Theorem 7.3 i) b) and using (7.32), then

|x(t)| � T (xm) ≺ xm, for all 0 ≤ t ≤ tc. Since x(t) is continuous, then there exists a positive real

constant a > 0 such that |x(t)| � xm for all 0 ≤ t ≤ tc + a, contradicting (7.52) and proving that

|x(t)| � xm for all t ≥ 0. (7.53)

We next proceed by induction on k. From (7.30), (7.31), and (7.53), it follows that |u(t)| � δ(xm)

for all t ≥ 0. Using Theorem 7.3 ii) a), then given γ ∈ R
n
+ a finite time t̃1 = t̃1(γ, x(0)) ≥ 0 exists so

that

|U−1x(t)| � Sδ(xm) + γ (7.54)

for all t ≥ t̃1. By Theorem 7.3 ii), the function t̃1(γ, ·) is continuous. By assumption, x(0) satisfies

|U−1x(0)| � Sδ(xm), and for any γ ∈ R
n
+,0, then x(0) is contained in the compact set

C0(γ, xm) , {x ∈ R
n : |U−1x| � Sδ(xm) + γ}.

Hence, the function t̃1(γ, ·) achieves a maximum over C0(γ, xm), and we can define

t1(γ, xm) , max
x∈C0(γ,xm)

t̃1(γ, x),

which is finite and nonnegative. Then, it follows that (7.54) holds for all t ≥ t1. This establishes (7.36)

for k = 0 by defining t̄f (0, γ, xm) , t1(γ, xm).

Next, suppose that (7.36) holds for some k ∈ Z+,0. Since |x(t)| � |U ||U−1x(t)|, using (7.36) we

obtain

|x(t)| � |U |Sδ(T kγ (xm)) + |U | γ = T k+1
γ (xm),

where we have used (7.32) and (7.35). Therefore, using (7.30) and (7.31), it follows that

|u(t)| � δ(T k+1
γ (xm)) for all t ≥ t̄f (k, γ, xm).

Applying Theorem 7.3 ii) a), there exists t̃k+1 = t̃k+1(γ, x(t̄f (k, γ, xm))) ≥ 0 so that

|U−1x(t)| � Sδ(T k+1
γ (xm)) + γ, for all t ≥ t̄f (k, γ, xm) + t̃k+1(γ, x(t̄f (k, γ, xm))). (7.55)

By Theorem 7.3 ii), the function t̃k+1(γ, ·) is continuous. By our induction assumption (7.36), we have

that x(t̄f (k, γ, xm)) is contained in the compact set

Ck(γ, xm) , {x ∈ R
n : |U−1x| � Sδ(T kγ (xm)) + γ}. (7.56)

Hence, t̃k+1(γ, ·) achieves a maximum over this compact set, and we can define

tk+1(γ, xm) , max
x∈Ck(γ,xm)

t̃k+1(γ, x),
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which is finite and nonnegative. Defining t̄f (k + 1, γ, xm) , t̄f (k, γ, xm) + tk+1(γ, xm), it follows

from (7.55) that (7.36) holds for k + 1. This concludes the proof of Claim 1. �

Proof of Claim 2. Straightforward since the map δ is continuous by assumption. �

Proof of Claim 3. Straightforward since, by part i), b = limk→∞ T k(xm). �

Proof of Claim 4. By induction on k. For k = 0, for any ξ ∈ R+, any function η̄(ξ) > 0 causes

(7.37) to be satisfied with η2(ξ, 0) , η̄(ξ), since we adopt the convention that T 0
γ (xm) = T 0(xm) =

xm. Then, the result of Claim 4 holds trivially for k = 0. Next, suppose that Claim 4 holds for some

k ∈ Z+,0. Using (7.35), we have

∥
∥T k+1

γ (xm) − T k+1(xm)
∥
∥
∞ =

∥
∥T (T kγ (xm)) − T (T k(xm)) + |U | γ

∥
∥
∞

≤
∥
∥T (T kγ (xm)) − T (T k(xm))

∥
∥
∞ + ‖|U | γ‖∞ (7.57)

Since, by assumption, T (xm) ≺ xm, note from (7.35) that there exists γ̄ ∈ R
n
+ such that

Tγ(xm) ≺ xm for all 0 � γ � γ̄. (7.58)

Then, from (7.33) and (7.58), it follows that

T (Tγ(xm)) � T (xm), whence T (Tγ(xm)) + |U | γ � T (xm) + |U | γ.

It then follows, from (7.35), that

T 2
γ (xm) � Tγ(xm),

and repeating this recursively yields

T kγ (xm) � T k−1
γ (xm)

for all k ∈ Z+. Note then that T kγ (xm) is componentwise nonincreasing and satisfies

0 � T kγ (xm) ≺ xm, for all k ∈ Z+ and for all 0 � γ � γ̄. (7.59)

By (7.32) and since the map δ is continuous, then T : R
n → R

n
+,0 also is continuous. Therefore, T is

uniformly continuous in the compact set (see, for example, Corwin and Szczarba, 1995)

C , {x ∈ R
n : 0 � x � xm}.

This implies that for any ξ ∈ R+, there exists η3 = η3(ξ) (independent of x or y) such that

‖T (x) − T (y)‖∞ < ξ whenever x, y ∈ C and ‖x− y‖∞ < η3(ξ).

Using (7.34) and (7.59), it follows that for any ξ ∈ R+, we have

∥
∥T (T kγ (xm)) − T (T k(xm))

∥
∥
∞ < ξ whenever

∥
∥T kγ (xm) − T k(xm)

∥
∥
∞ < η3(ξ), (7.60)
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provided 0 � γ � γ̄.

We next prove that Claim 4 holds for k + 1 with

η2(ξ, k + 1) , min

{

η2 (η3(ξ/2), k) , min
i=1,...,n

γ̄i,
ξ

2 ‖|U |‖∞

}

. (7.61)

By (7.61), note that

γ ∈ R
n
+,0 and ‖γ‖∞ < η2(ξ, k + 1) =⇒







‖γ‖∞ < η2 (η3(ξ/2), k) , (7.62a)

0 � γ � γ̄, (7.62b)

‖γ‖∞ <
ξ

2 ‖|U |‖∞
. (7.62c)

By (7.62a) and our induction assumption, it follows that

γ ∈ R
n
+,0 and ‖γ‖∞ < η2(ξ, k + 1) =⇒

∥
∥T kγ (xm) − T k(xm)

∥
∥
∞ < η3(ξ/2),

and by (7.60) and (7.62b), it follows that

∥
∥T (T kγ (xm)) − T (T k(xm))

∥
∥
∞ < ξ/2. (7.63)

Also, note that

‖γ‖∞ <
ξ

2 ‖|U |‖∞
=⇒ ‖|U |‖∞ ‖γ‖∞ < ξ/2 =⇒ ‖|U | γ‖∞ < ξ/2. (7.64)

From (7.57), (7.62), (7.63), and (7.64), it follows that

γ ∈ R
n
+,0 and ‖γ‖∞ < η2(ξ, k + 1) =⇒

∥
∥T k+1

γ (xm) − T k+1(xm)
∥
∥
∞ < ξ.

This establishes Claim 4 for k + 1 and concludes its proof. �

The proof of Theorem 7.4 is now complete. �

Theorem 7.4 provides a simple ultimate bound expression and shows that the set {x ∈ R
n :

|U−1x| � Sδ(xm)} is an estimate of the region of attraction of the ultimate bound. The theorem

relies on finding a point xm such that T (xm) ≺ xm. Although checking this condition analytically

might be possible, this cannot be ensured in all cases. Therefore, we provide the following numerical

algorithm, and then analyse its convergence.

Algorithm 1 (Numerical Computation of xm) Consider a map T : R
n → R

n
+,0.

1. Choose a scalar c > 0.

2. Define the map Tc(x) , T (x) + c1n and iterate it from x = 0, generating the sequence T kc (0), for

k = 1, 2, . . .

Theorem 7.5 Suppose that a map T : R
n → R

n
+,0 satisfies (7.33).
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a) If, choosing c = ψ > 0, Algorithm 1 converges to a point x̄ψm , limk→∞ T kψ(0), then T (x̄ψm) ≺ x̄ψm.

Also, if 0 < φ < ψ, then choosing c = φ, Algorithm 1 converges to x̄φm , limk→∞ T kφ (0), where

x̄φm ≺ x̄ψm.

b) If xm exists such that T (xm) ≺ xm and if c > 0 is chosen small enough in Step 1 of Algo-

rithm 1, then the algorithm converges to a point x̄m , limk→∞ T kc (0) satisfying limk→∞ T k(x̄m) �
limk→∞ T k(xm).

Proof. a). Convergence of Algorithm 1 to a point x̄ψm implies that x̄ψm = Tψ(x̄ψm) and by definition of

Tψ and the fact that ψ > 0, then T (x̄ψm) ≺ T (x̄ψm) + ψ1n = x̄ψm. Since φ < ψ, we have

Tφ(0) = T (0) + φ1n ≺ T (0) + ψ1n = Tψ(0).

Since T satisfies (7.33), applying T to the inequality above yields T (Tφ(0)) � T (Tψ(0)). Then,

T (Tφ(0)) + φ1n ≺ T (Tψ(0)) + ψ1n whence T 2
φ(0) ≺ T 2

ψ(0). Repeating this procedure yields

T kφ (0) ≺ T kψ(0), for all k > 0. (7.65)

Also, 0 � Tφ(0), whence T (0) � T (Tφ(0)) and T (0) + φ1n = Tφ(0) � T (Tφ(0)) + φ1n = T 2
φ(0).

Repeating this procedure yields

T kφ (0) � T k+1
φ (0), for all k > 0. (7.66)

From (7.66), the sequence T kφ (0) is nondecreasing and from (7.65) it is bounded above by the converging

sequence T kψ(0). Therefore, T kφ (0) must converge to some point x̄φm. From (7.65) it follows that x̄φm �
x̄ψm. Using (7.33) then T (x̄φm) � T (x̄ψm), whence Tφ(x̄φm) = T (x̄φm)+φ1n ≺ T (x̄ψm)+ψ1n = Tψ(x̄ψm).

Hence, x̄φm = Tφ(x̄
φ
m) ≺ Tψ(x̄ψm) = x̄ψm. This concludes the proof of a).

b). Since T (xm) ≺ xm, then by Theorem 7.4 i) the limit b , limk→∞ T k(xm) exists and satisfies

b ≺ xm. This implies that b = T (b) ≺ T (b) + c1n = Tc(b) � Tc(xm), where the first inequality

follows from c > 0 and the second one from the facts that T satisfies (7.33) and b ≺ xm. Also, by

choosing c > 0 small enough, we can guarantee that Tc(xm) ≺ xm. Applying Tc iteratively we arrive

to

b ≺ T kc (xm) � T k−1
c (xm) ≺ xm.

Then, the sequence T kc (xm) is nonincreasing and lower bounded, which implies that it converges to

some point bc satisfying

b � bc ≺ xm. (7.67)

Consider next the sequence T kc (0). Notice that since 0 � bc and Tc satisfies (7.33), then 0 � Tc(0) � bc,

and applying Tc iteratively yields

T k−1
c (0) � T kc (0) � bc.
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This implies that T kc (0) is nondecreasing and upper bounded by bc, which shows that Algorithm 1 must

converge to some point x̄m satisfying

x̄m � bc. (7.68)

By a), then T (x̄m) ≺ x̄m and by assumption, T (xm) ≺ xm. Thus, Theorem 7.4 i) proves that

limk→∞ T k(x̄m) and limk→∞ T k(xm) both exist. Also, (7.67) and (7.68) imply that x̄m ≺ xm. Since

T satisfies (7.33), applying T iteratively yields T k(x̄m) � T k(xm) for all k ∈ Z+, whence the result

follows straightforwardly. �

Remark 7.6 If Algorithm 1 converges then, by Theorem 7.5 a), the resulting x̄m satisfies T (x̄m) ≺ x̄m

and thus the hypotheses of Theorem 7.4 are satisfied. We emphasise that this holds irrespective of how

large or small the chosen scalar c is (provided Algorithm 1 converges). On the other hand, the scalar c

may need to be small enough to ensure the convergence of Algorithm 1. The use of different values of

c for which Algorithm 1 converges yields different points x̄m. Larger values of c for which Algorithm 1

converges are more desirable since they provide larger x̄m, hence resulting in a larger estimate of the

region of attraction of the ultimate bound. In some cases, iteration of the map T from different x̄m

provided by Algorithm 1 may converge to different points, corresponding to different ultimate bounds.

In addition, if c is small enough, then iteration of the map T from the point x̄m provided by Algorithm 1

leads to the smallest ultimate bound that can be obtained via application of Theorem 7.4.

Remark 7.7 Theorem 7.4, Algorithm 1 and Theorem 7.5 provide a systematic method to obtain ulti-

mate bounds for continuous-time linear systems with perturbations bounded componentwise by state-

dependent functions.

7.2.3 Application to Nonlinear Systems

We next show how the method developed above can be applied to a nonlinear system of the form

ẋ(t) = f(x(t), u(t)), (7.69)

where f(0, 0) = 0 and A ,
∂f
∂x

∣
∣
∣
(0,0)

is Hurwitz. Rewriting system (7.69) as

ẋ(t) = Ax(t) + [f(x(t), u(t)) −Ax(t)],

we see that if we can find a continuous function δ : R
n → R

n
+,0 so that

|f(x(t), u(t)) −Ax(t)| � δ(x(t)), for all t ≥ 0,

and (7.31) is satisfied, then we can analyse the map given by (7.32) and expect to be able to use Theorem

7.4 to estimate an ultimate bound and a region of attraction. In §7.4.2, we illustrate this procedure with

an example.



136 General Perturbation Bounds

7.3 Ultimate Bounds for Discrete-time Systems

In this section, we develop a systematic method to obtain ultimate bounds for perturbed discrete-time

systems. This result is based on componentwise analysis of the system in modal coordinates. In this

case, the ultimate bound expressions can be obtained in a more straightforward manner, via a procedure

that is different from the one developed in the continuous-time case. In particular, the result for constant

perturbation bounds is not needed as an intermediate tool to obtain ultimate bounds for state-dependent

perturbation bounds. We therefore directly obtain ultimate bounds for this latter case in §7.3.1 where we

also develop the systematic method discussed above. We then show how to apply this result to nonlinear

systems in §7.3.2.

7.3.1 State-dependent Perturbation Bounds

As we did for continuous-time systems in §7.2.2, we next provide ultimate bound expressions for linear

systems with state-dependent perturbation bounds that satisfy a monotonicity condition [see (7.72) and

(7.73) below] and then develop a corresponding systematic method for the discrete-time case.

Theorem 7.8 Consider the system

x(k + 1) = Ax(k) + u(k), (7.70)

where x(k), u(k) ∈ R
n, and A ∈ R

n×n has all its eigenvalues strictly inside the unit circle and Jordan

canonical form

Λ = U−1AU. (7.71)

Suppose that

|u(k)| � δ(|x(k)|), for all k ≥ 0, (7.72)

where δ : R
n
+,0 → R

n
+,0 is a continuous map satisfying

x � y ⇒ δ(x) � δ(y) for all x, y ∈ R
n
+,0. (7.73)

Consider the map T : R
n
+,0 → R

n
+,0 defined by

T (y) , |Λ| y + |U−1| δ(|U |y). (7.74)

Suppose that a point b satisfying b = T (b) exists. Let xm ∈ R
n denote any point satisfying

lim
k→∞

T k(|U−1xm|) = b

(note that xm = Ub is one such point). If the initial condition x(0) satisfies |U−1x(0)| � |U−1xm|,
then for any ε ∈ R

n
+ there exists ` = `(ε, xm) ≥ 0, such that for all k ≥ `
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a) |U−1x(k)| � b+ ε.

b) |x(k)| � |U | b+ |U | ε.

Proof. Let x(k) = Uz(k) and substitute into (7.70) to obtain

z(k + 1) = Λz(k) + U−1u(k).

Taking magnitudes and using (7.72) yields

|z(k + 1)| � |Λ| · |z(k)| + |U−1|δ(|Uz(k)|)

� |Λ| · |z(k)| + |U−1|δ(|U | · |z(k)|),

where in the last line we have used (7.73). Define the auxiliary system

y(k + 1) = |Λ|y(k) + |U−1|δ(|U | y(k)) = T (y(k)). (7.75)

Note that by (7.73), (7.74), and properties (6.1) and (6.2) in Chapter 6, T satisfies

x � y ⇒ T (x) � T (y) for all x, y ∈ R
n
+,0 (7.76)

and also |z(k)| � y(k) for all k ≥ 0 whenever the initial condition y(0) satisfies |z(0)| � y(0). By

assumption, |z(0)| = |U−1x(0)| � |U−1xm| and hence set the initial condition y(0) = |U−1xm|.
Then, by assumption, limk→∞ T k(y(0)) = b. Thus, iteration of (7.75) converges to the point b =

T (b) = limk→∞ y(k). Therefore, given any ε ∈ R
n
+, there exists ` = `(ε, xm) ≥ 0 such that y(k) �

b+ ε, for all k ≥ `. The proof of a) then follows by recalling that |U−1x(k)| = |z(k)| � y(k). To prove

b) note that |x(k)| � |U | · |U−1x(k)| and use a). �

The hypotheses of Theorem 7.8 are weaker than those of its continuous-time counterpart (Theo-

rem 7.4). In Theorem 7.4, it is required that a point xm exist such that T (xm) ≺ xm. As shown in

Theorem 7.4 i), this assumption is sufficient for T to have a fixed point. However, in the discrete-time

case, we need only assume the latter, that is, that T has a fixed point. To find such a point, we may

iterate T from the origin, as established in the following theorem.

Theorem 7.9 Let T : R
n
+,0 → R

n
+,0 be a continuous map satisfying (7.76) and suppose that there exists

b satisfying b = T (b). Then, limk→∞ T k(0) = b̄, b̄ = T (b̄) and b̄ � b.

Proof. Since b = T (b), then b � 0. Therefore, using (7.76), we have b = T (b) � T (0) � 0 and

applying T iteratively yields b � T k(0) � T k−1(0). Thus, the sequence T k(0) is nondecreasing and

upper bounded by b and hence it converges to some point b̄ satisfying T (b̄) = b̄ and b̄ � b. �

Remark 7.10 Theorems 7.8 and 7.9 provide a systematic method to obtain ultimate bounds for discrete-

time linear systems with perturbations bounded componentwise by a state-dependent function.
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7.3.2 Application to Nonlinear Systems

We next show how the method developed above can be applied to a nonlinear system of the form

x(k + 1) = f(x(k), u(k)), (7.77)

where f(0, 0) = 0 and A ,
∂f
∂x

∣
∣
∣
(0,0)

has all its eigenvalues inside the unit circle. Rewriting system

(7.77) as

x(k + 1) = Ax(k) + [f(x(k), u(k)) −Ax(k)] ,

we see that if we can find a continuous function δ : R
n
+,0 → R

n
+,0 so that

|f(x(k), u(k)) −Ax(k)| � δ(|x(k)|), for all k ≥ 0,

and (7.73) is satisfied, then we can analyse the map given by (7.74) and expect to be able to use Theorem

7.8 to estimate an ultimate bound and a region of attraction. In §7.4.3, we illustrate this procedure with

an example.

7.4 Examples

In this section, we apply the results of this chapter to different numerical examples. We also compare

the bounds resulting from the application of our method with those obtained via Lyapunov analysis by

means of quadratic functions.

7.4.1 Continuous-time System with Constant Perturbation Bounds

Consider the system

ẋ(t) =




0 1

−1 −10





︸ ︷︷ ︸

A

x(t) + u(t), (7.78)

where u1(t) = 0 and |u2(t)| ≤ 0.1 for all t ≥ 0. A classical Lyapunov approach employs a quadratic

function V (x) = xTPx, where P = P T > 0 is the solution of ATP + PA = −Q, with Q > 0, and

analyses its time derivative using the perturbation bound ‖u(t)‖2 ≤ 0.1, for all t ≥ 0. For example, this

approach is used in Lemma 9.2 of Khalil (2002) to derive an ultimate bound for the 2-norm of x of the

form

µ = 2
λmax(P )

λmin(Q)

√

λmax(P )

λmin(P )
0.1 + ε, (7.79)

where λmin(·) and λmax(·) denote the smallest and largest eigenvalues, respectively, of a real symmetric

matrix, and ε > 0 can be made arbitrarily small. Numerical minimisation of (7.79) with respect to Q

yields µ = 1.3837 + ε, whence ‖x(t)‖2 ≤ 1.3837 + ε for all t ≥ tf , for some tf ≥ 0. We can also
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obtain the componentwise bounds |x1(t)| ≤ 1.3837 + ε and |x2(t)| ≤ 1.3837 + ε. Note that, since A is

Hurwitz, the system (7.78) is ISS with respect to the input u and an ISS analysis then leads to the same

bounds (see, for example, Khalil, 2002, Theorems 4.18 and 4.19).

Application of the formula derived in Kofman (2005, Theorem 4) (and extended here to the general

—not necessarily diagonalisable— Hurwitz case in Theorem 7.3) results in the tighter bounds |x1(t)| ≤
0.1021 and |x2(t)| ≤ 0.0204, and ‖x(t)‖2 ≤ 0.1041, for all t ≥ tf , for some tf ≥ 0. In this case, we

can identify two reasons why our method yields tighter bounds. First, the information on u1(t), namely

|u1(t)| = 0 is lost in the standard Lyapunov analysis, which requires a bound on ‖u(t)‖2. Second,

obtaining ultimate bounds in the form of balls by means of quadratic Lyapunov functions seems to

not be particularly well-suited to the system (7.78). We can verify this statement by supposing that

the initial information on u(t) is that ‖u(t)‖2 ≤ 0.1 for all t ≥ 0. Then, using the componentwise

bounds |u1(t)| ≤ 0.1 and |u2(t)| ≤ 0.1 and applying again the formula derived in Kofman (2005,

Theorem 4) (or here in Theorem 7.3) yields the bounds |x1(t)| ≤ 1.1023 and |x2(t)| ≤ 0.1225, whence

‖x(t)‖2 ≤ 1.1091, for all t ≥ tf , for some tf ≥ 0. This bound is still tighter than the one obtained

above via standard Lyapunov analysis.

7.4.2 Continuous-time System with State-dependent Perturbation Bounds

The system

ẋ =




0 1

−1 −10





︸ ︷︷ ︸

A

x+




0

x1 − sin(x1) + τ(t)





︸ ︷︷ ︸

u(t)

, (7.80)

represents the dynamics of a pendulum with friction, where x = [x1 x2]
T and τ(t) represents a pertur-

bation torque that is bounded by |τ(t)| ≤ 0.1. This system has been expressed in the form suggested in

§7.2.3. The matrix A is Hurwitz with Jordan canonical form Λ = U−1AU , where

U =




0.9949 −0.1005

−0.1005 0.9949



 , Λ =




−0.1010 0

0 −9.8990



 .

The term u(t) in (7.80) can be bounded by

|u(t)| � δ(x) ,




0

|x1|3
6 + 0.1



 .

Note that δ satisfies (7.31). The map T , from (7.32), is T (x) = |U |Sδ(x), where S ,
∣
∣[Re(Λ)]−1

∣
∣ ·

|U−1|.
Choosing c = 0.5, Algorithm 1 converges to the point [0.6484 0.5297]T , from which iteration of the

map T converges to b = [0.1023 0.0205]T . Hence, Theorem 7.4 concludes that if

|U−1x(0)| � Sδ([0.6484 0.5297]T ) = [0.1477 0.0149]T ,
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then given any ε ∈ R
n
+, a finite time tf exists so that for all t ≥ tf ,

|U−1x(t)| �




0.1017

0.0103



+ ε, and (7.81)

|x(t)| �




0.1023

0.0205



+ |U | ε. (7.82)

These bounds yield the parallelogram and the axis-aligned rectangle shown in Figure 7.1. We have also

checked that using c = 10−6 in Algorithm 1 yields a point from which iteration of the map T also

converges to b = [0.1023 0.0205]T . The use of a higher value of c in Algorithm 1 provides a larger

estimate of the region of attraction of the ultimate bound.

We next compare the ultimate bounds obtained above with the results obtained from Lyapunov

analysis. Extension of a systematic Lyapunov analysis, such as that described in §7.4.1, to this nonlinear

perturbation case is not straightforward. We tried analysing this system along the lines in Khalil (2002,

Examples 9.2 and 9.5), using a quadratic function V (x) = xTPx, with P to be determined. We

performed this analysis bounding u(t) by ‖u(t)‖2 ≤ |x1|3
6 +0.1. Note at this point that the perturbation

structure is already lost, since the fact that the first component of u(t) is zero is not taken into account.

On the other hand, taking this structure into account makes the analysis case-dependent and difficult to

systematically generalise. We next proceed similarly to Khalil (2002, Examples 9.2 and 9.5), and bound

the term |x1|3 by αd‖x‖, where αd is the maximum value of |x1|2 on the level surface V (x) = d.

Pursuing the analysis in this way, we conclude that, for the values of the parameters in this example, such

a method does not yield useful information since the different constraints involved cannot be satisfied.

Having found this procedure uninformative for this example, we proceed in a non-systematic way

by employing the function V (x) used in §7.4.1 and analysing the exact possible values of V̇ (x) [for all

values of τ(t)] on the level surfaces of V (x). Note that the matrix A in (7.80) is the same as that in

(7.78) and that the function V (x) used in §7.4.1 minimises the Lyapunov-based formula (7.79) for the

2-norm ultimate bound on the state in the case of a constant perturbation bound. After performing this

tedious numerical evaluation, we find that convergence of the system’s trajectories to the set enclosed

by the level surface V (x) = 0.0378 (see Figure 7.1) is guaranteed. For any x in this set, we have

|x1| ≤ 0.1076 and |x2| ≤ 0.1181. These bounds are more conservative than the ones given in (7.82).

In an attempt to obtain a tighter bound on x2, we find, via trial and error, the Lyapunov function

V1(x) = x2
1 + 5x2

2 + x1x2, which ensures convergence to the set enclosed by the level surface V1(x) =

0.0205, also shown in Figure 7.1. For any x in this set, we have |x2| ≤ 0.0657, which is still larger than

the bound given in (7.82).

This example illustrates that the Lyapunov approach using quadratic functions may be more con-

servative, and that finding an appropriate Lyapunov function may be a difficult task. In addition, if the

systematic approach of minimising (7.79) is overly conservative, one is obliged to resort to the tedious
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Figure 7.1: Different ultimate bounds in the pendulum system

and complicated procedure of evaluating the time derivative of the Lyapunov function along its level

surfaces for all possible values of the perturbation. On the other hand, the approach that we propose

provides a systematic method to obtain ultimate bounds that can be computer coded in a simpler way.

Moreover, we have shown, in this example, that our approach can lead to tighter bounds.

7.4.3 Discrete-time System

Eq. (7.83) represents the Euler discretisation of a controlled inverted pendulum with a perturbationw(k)

that satisfies |w(k)| ≤ 0.01 and where x = [x1 x2]
T .

x(k + 1) =




1 0.1

−0.9 0



x(k) +




0

0.1[sin(x1(k)) − x1(k)] − w(k)



 . (7.83)

The system has been written as suggested in §7.3.2 and has the form x(k + 1) = Ax(k) + u(k). The

term u(k) can be bounded by |u(k)| � δ(|x(k)|), where the function δ : R
2
+,0 → R

2
+,0 is given by

δ(z) ,




0

z31
60 + 0.01





and can be easily shown to satisfy (7.73). The matrices U and Λ in the Jordan canonical form of the

matrix A, Λ = U−1AU , are

U =




0.7071 −0.1104

−0.7071 0.9939



 , Λ =




0.9 0

0 0.1



 .

The map T : R
2
+,0 → R

2
+,0, defined as

T (y) , |Λ| y + |U−1|δ(|U |y)
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has a fixed point at b = [0.0177 0.0126]T . Also, xm = [5 5]T satisfies limk→∞ T k(|U−1xm|) = b.

Then, Theorem 7.8 states that if |U−1x(0)| � |U−1xm|, then for any ε ∈ R
n
+ there exists ` ≥ 0 such

that for all k ≥ `, |U−1x(k)| � b+ ε and |x(k)| � |U |b+ |U |ε. These bounds yield the parallelogram

and the axis-aligned rectangle, respectively, shown in Figure 7.2.

To compare with a Lyapunov approach, the perturbed system was analysed using the quadratic

function V (x) , xTPx, where P is the solution to ATPA − P = −I . After analysing the increment

∆V (x(k)) , V (x(k + 1)) − V (x(k)) on the level surfaces of V , ∆V satisfied ∆V (x) > 0 at some

point x for which V (x) = 0.00147 and then, using the function V we cannot insure an ultimate bound

smaller than this level surface. This surface is shown in Figure 7.2. We stress that the exact value of the

nonlinear function ∆V was numerically analysed, without bounding any term. If the Lyapunov analysis

had been performed —as is usually done— by bounding some expressions (like sin(x) for instance),

the resulting ultimate bound would have been significantly more conservative. Note that in the case of

higher order systems, the numerical analysis of the exact value of the Lyapunov function increment is

computationally intractable and thus the usual approach of bounding terms seems to be the only resort.
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Figure 7.2: Different ultimate bounds in the discretised inverted pendulum

In this example, the ultimate bound obtained with the suggested method cannot be said to be tighter

than the one obtained via Lyapunov analysis. However, one can combine the results obtained by both

methodologies and compute an ultimate bound given by the intersection of the parallelogram and the

ellipse shown in Figure 7.2. Moreover, for this example, the Lyapunov analysis method shows global

convergence to the ultimate bound given by the ellipse. Thus, since our method guarantees convergence

to the parallelogram shown in Figure 7.2 from the set {x ∈ R
2 : |U−1x| ≤ |U−1xm|} with xm =

[5 5]T , and this set contains the ellipse shown in Figure 7.2, then global convergence to the ultimate

bound given by the intersection of the parallelogram and the ellipse is ensured. Thus, this example

illustrates how the strengths of both methodologies can be combined to obtain tighter bounds and larger
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regions of attraction.

7.5 Chapter Summary

In this chapter, we have presented a systematic method to obtain ultimate bounds for both continuous-

and discrete-time systems. The method is based on componentwise analysis of the system in modal

coordinates and thus exploits the system geometry as well as the perturbation structure without requiring

calculation of a Lyapunov function. We have developed the method for linear perturbed systems with

componentwise state-dependent perturbation bounds and then shown that the method may be applied to

nonlinear systems by treating nonlinear terms as perturbations. The resulting ultimate bounds are given

as simple expressions in terms of the solution of a fixed point problem which can be solved analytically

or numerically. The method also provides an estimate of the region of attraction of the ultimate bound.

We have shown, by means of examples, that the proposed method may offer a simple alternative to the

classical Lyapunov-based analysis and may sometimes yield tighter bounds. In addition, the strengths

of both methodologies can be combined to obtain even tighter bounds and/or larger regions of attraction.





Chapter 8

Summary and Future Work

8.1 General Overview

In this thesis, we have addressed different aspects of quantisation in feedback control systems. In partic-

ular, we have dealt with quadratic stabilisation via quantised static feedback (focusing on quantisation

density) in Part I of this thesis, and with the derivation of componentwise ultimate bounds for perturbed

systems, especially when quantisation is regarded as a perturbation, in Part II of this thesis. In this final

chapter, we summarise the main results presented throughout the thesis. We also discuss some future

research directions.

8.1.1 Quantisation Density

Throughout Part I of this thesis, we have dealt with the concept of quantisation density. The density of

a quantiser is a measure of how efficient a quantiser is in the use of its levels.

In Chapter 2, we have briefly reviewed quadratic stabilisation of linear discrete-time systems and

then focused on quantisation density in the context of multiple-input systems. We have generalised the

definition of quantisation density of Elia and Mitter (2001) to multiple-input systems and derived several

new results regarding quantisation density. We have also posed the problem of optimising quantisation

density over all quantisers that quadratically stabilise a given multiple-input system and derived an

important result that reveals the structure of quantisers that optimise density.

In Chapter 3, we have focused on the characterisation of quantisers that quadratically stabilise a

given multiple-input system. As a first step toward this characterisation, we considered quantisers hav-

ing a form that can be interpreted as the simplest possible in some appropriate sense. We derived

necessary and sufficient conditions for these quantisers to quadratically stabilise a system. We did

this by means of explicit geometric considerations. We thus developed a novel geometric approach to
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quadratic stabilisation of multiple-input systems by means of quantisers. We also employed this geo-

metric approach to design quantisers with finite density that can stabilise multiple-input systems having

an arbitrary number of inputs.

In Chapter 4, we dealt with single-input systems. For these systems, we enhanced the geometric

approach of Chapter 3 to explore quantiser coarseness from a state-space standpoint, as opposed to

the standard input-space-based concept of quantisation density. We introduced a novel type of quan-

tisers (CAQS quantisers) and analysed the relationships between CAQS quantisers and quantisers that

minimise quantisation density in the standard sense. We also showed how to directly utilise CAQS

quantisers to design static output feedback strategies that employ quantisers of infimum density. We

concluded this chapter by showing how to recover a well-known result on infimum quantisation density

by means of our approach.

In Chapter 5, we solved a special case of infimum quantisation density problem for multiple-input

systems. Specifically, we derived the infimum density over all quantisers that quadratically stabilise the

system and have levels in a one-dimensional subspace of the input space. We also showed that our result

conflicts with a previously published result. We also provided a counterexample to the latter result.

In summary, we have addressed the infimum quantisation density problem for multiple- and single-

input systems and have derived several new results contributing to this problem. The reader is referred

to §1.3 in Chapter 1 for a list of references to the specific contributions of this part of the thesis.

8.1.2 Componentwise Ultimate Bounds for Perturbed Systems

Throughout Part II of this thesis, we have dealt with the derivation of componentwise ultimate bounds

for perturbed systems. Deriving tight ultimate bounds for a perturbed system is important since ultimate

bounds provide a measure of system performance in steady state.

In Chapter 6, we have derived ultimate bound expressions for discrete-time and sampled-data per-

turbed systems, especially when the perturbations arise from quantisation. We have considered a setting

where each signal connecting controller and plant may have an independent scalar quantiser. Moreover,

each scalar quantiser may be of a different type and have different features. Regarding a quantised

variable as a perturbation on the corresponding unquantised variable turns the original quantised system

into a perturbed system, where the perturbation has a natural componentwise bound. We have therefore

derived ultimate bounds on the system states that explicitly take account of the componentwise struc-

ture of the perturbation bound. The ultimate bounds derived also have a componentwise form, and can

be systematically computed without having to, for example, select a suitable Lyapunov function for the

system. A very important feature of the derivations of this chapter is that they can directly accommodate

feedback schemes where quantisers of different characteristics and/or types affect different signals in

the same system. We have demonstrated the applicability and potential of the method by means of an
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example taken from recent literature on the topic of control over communication networks.

In Chapter 7, we have extended the results of Chapter 6 to deal with perturbed systems where the

perturbation bounds have more general componentwise forms. We have provided systematic methods to

obtain componentwise ultimate bounds on the system state for continuous- and discrete-time perturbed

systems. Since the perturbations are allowed to be bounded by state-dependent functions, the method

could then be applied to nonlinear systems by regarding them as perturbed linear systems. The derived

methods also provide an estimate of the region of attraction of the ultimate bound. We have shown by

means of examples that these methods may offer a simple alternative to the classical Lyapunov-based

analysis and may sometimes yield tighter bounds. In addition, the strengths of both methodologies can

be combined to obtain even tighter bounds and/or larger regions of attraction.

In summary, we have developed systematic methods to obtain componentwise ultimate bounds on

the system state for sampled-data, discrete- and continuous-time systems having componentwise per-

turbation bounds. The main features of these methods are their systematic nature and their flexibility

in dealing with componentwise-structured perturbation bounds. The reader is again referred to §1.3 in

Chapter 1 for a list of references to the specific contributions of this part of the thesis.

8.2 Future Research

8.2.1 Quantisation Density

In spite of the new results given in this thesis, the infimum density problem for multiple-input systems

still remains largely open. The results that we have derived help, we believe, to more clearly identify the

difficulties involved in solving the infimum density problem that are not manifested when dealing with a

single-input system. We next comment on these difficulties and reveal some future research directions.

Given a discrete-time single-input open-loop-unstable system

x(k + 1) = Ax(k) +Bu(k),

where the pair (A,B) is stabilisable, and a quadratic CLF V (x) = xTPx, we highlight the following

feature: the number of inputs of the system, namely m = 1, coincides with the minimum dimension of

the input space that a stabilising feedback can utilise. Consequently, any stabilising feedback is forced

to have values in a one-dimensional subspace of the input space, and this subspace coincides with the

system input space.

On the other hand, multiple-input systems do not necessarily have the feature mentioned in the

preceding paragraph. That is, the minimum dimension of the input space that a stabilising feedback

can utilise does not necessarily coincide with the number of system inputs. For instance, in §3.5.3 in

Chapter 3 we have seen an example of a system having 4 inputs, but where a subspace of the input space
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of dimension 3 was sufficient for stabilisation. The absence of such feature gives rise to the following

interesting question: can the infimum density always be achieved over quantisers that have levels in a

subspace of the input space of minimum dimension?

In Chapter 5, we have considered the special case where the minimum dimension of the input space

necessary for stabilisation is 1. We have shown that even in this simpler case, the answer to the above

question is still unknown. Further research is needed to investigate this issue in more detail.

All of the derivations of Part I of the thesis were performed for a given quadratic CLF. Obviously,

once the infimum density with respect to a given CLF was found, the next step would be to optimise the

result over all quadratic CLFs. This optimisation has already been performed for single-input system

but constitutes another topic for further research in the case of multiple-input systems.

More generally, future research topics may include the extension of results to systems involving

uncertainty. Different sorts of uncertain systems could be considered. Examples would be systems with

parametric uncertainty and systems having an additional perturbation term.

On a different level, we could consider different quantisation density measures. The quantisation

density measure that we have considered in this thesis takes account of the separation in the magnitudes

of the quantisation levels of a quantiser. We note that the density of a quantiser is not affected by the

angular separation of its levels. Therefore, we could consider other quantisation density measures that

might combine magnitude and angular separation of the quantisation levels of a quantiser. This would

lead to density optimisation problems that could, in principle, be completely different from the one

considered throughout this thesis.

8.2.2 Componentwise Ultimate Bounds for Perturbed Systems

The ultimate bounds derived in Chapter 6 are globally valid, as opposed to the ones derived in Chap-

ter 7. The derivation of conditions under which the bounds in the latter chapter are globally valid thus

constitutes a possible future research topic.

In Part II of this thesis, we have given examples where the application of our ultimate bound deriva-

tion methods yield acceptably tight bounds. However, our method is not guaranteed to provide bounds

that are tighter than those obtained via quadratic Lyapunov functions. An interesting future research

topic would thus be to investigate what type of systems cause our method to yield tighter bounds.

Application of our ultimate bound derivation method to nonlinear systems relies on regarding such

systems as perturbed linear systems, having state-dependent perturbation bounds that satisfy a mono-

tonicity condition. Note that useful information on the evolution of the system may be lost when bound-

ing nonlinear terms. Therefore, another interesting future research topic would be the enhancement of

our methods to exploit stabilising nonlinear terms. This enhancement could be achieved, perhaps, by

combining Lyapunov-function-based methods with our componentwise approach.



Appendix A

Proof of Theorems 3.10 and 4.7

Throughout this appendix, we will use the following notation. For any x ∈ R
n, x− and x+ denote the

vectors formed by the first n − ` and the last ` components of x, respectively, so that x = [xT− xT+]T .

The matrices D̃ ∈ R
n×` and Λ ∈ R

n×n will be expressed as

D̃ =




D̃−

D̃+



 , Λ =




−Λ− 0

0 Λ+



 , (A.1)

where

D̃− ∈ R
n−`×`, Λ− = −diag(λ1, . . . , λn−`) ∈ R

n−`×n−`, Λ− > 0,

D̃+ ∈ R
`×`, Λ+ = diag(λn−`+1, . . . , λn) ∈ R

`×`, Λ+ > 0.

Note that ` = 1 for Theorem 4.7. For future reference, note that (A.1) implies

−D̃T
−Λ−1

− D̃− + D̃T
+Λ−1

+ D̃+ = D̃TΛ−1D̃. (A.2)

First, we need to prove the following five claims, which are used throughout this appendix.

Claim 1 Suppose that D̃+ is nonsingular and let p̃ ∈ P̃ . Then, p̃ ∈ X̃(u) if and only if

p̃T−Np̃− + vT p̃− + ãT D̃−1
+ Λ+D̃

−T
+ ã+ uTHu < 0, (A.3)

where

N , −Λ− + D̃−D̃
−1
+ Λ+D̃

−T
+ D̃T

−, (A.4)

vT , −2 ãT D̃−1
+ Λ+D̃

−T
+ D̃T

−. (A.5)

Also, p̃ ∈ X̃0(u) if and only if (A.3) holds replacing ‘<’ by ‘≤’.

Proof of Claim 1. From (3.29), p̃ ∈ X̃(u) if and only if

p̃T Λp̃+ uTHu < 0. (A.6)
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Since by assumption D̃+ is nonsingular and p̃ ∈ P̃ , then D̃T p̃ = ã, and using (A.1) it follows that

p̃+ = D̃−T
+

(

ã− D̃T
−p̃−

)

. (A.7)

Using (A.1), and substituting (A.7) into (A.6) yields

− p̃T− Λ−p̃− +
(

ãT − p̃T− D̃−
)

D̃−1
+ Λ+D̃

−T
+

(

ã− D̃T
−p̃−

)

+ uTHu < 0, (A.8)

The proof of the first part follows straightforwardly from (A.8). The proof for the case p̃ ∈ X̃0(u)

follows identical steps, replacing ‘<’ by ‘≤’ in (A.6) and (A.8). This concludes the proof of Claim 1.

�

Claim 2 Suppose that P̃ ⊂ X̃0(u). Then, D̃+ is nonsingular.

Proof of Claim 2. For a contradiction, assume that D̃+ is singular. Then, there exists p̃+ 6= 0 such that

D̃+p̃+ = 0. Since D̃ has linearly independent columns by assumption, note that P̃ is nonempty. Then,

let q̃ ∈ P̃ and consider, for all α ∈ R, the points

rα , α




0

p̃+



+ q̃.

Note that rα ∈ P̃ and hence rα ∈ X̃0(u) for all α ∈ R. We have, using (A.1),

rTαΛrα = p̃T+ Λ+p̃+ α
2 + 2[0 p̃T+]Λq̃ α+ q̃ T Λq̃,

which is a quadratic polynomial in α, whose leading coefficient, namely p̃ T+ Λ+p̃+, is positive. Thus,

we can make rTαΛrα as large as desired by selecting α such that |α| is big enough. In particular, we

can find some α′ ∈ R, such that rTα′Λrα′ > −uTHu. Hence, we have rTα′Λrα′ + uTHu > 0 and thus

rα′ /∈ X̃0(u), contradicting the fact that rα ∈ X̃0(u) for all α ∈ R. This concludes the proof of Claim 2.

�

Claim 3 Suppose that P̃ ⊂ X̃0(0). Then, ã = 0.

Proof of Claim 3. By Claim 2, D̃+ is nonsingular. Then, the point p̃ = [0 (D̃−T
+ ã)T ]T satisfies p̃ ∈ P̃

and hence p̃ ∈ X̃0(0). From (3.30), p̃ must satisfy p̃T Λp̃ ≤ 0. Note [see (A.1)] that p̃T Λp̃ =

ãT D̃−1
+ Λ+D̃

−T
+ ã ≥ 0 because D̃−1

+ Λ+D̃
−T
+ > 0 since Λ+ > 0 and D̃+ is nonsingular. Then,

ãT D̃−1
+ Λ+D̃

−T
+ ã = 0, which implies that ã = 0, proving Claim 3. �

Claim 4 Suppose that D̃+ is nonsingular and consider the matrix N defined in (A.4). Then,

1. N < 0 if and only if D̃TΛ−1D̃ > 0.
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2. N ≤ 0 if and only if D̃TΛ−1D̃ ≥ 0.

Proof of Claim 4. Using (A.4), we have

N < 0 ⇔ −Λ− + D̃−D̃
−1
+ Λ+D̃

−T
+ D̃T

− < 0.

Recall that Λ−,Λ+ > 0. Hence,

N < 0 ⇔ −In−` + Λ
−1/2
− D̃−D̃

−1
+ Λ

1/2
+ Λ

1/2
+ D̃−T

+ D̃T
−Λ

−1/2
− < 0

⇔ −I` + Λ
1/2
+ D̃−T

+ D̃T
−Λ

−1/2
− Λ

−1/2
− D̃−D̃

−1
+ Λ

1/2
+ < 0

⇔ −Λ−1
+ + D̃−T

+ D̃T
−Λ

−1/2
− Λ

−1/2
− D̃−D̃

−1
+ < 0

⇔ −D̃T
+Λ−1

+ D̃+ + D̃T
−Λ−1

− D̃− < 0

⇔ −D̃TΛ−1D̃ < 0 ⇔ D̃TΛ−1D̃ > 0,

where we have used (A.2). This proves part 1. The proof of part 2 follows identical steps, replacing ‘<’

by ‘≤’ and ‘>’ by ‘≥’. This concludes the proof of Claim 4. �

Claim 5 Suppose that D̃+ is nonsingular and consider N and v as defined in (A.4) and (A.5), respec-

tively. Suppose that N < 0. Then,

max
x∈Rn−`

xTNx+ vTx+ ãT D̃−1
+ Λ+D̃

−T
+ ã = ãT

(

D̃TΛ−1D̃
)−1

ã. (A.9)

Proof of Claim 5. Since N < 0, then xTNx+ vTx is maximised at the unique point where its gradient

vanishes. It is then easy to check that

max
x∈Rn−`

xTNx+ vTx = −1

4
vTN−1v. (A.10)

From (A.4) and using a matrix inversion formula, we have

−N−1 = Λ−1
− + Λ−1

− D̃−
(

D̃TΛ−1D̃
)−1

D̃T
−Λ−1

− , (A.11)

where we have used (A.2). Substituting (A.5) and (A.11) into (A.10) yields

− 1

4
vTN−1v = ãT D̃−1

+ Λ+D̃
−T
+ D̃T

−Λ−1
− D̃−D̃

−1
+ Λ+D̃

−T
+ ã

+ ãT D̃−1
+ Λ+D̃

−T
+ D̃T

−Λ−1
− D̃−

(

D̃TΛ−1D̃
)−1

D̃T
−Λ−1

− D̃−D̃
−1
+ Λ+D̃

−T
+ ã. (A.12)

Note that D̃−1
+ Λ+D̃

−T
+ = (D̃T

+Λ−1
+ D̃+)−1 and hence, using (A.2),

D̃T
−Λ−1

− D̃−D̃
−1
+ Λ+D̃

−T
+ =

(

D̃T
+Λ−1

+ D̃+ − D̃TΛ−1D̃
)

D̃−1
+ Λ+D̃

−T
+

= I` −
(

D̃TΛ−1D̃
)

D̃−1
+ Λ+D̃

−T
+ . (A.13)

The result then follows by substituting (A.13) into (A.12) and adding the term ã T D̃−1
+ Λ+D̃

−T
+ ã. �
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Proof of Theorem 3.10

Proof of Theorem 3.10 part 1

Necessity. Note that P̃ \{0} ⊂ X̃(0) implies that P̃ ⊂ X̃0(0) [see (3.30)]. Then, Claim 3 proves (3.35).

By Claim 2, D̃+ is nonsingular and hence (A.7) holds for all p̃ ∈ P̃ . Since ã = 0, from (A.7) it follows

that p̃ = 0 if and only if p̃− = 0. Also, for any p̃− ∈ R
n−`, there exists p̃+ ∈ R

` such that p̃ ∈ P̃ .

Using Claim 1 and setting ã = 0 and u = 0 in (A.3) and (A.5), we have that the expression

p̃T−Np̃− (A.14)

is negative for any nonzero p̃− ∈ R
n−` and zero for p̃− = 0, whence N < 0. Then, (3.34) follows from

Claim 4, concluding the necessity part of the proof.

Sufficiency. Since D̃TΛ−1D̃ = −D̃T
−Λ−1

− D̃− + D̃T
+Λ−1

+ D̃+ > 0 and Λ− > 0, then D̃+ is non-

singular. Then Claim 4 shows that N < 0, and (A.14) is negative for all nonzero p̃− ∈ R
n−`, whence

Claim 1 proves that P̃ \ {0} ⊂ X̃(0). This concludes the proof of part 1.

Proof of Theorem 3.10 part 2

We begin by proving that u 6= 0. For a contradiction, assume that u = 0. Then, P̃ ⊂ X̃(0) ⊂ X̃0(0).

Claim 3 then proves that ã = 0, whence 0 ∈ P̃ , implying that 0 ∈ X̃(0). But (3.29) shows that this is a

contradiction and thus we have proved that u 6= 0.

Since P̃ ⊂ X̃(u) ⊂ X̃0(u), Claim 2 shows that D̃+ is nonsingular. For a contradiction, suppose that

the matrix N defined in (A.4) satisfies N 6≤ 0. Note that N is symmetric and hence all its eigenvalues

are real. Since N 6≤ 0, it has a positive eigenvalue. Let µ denote a positive eigenvalue of N and let

w 6= 0 satisfy Nw = µw and wTw = 1. By (A.7) and Claim 1, we have that (A.3) holds for all

p̃− ∈ R
n−`. In particular, for p̃− = αw, for any α ∈ R, we have

µα2 + vTwα+ ãT D̃−1
+ Λ+D̃

−T
+ ã+ uTHu < 0. (A.15)

This is a contradiction since the left-hand side of (A.15) is a quadratic polynomial in α with leading

coefficient µ > 0 and hence we can always find α ∈ R so that (A.15) is not satisfied. Therefore, we

have shown by contradiction that N ≤ 0 and using Claim 4 we establish (3.36). This concludes the

proof of part 2.

Proof of Theorem 3.10 part 3

Note that D̃TΛ−1D̃ > 0 implies that D̃+ is nonsingular and then (A.7) holds for all p̃ ∈ P̃ . Also,

Claim 4 shows that the matrix N defined in (A.4) satisfies N < 0.
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Necessity. By Claim 1 and (A.7), (A.3) holds for all p̃− ∈ R
n−`. Since N < 0, then the supremum

of the left-hand side of (A.3) over all p̃− ∈ R
n−` is a maximum and by (A.3) is negative. Using Claim 5,

then

ãT
(

D̃TΛ−1D̃
)−1

ã+ uTHu < 0, (A.16)

which is equivalent to (3.37). This concludes the necessity part of the proof.

Sufficiency. By (3.37), (A.16) holds. From (A.16) and Claim 5, we have

max
x∈Rn−`

xTNx+ vTx+ ãT D̃−1
+ Λ+D̃

−T
+ ã+ uTHu < 0. (A.17)

Hence, (A.3) holds for all p̃− ∈ R
n−` and then for any p̃ ∈ P̃ , Claim 1 shows that also p̃ ∈ X̃(u),

proving that P̃ ⊂ X̃(u). This concludes the proof of part 3.

Proof of Theorem 3.10 part 4

The proof of part 4 is identical to that of part 3, replacing ‘<’ by ‘≤’ in (A.16) and (A.17).

The proof of Theorem 3.10 is now complete.

Proof of Theorem 4.7

Note that the assumptions of Theorem 4.7 are a special case of those of Theorem 3.10, with ` = m = 1.

We will thus utilise Claims 1 to 5 with D̃ = d̃ ∈ R
n, D̃+ = d̃+ ∈ R and D̃− = d̃− ∈ R

n−1. Also, note

that Λ+ = λn ∈ R.

Proof of Theorem 4.7 part 1

Since d̃
T

Λ−1d̃ = − d̃
T

− Λ−1
− d̃− + λ−1

n d̃
2

+ = 0, d̃ 6= 0, Λ− > 0, and λn > 0, then d̃+ 6= 0. Then,

Claim 4 shows that the matrix N in (A.4) satisfies N ≤ 0.

Necessity. Note that N necessarily has one zero eigenvalue or else N < 0, and Claim 4 would

establish that d̃
T

Λ−1d̃ > 0, contradicting the assumption. Therefore, let w ∈ R
n−1 satisfy w 6= 0 and

Nw = 0. For every α ∈ R, let p̃− = αw, and let p̃+ satisfy (A.7), so that p̃ ∈ P̃ . Since P̃ ⊂ X̃(u) and

D̃+ = d̃+ 6= 0, then Claim 1 shows that (A.3) holds. From (A.3) and since p̃− = αw and Nw = 0,

then

αvTw + d̃
−2

+ λnã
2 +Hu2 < 0,

for all α ∈ R. Therefore, vTw = 0. From (A.5), then either ã = 0 or d̃
T

− w = 0. From (A.4), we have

Nw = −Λ−w + λn d̃
−2

+ d̃− d̃
T

− w. (A.18)

Since Λ− > 0, w 6= 0 and Nw = 0, it follows from (A.18) that d̃
T

− w 6= 0. Hence, ã = 0.
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Sufficiency. Since N ≤ 0, u 6= 0 and H < 0, then

p̃T−Np̃− +Hu2 < 0 (A.19)

for all p̃− ∈ R
n−1. Since ã = 0, then v in (A.5) satisfies v = 0. Therefore, given any p̃ ∈ P̃ , then p̃−

satisfies (A.19), and since v = 0 and ã = 0, then p̃− also satisfies (A.3). Then, using Claim 1 we show

that given any p̃ ∈ P̃ , then p̃ ∈ X̃(u), establishing that P̃ ⊂ X̃(u).

Proof of Theorem 4.7 part 2

Necessity. We first establish that if there exists p̃ ∈ P̃, p̃ /∈ X̃(u) and P̃ \ {p̃} ⊂ X̃(u), then p̃ satisfies

(4.18). Choose a nonzero z ∈ R
n such that d̃

T
z = 0 and consider the line L , {y ∈ R

n : y =

αz + p̃, for some α ∈ R}. Note that p̃ ∈ L ⊂ P̃ . Since P̃ \ {p̃} ⊂ X̃(u) and p̃ /∈ X̃(u), we have

yTΛy +Hu2 < 0 for all y ∈ L \ {p̃} and p̃T Λp̃+Hu2 ≥ 0. Therefore,

zTΛzα2 + 2zTΛp̃α+ p̃T Λp̃+Hu2 < 0, (A.20)

only if α ∈ R \ {0}. Since the left-hand side of (A.20) is a continuous function of α, it follows that

p̃T Λp̃+Hu2 = 0, proving (4.18).

Hence, it follows that P̃ ⊂ X̃0(u) and Claim 2 shows that d̃+ 6= 0. Then, from Claim 1, p̃− is the

only point in R
n−1 that does not satisfy (A.3) and from Claim 1, we have

p̃T−Np̃− + vT p̃− + λn d̃
−2

+ ã 2 +Hu2 = 0. (A.21)

Therefore, it follows that p̃− is the unique maximiser, over R
n−1, of the left-hand side of (A.3) and

(A.21). Then, N must be negative definite and Claim 4 establishes (4.16). We have

max
x∈Rn−1

xTNx+ vTx+ λn d̃
−2

+ ã 2 +Hu2 = 0, (A.22)

and from Claim 5,
ã 2

d̃
T

Λ−1d̃
+Hu2 = 0. (A.23)

Then (4.17) follows by solving for ã 2 and recalling (4.15). This concludes the necessity proof.

Sufficiency. By assumption, d̃
T

Λ−1d̃ > 0, which implies that d̃+ 6= 0. Then, Claim 4 proves that

N < 0 and Claim 5 shows that

max
x∈Rn−1

xTNx+ vTx+ λn d̃
−2

+ ã 2 =
ã 2

d̃
T

Λ−1d̃
= −Hu2, (A.24)

where we have used (4.17) and (4.15). Therefore,

max
x∈Rn−1

xTNx+ vTx+ λn d̃
−2

+ ã 2 +Hu2 = 0. (A.25)
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Since N < 0, (A.25) has only one maximiser, which we denote x̄. The expression

xTNx+ vTx+ λn d̃
−2

+ ã 2 +Hu2 (A.26)

is negative for all x ∈ R
n−1 \ {x̄} and is equal to zero only when x = x̄. Since d̃+ 6= 0, we can always

find p̃ ∈ P̃ such that p̃− = x̄ and also p̃ is unique [see (A.7)]. By Claim 1 then p̃ /∈ X̃(u). For any

y ∈ P̃ , y 6= p̃, expression (A.26) is negative for x = y− and Claim 1 proves that y ∈ X̃(u). The proof

of Theorem 4.7 is now complete.
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