
Chapter 7

Spatial H2 control

In this chapter, we discuss the controller design procedure that is based on the

spatial H2 norm concept discussed in Chapter 3. This spatial H2 controller

can be viewed as a natural extension of the standard H2 controller for spatially

distributed systems. In this case, the spatial information conveyed in the system

is incorporated in the controller design. Here, we extend the spatial H2 control

concept to smart structure systems. We will design and implement the spatial

H2 controller on a piezoelectric laminate beam [HM01a, HM02c].

The controller will be designed such that the spatial H2 norm of the closed-

loop system is minimized. This optimization procedure will guarantee vibration

suppression over the entire structure in a spatially-averaged sense. To solve

for the optimization, the spatial H2 control problem can be formulated as a

standard H2 control optimization problem. This allows a standard optimization

methodology to be used to obtain our spatial H2 controller. We will demonstrate

the effectiveness of the spatial H2 controller in suppressing vibration of the first

six flexural modes of a piezoelectric laminate beam.
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7.1 Spatial H2 control of flexible structures
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Figure 7.1: Control of flexible structures

Consider the flexible structure in Figure 7.1, where the actuators and sensors

used are assumed to be piezoelectric transducers bonded to the structure. How-

ever, the actuators and sensors are not necessarily collocated. A state-space

representation of such a spatially distributed LTI dynamical system is

˙̄x(t) = Ax̄(t) + B1w(t) + B2u(t)

y(t, r) = C1(r)x̄(t) + D11(r)w(t) + D12(r)u(t)

Vs(t) = C2x̄(t) + D21w(t) + D22u(t) (7.1)

where x̄ ∈ Rq contains the states, w ∈ Rm is the disturbance input, u ∈
Rm is the control input, Vs ∈ Rn is the measured output, y ∈ R × R is the

performance output and r ∈ R. For a flexible structure, y represents the spatial

displacement at time t at location r. The controller is designed to reduce the

effect of disturbance w on the entire structure. Here, the disturbance w is

assumed to enter through the actuator channels, i.e. D22 = D21, D11(r) = D12(r)
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and B1 = B2. However, a general case of disturbance can be dealt with in a

similar manner.

The feedthrough terms in (7.1) may be important for compensating for the

truncation error in the model as discussed in Chapter 4. This yields a system

that is not strictly proper, which can cause difficulties since the spatial H2

norm of the system has to be finite. To overcome this problem, we replace the

feedthrough terms in the performance output y (7.1) with a second-order out-of-

bandwidth term similar to that in Chapter 6. Typically for the above problem,

the second-order term has the form:

αc(r)

s2 + 2ζcωcs + ω2
c

where

αc(r)

ω2
c

= D11(r) = D12(r). (7.2)

Incorporating the second-order term into the original system, we obtain

˙̃x(t) = Ãx̃(t) + B̃1w(t) + B̃2u(t)

y(t, r) = C̃1(r)x̃(t)

Vs(t) = C̃2x̃(t) + D21w(t) + D22u(t) (7.3)

where x̃ consists of the original states of the plant x̄ and the states due to the

extra second-order term.

The spatial H2 control problem is to design a controller

ẋk(t) = Akxk(t) + BkVs(t)

u(t) = Ckxk(t) + DkVs(t) (7.4)
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such that the weighted spatial H2 norm of the closed-loop system

� Tyw(s, r) �2
2,Q =

1

2π

∫ ∞

−∞

∫

R
tr{Tyw(jω, r)∗Q(r)Tyw(jω, r)}drdω (7.5)

is minimized. Here, Q(r) is a spatial weighting function and Tyw is the closed-

loop transfer function from w to y. Q(r) can be used for emphasizing the region

where the vibration reduction is to be more concentrated.

From Theorem 3.1, the above control problem can be transformed into a

standard H2 control problem with the system:

˙̃x(t) = Ãx̃(t) + B̃1w(t) + B̃2u(t)

ỹ(t) = Γ x̃(t)

Vs(t) = C̃2x̃(t) + D21w(t) + D22u(t) (7.6)

where again D21 = D22 and Γ is any matrix that satisfies

ΓT Γ =
∫

R
C̃1(r)

T C̃1(r) dr. (7.7)

In practice, it might be necessary to include a control weight on the control

signal to avoid an excessive controller gain. Excessive gain may lead to reduction

of closed-loop robustness as well as other problems such as actuator saturation

and noise sensitivity. This issue is addressed by extending the previous system

(7.6) to include a weight factor R on the control signal:

˙̃x(t) = Ãx̃(t) + B̃1w(t) + B̃2u(t)

ŷ(t) =




Γ

0


 x̃(t) +




0

R


 u(t)

Vs(t) = C̃2x̃(t) + D21w(t) + D22u(t). (7.8)

A compromise has to be made between the level of vibration reduction and

controller gain by choosing a suitable R.
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Figure 7.2: Control of a flexible beam

We consider a particular application of the spatial H2 control to a simply-

supported beam with a collocated piezoelectric actuator/sensor pair (Figure

7.2). All the properties of the beam are similar to those described in Chapter 6

and can be seen in Table 4.2.

We concentrate on controlling the first six flexural modes of the beam. The

model from modal analysis is truncated to include the first six modes to obtain a

controller with a minimal order. Model correction is employed to compensate for

the truncation error as discussed in Chapter 4. Here, we consider the truncated

versions of GVs
(2.89) and G (2.83). The corrected models are

ĜV s(s) =
N∑

i=1

ΥiPi

s2 + 2ζi ωi s + ω2
i

+ KVs
(7.9)

where Υi = Ω1Ψi1, Pi = K1Ψi1 and

Ĝr(s, r) =
N∑

i=1

φi(r) Pi

s2 + 2ζi ωi s + ω2
i

+
Na∑

i=N+1

Kopt
ri φi(r). (7.10)

Here, N = 6 since we wish to find a controller of minimal order to control the

first six modes of the structure. Since the disturbance is assumed to enter the

system through the same channel as the controller, the transfer function from

w and u to the beam deflection y is Ĝr (7.10). Moreover, the transfer function

from w and u to the collocated sensor voltage Vs is ĜV s (7.9).
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We determine the feedthrough term in (7.9) from the experimental frequency-

response data. The value of D21 = D22 = KVs
is found to be 0.033 if the first six

modes are considered in the model. The feedthrough term is calculated based on

modes N+1 to Na = 200 to obtain a sufficient approximation to the feedthrough

term. Here, we use the optimal feedthrough term that is based on the spatial

H2 approach (4.16):

Kopt
ri =

1

2ωcoωi

ln
(

ωi + ωco

ωi − ωco

)
Pi (7.11)

where we assume the damping in the system is small and ωco ∈ (ωN , ωN+1) =

795.8 Hz. To incorporate this feedthrough term into the system, we add a

second-order term into the system as explained previously with ζc = 0.7 and

ωc = 1.91 KHz.

Hence, the system in (7.3) can be obtained with

Ã =




0(N+1)×(N+1) I(N+1)×(N+1)

Ã1(N+1)×(N+1)
Ã2(N+1)×(N+1)





where dimensions of each matrix are described above and

Ã1 = −diag(ω2
1 . . . ω2

N ω2
c)

Ã2 = −2 diag(ζ1ω1 . . . ζNωN ζcωc).

Further,

B̃1 = B̃2 = [0 · · ·0 0 K1Ψ11 · · ·K1ΨN1 1]T

C̃1(r) =
[
φ1(r) · · ·φN(r) ω2

c

Na∑

i=N+1

Kopt
ri φi(r) 0 · · · 0 0

]

C̃2 = Ω1 [Ψ11 · · ·ΨN1 0 0 · · ·0 0]

D21 = D22 = KVs
= 0.033. (7.12)

In this particular application, Q(r) = 1 since the entire beam is weighted

equally. Based on (7.7), the orthogonality property of the eigenfunctions φi

(3.6) can be used to calculate Γ for the performance output ŷ in (7.8):

Γ =




Γ̃(N+1)×(N+1) 0(N+1)×(N+1)

0(N+1)×(N+1) 0(N+1)×(N+1)



 (7.13)
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where Γ̃ = diag
(
1 . . . 1 ω2

c

(
ΣNa

i=N+1(K
opt
ri )2

) 1
2

)
.

An equivalent standard H2 control problem (7.8) is then used to determine the

optimal spatial H2 controller. Here, Vs is the output voltage from the piezoelec-

tric sensor, while u is the control input voltage applied to the actuating patch.

Matlab µ-Analysis and Synthesis Toolbox was used to calculate our spatial H2

controller.

7.3 Experimental implementation

The experimental set-up is similar to that in Chapter 6 and depicted in Fig-

ure 6.8. The apparatus was mounted on an optical table as shown in Figure 6.9.

The sampling frequency was set at 20 KHz, while the cut-off frequencies of the

two low-pass filters were set at 3 KHz.

The controller frequency response is shown in Figure 7.3. As expected, the

controller has a resonant nature because of the highly resonant nature of the

system. Figures 7.4 and 7.5 compare frequency responses of the open-loop and

closed-loop systems (actuator voltage to sensor voltage) for both simulation and

experimental results. The simulation and experimental results are reasonably

close. The results demonstrate that our model is sufficiently accurate. It can

be seen that the resonant responses of the first six modes are reduced by the

controller action.

The robustness properties of the resulting closed-loop system are demon-

strated in the following figures. Figures 7.6 and 7.7 compare the loop gain up to

1.6 KHz from simulation and experiment. Our simulation gives a gain margin

of 12.4 dB at 1.55 KHz and a phase margin of 88.4o at 78.5 Hz. The experiment

gives a gain margin of 15.7 dB at 1.22 KHz, and a phase margin of 87.0o at 79.1

Hz. The simulation prediction is reasonably close for the phase margin.
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Figure 7.3: The frequency response of the controller (input voltage to output

voltage [V/V])
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Figure 7.4: Simulation and experimental frequency responses (actuator voltage

to sensor voltage [V/V]) (magnitude)
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Figure 7.5: Simulation and experimental frequency responses (actuator voltage

to sensor voltage [V/V]) (phase)
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Figure 7.6: Loop gain [V/V]: simulation and experiment (magnitude)
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Figure 7.7: Loop gain [V/V]: simulation and experiment (phase)
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Figure 7.8: The simulated spatial frequency response: actuator voltage to beam

deflection [m/V] (open loop)

However, there is a phase delay introduced by the digital implementation and

filtering of the controller. This contributes to differences in the gain margin. In

general, the controller has sufficient stability margins to ensure the robustness

of the closed-loop system.

Figures 7.8 and 7.9 show the simulated spatial frequency responses of the

uncontrolled and controlled beam respectively. The experimental spatial fre-

quency responses of the uncontrolled beam are shown in Figure 7.10, while the

controlled beam is shown in Figure 7.11. It is observed that the resonant re-

sponses of the first six modes have been reduced over the entire beam due to the

controller action, which is as expected from the simulation (compare with Fig-

ures 7.8 and 7.9). The resonant responses of modes 1− 6 have been reduced by

approximately 25.5, 28.5, 18, 18, 14 and 7 dB respectively over the entire beam.

It may be asked what advantages the spatial H2 control has over the standard

H2 control for spatially distributed systems. To answer this question, we need
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Figure 7.9: The simulated spatial frequency response: actuator voltage to beam

deflection [m/V] (closed loop)
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Figure 7.10: The experimental spatial frequency response: actuator voltage to

beam deflection [m/V] (open loop)
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Figure 7.11: The experimental spatial frequency response: actuator voltage to

beam deflection [m/V] (closed loop)

to compare the performance of both control methods in achieving vibration

reduction for such systems. Based on our spatial H2 controller, we plotted the

simulated H2 norm of the controlled and uncontrolled beam as a function of r

in Figure 7.12 (a).

For a standard H2 control, the performance output y in (7.3) may imply a

structural deflection at a particular location r along the beam. This corresponds

to a pointwise H2 control since the controller minimizes the closed-loop transfer

function from w to y at a specific point on the beam (at location r). Therefore,

we designed a pointwise H2 controller by considering a particular location along

the beam, e.g. y at the middle of the beam with r = 0.3 m. The gain and phase

margins of the controller were 12.7 dB and 87.6o respectively. Based on this

pointwise controller, we also plotted H2 norm of the controlled and uncontrolled

beam as a function of r in Figure 7.12 (b).
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Figure 7.12: Simulated H2 norm plots
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Figure 7.12 (a) clearly demonstrates the effect of our spatial H2 controller

in reducing the beam vibration. It is obvious that the H2 norm of the entire

beam has been reduced in a more uniform manner. The highest H2 norm of the

uncontrolled beam has been reduced by approximately 69.5%, from 2.95× 10−5

to 9.0 × 10−6.

Meanwhile, Figure 7.12 (b) shows the effectiveness of the pointwise control in

local reduction of the H2 norm, especially at and around r = 0.3 m. This is as

expected since the purpose of this controller is to minimize vibration at r = 0.3

m. In fact, the pointwise controller only suppresses the odd numbered modes

since r = 0.3 m is a node for even numbered modes (for a simply-supported

beam). Comparing Figures 7.12 (a) and (b), it can be concluded that the spatial

H2 controller has an advantage over the pointwise H2 controller as it minimizes

the vibration throughout the entire structure.

However, the standard H2 control can be designed to perform better spatially.

This can be done by considering more points on the beam in the control design.

For this particular case, the performance output will be a vector consisting

of deflections y at several locations. However, this approach would lead to

a rather complicated control design problem. Based on our observation, the

spatial H2 control methodology provides a more natural way of including the

spatial information in the system.

Figure 7.13 shows the effectiveness of the controller in minimizing beam vi-

bration in time domain. A pulse signal of 100 V with duration of 15 s was

applied through the piezoelectric actuator. The velocity response at the middle

of the beam was observed using the PSV Laser Vibrometer. The velocity re-

sponse was filtered by a low-pass filter with a cut-off frequency of 750 Hz. The

settling time of the velocity response has been reduced by about 7 times due to

controller action.
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Figure 7.13: Vibration at the middle of the beam
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7.4 Summary

We extended the spatial H2 norm concept for vibration control of smart struc-

tures. In particular, we designed and implemented a spatial H2 controller to

minimize vibration of a piezoelectric laminate beam. The experiments demon-

strated the effectiveness of the controller in minimizing structural vibration. We

showed that the spatial H2 control has an advantage over the pointwise H2 con-

trol in minimizing the H2 norm across the structure. The methodology allows a

design for control of spatially distributed systems that is more convenient than

that of the standard H2 control.




