
Chapter 8

Spatial H∞ control

In this chapter, we will describe a controller design framework for structural

vibration control that is based on the spatial H∞ norm concept. The concept

was originally introduced in [MPP97]. We use the concept to design a spatial H∞

controller for vibration control of smart structures. In particular, we implement

the controller on a piezoelectric laminate beam to demonstrate its effectiveness

in minimizing structural vibration [HM01b, HM02a]. The controller is designed

to minimize the spatial H∞ norm of the closed-loop system. Minimizing the

spatial H∞ norm of the system will ensure vibration suppression over the entire

structure in a spatially-averaged sense.

8.1 Spatial H∞ control of flexible structures

Consider a typical disturbance rejection problem for flexible structures as in

Figure 7.1. The spatial H∞ controller is developed to reduce the effect of dis-

turbance w on the entire structure.

A spatially distributed LTI dynamical system is again defined as:

˙̄x(t) = Ax̄(t) + B1w(t) + B2u(t)

y(t, r) = C1(r)x̄(t) + D11(r)w(t) + D12(r)u(t)

Vs(t) = C2x̄(t) + D21w(t) + D22u(t) (8.1)
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where all parameters are defined in (7.1).

The spatial H∞ control problem is to design a controller

ẋk(t) = Akxk(t) + BkVs(t)

u(t) = Ckxk(t) + DkVs(t) (8.2)

such that the closed-loop system satisfies

inf
K∈U

sup
w∈L2[0,∞)

J∞ < γ2 (8.3)

where U is the set of all stabilizing controllers and

J∞ =

∫∞
0

∫
R y(t, r)TQ(r)y(t, r)drdt
∫∞
0 w(t)T w(t)dt

(8.4)

where Q(r) is a spatial weighting function and r ∈ R.

The numerator in (8.4) is the weighted spatial H2 norm of signal y as in

Definition 3.3. Therefore, J∞ can be interpreted as the ratio of the spatial

energy of the system output to the energy of its input. The control problem is

depicted in Figure 8.1.
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Figure 8.1: Spatial H∞ control problem

We can solve the spatial H∞ control problem by noticing that it is equivalent

to a standard H∞ control problem with

J∞ =

∫∞
0 ỹ(t)T ỹ(t)dt
∫∞
0 w(t)Tw(t)dt

. (8.5)
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The representation in (8.5) can be obtained by representing y in (8.1) as:

y(t) = [C1(r) D11(r) D12(r)]




x̄

w

u




. (8.6)

Hence, it can be shown that

ỹ(t)T ỹ(t) =
∫

R
y(t, r)T Q(r) y(t, r)dr

=
[
x̄T wT uT

]
ΓT Γ




x̄

w

u




(8.7)

where Γ is a matrix that satisfies

ΓT Γ =
∫

R




C1(r)
T

D11(r)
T

D12(r)
T




Q(r) [C1(r) D11(r) D12(r)] dr. (8.8)

The above problem is then equivalent to a standard H∞ control problem for

the following system:

˙̄x(t) = Ax̄(t) + B1w(t) + B2u(t)

ỹ(t) = Π x̄(t) + Θ1w(t) + Θ2u(t)

Vs(t) = C2x̄(t) + D21w(t) + D22u(t) (8.9)

where [Π Θ1 Θ2] = Γ. If the disturbance w is assumed to enter through

the actuators as shown in Figure 7.1, then D21 = D22, D11(r) = D12(r) and

B1 = B2.

The system in (8.9) can be solved using a standard H∞ control technique

[ZDG96, PAJ91]. The H∞ control problem associated with the system described

in (8.9) is non-singular. The non-singular system is obtained because of the

existence of feedthrough terms from the disturbance to the measured output and

from the control signal to the performance output. Therefore, the advantage
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of adding feedthrough terms to correct the model is two-fold. Without the

feedthrough terms, the resulting H∞ control problem would be singular.

Similar to the case of spatial H2 control, a weight on the control signal may

be required to avoid excessive controller gain. It should be noted that the term

Θ2 in (8.9) does not represent a physical weight on the control signal since it

represents the effect of truncated modes on the in-bandwidth dynamics of the

system. Thus, the system (8.9) can be modified by introducing a weight on the

control signal:

˙̄x(t) = Ax̄(t) + B1w(t) + B2u(t)

ŷ(t) =




Π

0


 x̄(t) +




Θ1

0


w(t) +




Θ2

R


 u(t)

Vs(t) = C2x̄(t) + D21w(t) + D22u(t) (8.10)

where R is a weighting matrix with compatible dimensions.

Therefore there is a compromise between the controller effort with respect

to the degree of vibration reduction that can be achieved. Adding this control

weight can be shown to be equivalent to adding a term
∫∞
0 u(t)T RT Ru(t)dt to

the numerator of the cost function J∞ in (8.4).

8.2 Spatial H∞ control of a piezoelectric lami-

nate beam

We will design and implement the spatial H∞ control method to minimize vi-

bration of a piezoelectric laminate beam. The piezoelectric laminate beam in

Chapters 6 and 7 is used in the experiments. We attempt to control the first

six flexural modes of the beam, so only the first six modes need to be included

in our model. The effect of high frequency dynamics is accounted for by adding

feedthrough terms in the model.



Chapter 8. Spatial H∞ control 192

The models used here are similar to those used in spatial H2 control in Chap-

ter 7. The transfer function from w and u to the collocated sensor voltage Vs

is

ĜV s(s) =
N∑

i=1

ΥiPi

s2 + 2ζi ωi s + ω2
i

+ KVs
(8.11)

where Υi = Ω1Ψi1 and Pi = K1Ψi1 .

The transfer function from w and u to the beam transverse deflection y is

Ĝr(s, r) =
N∑

i=1

φi(r) Pi

s2 + 2ζi ωi s + ω2
i

+
Na∑

i=N+1

Kopt
ri φi(r). (8.12)

Since we only want to control the first six modes of the beam, we use N = 6.

Thus, the order of the spatial H∞ controller will be 12. From experiments, the

feedthrough term in (8.11) is D21 = D22 = KVs
= 0.033. Unlike in Section 7.2,

we use the optimal feedthrough term that is based on the spatial H∞ approach

(4.19):

Kopt
ri =

1

2

(
1

ω2
i

+
1

ω2
i − ω2

co

)
Pi (8.13)

where ωco ∈ (ωN , ωN+1) = 795.8 Hz. The feedthrough term is calculated by

considering modes N + 1 to Na = 200 and assuming that the system damping

is small. The spatial H∞ case is different from the spatial H2 case since we do

not need to add a second-order term to absorb the feedthrough term into the

system dynamics.

The system in (8.1) can be described with

A =




0 I

A21 A22




where

A21 = −diag(ω2
1 . . . ω2

N)

A22 = −2 diag(ζ1ω1 . . . ζNωN)
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and

B1 = B2 = K1 [0 · · · 0 Ψ11 · · · ΨN1]
T

C1(r) = [φ1(r) · · · φN(r) 0 · · · 0]

C2 = Ω1 [Ψ11 · · · ΨN1 0 · · · 0]

D11(r) = D12(r) =
Na∑

i=N+1

Kopt
ri φi(r)

D21 = D22 = KVs
= 0.033. (8.14)

The spatial weighting function Q(r) is set equal to one, which means that

all points along the beam are weighted equally. Based on (8.8), the perfor-

mance output ŷ in (8.10) is obtained using the orthogonality property of the

eigenfunctions and realizing that D11(r) = D12(r):

Π =




IN×N 0N×N

0N×N 0N×N

01×N 01×N




Θ1 = Θ2 =




02N×1

(∑Na

k=N+1(K
opt
ri )2

) 1
2


 (8.15)

where the dimensions of each matrix are described accordingly. The scalar

weighting factor R can then be determined to find a controller with sufficient vi-

bration reduction performance and robustness. Matlab µ-Analysis and Synthesis

Toolbox was used to calculate our spatial H∞ controller based on the system in

(8.10). We used R = 4.78 × 10−7 and obtained the solution γ2 = 9.6 × 10−6.

8.3 Experimental implementation

The experimental set-up and apparatus are similar to the those in the two previ-

ous chapters (Figure 6.8) whose details can be seen in Chapter 6. The sampling

frequency was set at 20 KHz, while the cut-off frequencies at 3 KHz for the two

low-pass filters were set at 3 KHz.

Our simulation and experimental results are presented in the following. The

frequency response of the controller is shown in Figure 8.2. Similar to the
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Figure 8.2: The frequency response of the controller (input voltage to output

voltage [V/V])



8.3 Experimental implementation 195

100 200 300 400 500 600 700
−65

−60

−55

−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

Frequency [Hz]

M
ag

ni
tu

de
 [d

B
]

closed loop
open loop  

(a) simulation

100 200 300 400 500 600 700
−65

−60

−55

−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

Frequency [Hz]

M
ag

ni
tu

de
 [d

B
]

closed loop
open loop  

(b) experiment

Figure 8.3: Simulation and experimental frequency responses (actuator voltage

to sensor voltage [V/V]) (magnitude)
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Figure 8.4: Simulation and experimental frequency responses (actuator voltage

to sensor voltage [V/V]) (phase)
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two previous chapters, the controller has a resonant nature. Figures 8.3 and 8.4

compare frequency responses of the open-loop and closed-loop systems (actuator

voltage to sensor voltage) for both simulation and experimental results. The

performance of the controller applied to the real system is as expected from the

simulation.

The robustness of the controller can be observed from the loop gain of fre-

quencies up to 1.6 KHz. The plots from simulation and experiment are shown

in Figures 8.5 and 8.6 respectively. Our simulation gives a gain margin of 11.3

dB at 1.55 KHz and a phase margin of 89.0o at 79.3 Hz. The experiment gives a

gain margin of 10.7 dB at 1.55 KHz, and a phase margin of 87.1o at 79.6 Hz. In

general, the stability margins predicted by the simulation correspond well with

the experiments. Some reduction of the stability margins in the real system is

expected because of the phase delay associated with the digital controller and

filters used in the experiment as seen in Figure 8.6. Other factors such as model

uncertainties may also affect the stability margins.

Figures 8.7 and 8.8 show the simulated spatial frequency responses of the

uncontrolled beam and controlled beam respectively. Based on experiments,

we can also obtain the spatial frequency responses for the uncontrolled beam

and controlled beam shown in Figures 8.9 and 8.10 respectively. The vibration

due to the first six modes has been reduced by the spatial H∞ controller ac-

tion. The reduction of resonant responses of modes 1 − 6 are approximately

27, 30, 19.5, 19.5, 15.5 and 8 dB respectively. Thus, our spatial H∞ controller

minimizes resonant responses of several vibration modes over the entire struc-

ture, which is desirable for vibration suppression purposes.

To demonstrate the controller effect on the spatial H∞ norm of the system,

we plotted the pointwise H∞ norm of the controlled and uncontrolled beam

as a function of r in Figure 8.11. The experimental and simulation results are

reasonably close. It also shows the effect of our spatial H∞ controller in reducing

the beam vibration. The H∞ norm of the entire beam has been reduced by the

action of the controller in a more uniform manner spatially. The highest H∞
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Figure 8.5: Loop gain [V/V]: simulation and experiment (magnitude)
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Figure 8.6: Loop gain [V/V]: simulation and experiment (phase)
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Figure 8.7: The simulated spatial frequency response: actuator voltage to beam

deflection [m/V] (open loop)
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Figure 8.8: The simulated spatial frequency response: actuator voltage to beam

deflection [m/V] (closed loop)
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Figure 8.9: The experimental spatial frequency response: actuator voltage to

beam deflection [m/V] (open loop)
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Figure 8.10: The experimental spatial frequency response: actuator voltage to

beam deflection [m/V] (closed loop)
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Figure 8.11: Simulated and experimental H∞ norm plots (spatial control)
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norm of the uncontrolled beam has been reduced by approximately 97%, from

3.6 × 10−5 to 1.1 × 10−6.

To demonstrate the effect of the controller in time domain, we performed

the following experiments. We applied a pulse signal of 100 V with duration

of 15 s through the piezoelectric actuator to simulate an external disturbance.

The velocity response of the beam, at a point 80 mm away from one end of the

beam, was observed using the PSV Laser Vibrometer. The velocity response

was filtered by a band-pass filter from 10 Hz to 750 Hz. The velocity response

is shown in Figure 8.12. The settling time of the velocity response has been

reduced considerably. The controlled response settled in about 0.5 seconds while

the uncontrolled response settled after 8 seconds.

Finally, we want to compare the performance of the spatial H∞ control with

that of the pointwise H∞ control. The following experiment was performed. A

pointwise H∞ controller was designed to minimize the H∞ norm of the transfer

function from disturbance w to y at the middle of the beam, i.e. r = 0.3 m. The

controller had a gain margin of 14.3 dB and a phase margin of 77.9o and was

implemented on the same beam using the set-up in Figure 6.8. Figure 8.13 shows

the plot of H∞ norm of the controlled and uncontrolled beam as a function of

r. The result shows the effectiveness of the pointwise control in local reduction

of the H∞ norm at and around r = 0.3 m. This is not surprising as the only

purpose of the controller is to minimize vibration at r = 0.3 m. As in the case

of pointwise H2 control, the pointwise H∞ controller only suppresses the odd

numbered modes since r = 0.3 m is a node for even numbered modes.

Comparing Figures 8.11 and 8.13, it can be concluded that the spatial H∞

controller has an advantage over the pointwise H∞ controller as it minimizes

the vibration throughout the entire structure.
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Figure 8.12: Vibration at a point 80 mm away from one end of the beam
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Figure 8.13: Simulated and experimental H∞ norm plots (pointwise control)
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8.4 Summary

Based on the concept of the spatial H∞ norm, we designed and implemented a

spatial H∞ controller for vibration control of smart structures. An experimental

implementation of the controller was done on a piezoelectric laminate beam.

The controller was obtained by solving a standard H∞ control problem for a

finite-dimensional system. It was observed that such a controller resulted in

suppression of vibration of the entire structure by minimizing the spatial H∞

norm of the closed-loop system. Experiments demonstrated the effectiveness

of the developed controller in reducing structural vibration on a piezoelectric

laminate beam. We also showed that the spatial H∞ controller has an advantage

over the pointwise H∞ control in minimizing structural vibration of the entire

structure.




