
Chapter 5

Optimal placement of actuators

and sensors

In the implementation of a controller, actuators and sensors are needed. The

locations of actuators and sensors over a structure determine the effectiveness

of the controller in controlling vibrations. If we wish to control a particular

vibration mode, we need to place actuators and sensors in locations with high

control and observation authority over that mode. In many cases of vibration

control, low frequency modes are considered to be important. Hence, we only

need to consider a certain number of modes in the placement of actuators and

sensors. This implies that we need to place actuators and sensors in locations

where the controllability and observability of some modes are sufficiently high.

Another issue to consider in the placement of actuators and sensors is the

control and observation spillover. In control design, only a number of low fre-

quency modes are of interest, so the high frequency modes are often neglected.

However, actuators or sensors may excite or observe some high frequency modes

that may damage the closed-loop stability and performance. If actuators or

sensors are placed at locations where they have large authority over some high

frequency modes, the spillover effect will be more significant. It is thus impor-

tant to place actuators or sensors at locations where one has less authority to

control or observe high frequency modes, so as to minimize the effect of spillover.
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In this chapter, the optimal placement of actuators and sensors based on the

notion of spatial H2 norm is discussed. Our approach is to treat the optimal

placement of actuators and sensors independently, and the optimization is also

independent of controllers to be used. This approach can be useful when more

than one controller type is to be tested on the structure and when it is impractical

to remove or replace the actuators and sensors used. Hence, different controllers

may be tested on the structure to compare their performances. In particular,

optimal placement of piezoelectric actuators and sensors over a plate structure

will be discussed.

5.1 Modelling of piezoelectric laminate plates
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Figure 5.1: A plate with the jth piezoelectric patch attached

Consider a thin uniform plate with dimensions of a × b × h as shown in Figure

5.1. In Chapter 2, the PDE for flexure vibration of thin plates was derived

(2.37):

ρh
∂2w

∂t2
+ D∇4w(x, y, t) =

∂2Mpx

∂x2
+

∂2Mpy

∂y2

where all parameters were defined in Section 2.1.4.

Suppose there are J actuators distributed over the plate. The right-hand-side

term of the PDE is the external moment per unit length that may be generated
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Figure 5.2: A plate section with piezoelectric patches attached

by piezoelectric actuators. The forcing term contributed by all actuators is

represented by

∂2Mpx

∂x2
+

∂2Mpy

∂y2
=

J∑

j=1

αjVaj(t) (5.1)

where Vaj is the input signal to the jth actuator. The term αj depends on the

properties and location of the jth actuator.

We now consider a particular case of using piezoelectric patches as actua-

tors. Consider J rectangular piezoelectric actuators attached to a rectangular

plate. All actuator patches are oriented in the same direction as the plate.

Now, the derivation for a one-dimensional case in Chapter 2 is extended to two-

dimensional structures [DFR91, FEN96]. Consider the j th piezoelectric actuator

of dimensions Lpx×Lpy ×hp in Figure 5.1. Let us assume that all the properties

described below belong to the jth actuator. Again, we assume negligible con-

tribution of patches to the overall mass and stiffness properties of the structure

since the patches are relatively thin.
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The free strains generated inside the patch due to applied voltage Vaj are

[FEN96, BSW96]

εpx =

(
d31

hp

)
Vaj(t)

εpy =

(
d32

hp

)
Vaj(t) (5.2)

where the piezoelectric charge constants along x and y axes are denoted by d31

and d32 respectively.

The strains acting on the structure are the bending strains, εx and εy, and

the free strains, εpx and εpy, as shown in Figure 5.2. The longitudinal stresses

acting inside the actuator in x and y directions, σpx and σpy, can be found from

Hooke’s law for plane stress:

σpx =
Ep

1 − ν2
p

(εx − εpx + ν(εy − εpy))

σpy =
Ep

1 − ν2
p

(εy − εpy + ν(εx − εpx)) (5.3)

where Ep and νp are the Young’s modulus and Poisson’s ratio of the actuator

respectively.

The longitudinal stresses inside the structure, σx and σy, also follow from

Hooke’s law:

σx =
E

1 − ν2
(εx + νεy)

σy =
E

1 − ν2
(εy + νεx) . (5.4)

In pure flexural cases, the strain distribution across the plate thickness is

linear, as shown in Figure 5.2, i.e. εx = αx z and εy = αy z. Here, αx and αy are

the strain gradients and z is the transverse distance from the neutral plane of

the plate (see Figure 5.2). These strain gradients can be determined from the

moment equilibrium equations below, assuming a perfect bonding between the

piezoelectric patch and the plate:
∫ h

2

−h
2

z σx dz +
∫ h

2
+hp

h
2

z σpx dz = 0

∫ h
2

−h
2

z σy dz +
∫ h

2
+hp

h
2

z σpy dz = 0. (5.5)
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We substitute (5.3) and (5.4) into the moment equilibrium equations (5.5).

The strain gradients are related to the free strains by

αx = κ εpx

αy = κ εpy (5.6)

where

κ =
12 Ep hp (hp + h)

24 D (1 − ν2
p) + Ep [(h + 2 hp)3 − h3]

. (5.7)
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Figure 5.3: Coordinates of the jth actuator patch

Suppose that the jth actuator patch is located at (x1j , y1j) and (x2j , y2j) as

shown in Figure 5.3. These two points correspond to the two opposite corner

points of the patch since the patch is rectangular in shape. Here, we consider

the case where d31j = d32j . The external moment per unit length generated by

the jth piezoelectric actuator can be obtained from the integrals in (5.5) using

(5.6):

Mpxj = Mpyj = Āj [H(x − x1j) − H(x − x2j)] ×

[H(y − y1j) − H(y − y2j)]Vaj(t) (5.8)
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where

Āj =
κjd31jD(1 + ν)

hpj

(5.9)

and H(·) is a step function.

The external moment generated by the actuators ∂2Mpxj/∂x2 and ∂2Mpyj/∂y2

can be obtained by differentiating the Mpxj and Mpyj expressions twice with re-

spect to x and y respectively. Hence, αj in (5.1) can be shown to be:

αj = Āj

{[
dδ(x − x1j)

dx
− dδ(x − x2j)

dx

]
×
[
H(y − y1j) − H(y − y2j)

]

+

[
H(x − x1j) − H(x − x2j)

]
×
[
dδ(y − y1j)

dy
− dδ(y − y2j)

dy

]}
.

(5.10)

The PDE for flexural vibration of thin plates (2.37) is now solved using the

modal analysis technique. The solution is in the form of

w(x, y, t) =
∞∑

m=1

∞∑

n=1

φmn(x, y) qmn(t). (5.11)

The eigenvalue problem is

D∇4φmn = ρh ω2
mnφmn. (5.12)

As mentioned previously, ωmn and φmn represent the natural frequency and

eigenfunction associated with mode (m, n) respectively. Since D and ρh are

constants, the eigenfunction φmn can be shown to have the following orthogo-

nality properties:

∫ b

0

∫ a

0
ρh φmn φpq dx dy = δmp δnq

∫ b

0

∫ a

0
D∇4φmn φpq dx dy = ω2

mn δmp δnq (5.13)

where δmp and δnq are Kronecker delta functions.

Here, the contribution of external moments from all J actuators is considered.

A set of ODE’s obtained from modal analysis is

ω2
mn qmn(t) + 2ζmn ωmn q̇mn(t) + q̈mn(t) =

J∑

j=1

∫ b

0

∫ a

0
φmn(x, y)αjdx dy Vaj(t)

(5.14)
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where ζmn is the damping term that is introduced into the system.

In this case, we can assume that the eigenfunction consists of separate func-

tions of x and y, such as in (2.65). Using the Dirac delta function property

(2.78), the generalized force for piezoelectric actuators is

J∑

j=1

ĀjΨmnjVaj(t)

where

Ψmnj =

[∫ y2j

y1j

∂φmn(x2j , y)

∂x
dy −

∫ y2j

y1j

∂φmn(x1j , y)

∂x
dy

]

+

[∫ x2j

x1j

∂φmn(x, y2j)

∂y
dx −

∫ x2j

x1j

∂φmn(x, y1j)

∂y
dx

]
. (5.15)

Applying Laplace transform to (5.14) and assuming zero initial conditions,

the transfer function from the actuator voltage Va(s) = [Va1(s) . . . VaJ(s)]T to

the plate deflection w(s, x, y) is

G(s, x, y) =
∞∑

m=1

∞∑

n=1

φmn(x, y) Pmn

ω2
mn + 2ζmn ωmn s + s2

(5.16)

where

Pmn =

[∫ b

0

∫ a

0
φmn(x, y)α1dxdy . . .

∫ b

0

∫ a

0
φmn(x, y)αJdxdy

]
. (5.17)

In particular, when piezoelectric actuators are used, then

Pmn =
[
Ā1Ψmn1 . . . ĀJΨmnJ

]
. (5.18)

5.1.1 Piezoelectric sensors

To observe vibrations of flexible structures, sensors are needed. Suppose there

are J sensors distributed over the structure. A general description for the j th

sensor output is given by

vj(t) =
∞∑

m=1

∞∑

n=1

(
Cmnj qmn(t) + C̄mnj q̇mn(t)

)
(5.19)

where Cmnj and C̄mnj depend on the properties and location of the sensor.
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Consider the case when piezoelectric sensors are used [FEN96, LM90]. The

jth piezoelectric sensor is attached on the plate. We assume that all properties

below belong to the sensor. The piezoelectric sensor is placed as shown in Figure

5.2. The electric charge inside the piezoelectric patch can be related to the strain:

qp(t) =
k2

31

g31

εx +
k2

32

g32

εy (5.20)

where k31 and k32 are the electromechanical coupling factors in x and y directions

respectively. Also, g31 and g32 are the voltage constants in x and y directions.

The contribution of the shear strain to the total electric charge is ignored since

the axes of the sensor coincide with the geometrical axes of the plate, i.e. the

sensor and the plate have similar orientation.

The strains, εx and εy, can be obtained from (2.24). In this case, z is the

average distance from the neutral plane to the mid-plane of the sensor patch,

i.e. z = −(h + hp)/2. Hence,

εx =
∂u

∂x
=

h + hp

2

∂2w

∂x2

εy =
∂v

∂y
=

h + hp

2

∂2w

∂y2
. (5.21)

Incorporating the strain expression in (5.21) into (5.20) and integrating the

electric charge across the area of the sensor gives the induced voltage of the j th

sensor:

Vsj(t) =
h + hpj

2Cj

∫ y2j

y1j

∫ x2j

x1j

[
k2

31j

g31j

∂2w

∂x2
+

k2
32j

g32j

∂2w

∂y2

]
dx dy (5.22)

where Cj is the piezoelectric capacitance.

After substituting the modal analysis solution (5.11), Vsj can be shown to be:

Vsj(t) =
h + hpj

2Cj

∞∑

m=1

∞∑

n=1

{
k2

31j

g31j

[∫ y2j

y1j

∂φmn(x2j , y)

∂x
dy

−
∫ y2j

y1j

∂φmn(x1j , y)

∂x
dy

]
+

k2
32j

g32j

[∫ x2j

x1j

∂φmn(x, y2j)

∂y
dx

−
∫ x2j

x1j

∂φmn(x, y1j)

∂y
dx

]}
qmn(t). (5.23)

The above expression shows how the placement of a piezoelectric sensor affect

the sensitivity in sensing over a particular mode.
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5.2 Optimal placement of actuators

This section discusses the optimization methodology for actuator placement of

spatially distributed systems. The idea is to place actuators at locations where

they provide desirable control authority, in a spatial sense, over the structure.

For this purpose, we will define some relevant performance measures.

5.2.1 Spatial and modal controllability measures

Consider a thin plate with J actuators attached to it, whose transfer function

is given in (5.16). G describes the dynamic response of the plate due to the

excitation by J actuators.

The spatial H2 norm of G can be calculated by taking advantage of the

orthogonality property of the eigenfunctions in (5.13) [MR99, MF98], following

Theorem 3.2:

� G(s, x, y) �2
2 =

1

2π

∫ ∞

−∞

∫ b

0

∫ a

0
tr{G(jω, x, y)∗G(jω, x, y)}dx dy dω

=
∞∑

m=1

∞∑

n=1

‖G̃mn(s)‖2
2 (5.24)

where

G̃mn =
Pmn√

ρh(s2 + 2ζmnωmns + ω2
mn)

. (5.25)

Notice that G̃mn, as described in (5.24), is the contribution of mode (m, n)

to the spatial H2 norm of G. This property indicates how much control author-

ity the actuators have over the structure for each mode. The level of control

authority depends on the location at which the actuators are placed on the

structure.

The above result is different from the additive property of modal norms pro-

posed by Gawronski in [Gaw98]. The result in (5.24) arises from the spatial H2

norm definition for a spatial system which involves a spatial averaging on the

spatial model. In contrast, the additive property in [Gaw98] is an approximation

based on the fact that the coupling between modes is small for lightly damped
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flexible structures, and is not based on a spatial averaging on the system. Inter-

ested readers should refer to [Gaw98] for details of the additive property.

Since ‖G̃mn‖2 in (5.24) implies the level of authority of actuators over each

mode, this measure can be used to determine the effectiveness of actuators to

control each mode. Based on (5.24), we define a function

fmn(x1, y1) = ‖G̃mn‖2 (5.26)

where fmn depends on locations of actuators that are represented by (x1, y1).

The function can be normalized with respect to its maximum value to obtain

the following:

Definition 5.1 Modal controllability: The normalized value of fmn in (5.26)

is defined as the modal controllability of mode (m, n) [MR99]:

Mmn(x1, y1) =
fmn(x1, y1)

αmn

× 100% (5.27)

where αmn = max(x1,y1)∈R1 fmn(x1, y1) and R1 is the set of all possible actuator

locations.

The modal controllability indicates the authority of actuators over a specific

mode. Naturally, if we wish to control a particular mode, the actuators should

be placed at locations where the modal controllability of that mode is high.

Furthermore, the spatial H2 norm of the system in (5.24) indicates the control

authority of the actuators over the entire structure in a spatially-averaged sense.

Hence, the norm can be used as a measure of spatial controllability of a system.

The spatial H2 norm of system G in (5.24) is contributed by fmn associated with

each mode. Here, the contribution of fmn tends to be less for higher frequency

modes since ‖1/(s2 + 2ζmnωmns + ω2
mn)‖2 decreases with ωmn. This implies that

it is reasonable to include only a few low frequency modes in the approximation

of the spatial H2 norm.
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Definition 5.2 Spatial controllability: Suppose only the Im lowest frequency

modes are taken into account, the spatial controllability is [MR99]

Sc(x1, y1) =
1

β

√√√√
Im∑

i=1

fmini
(x1, y1)2 × 100% (5.28)

where β = max(x1,y1)∈R1

√∑Im

i=1 fmini
(x1, y1)2. Here, mi and ni correspond to

mode (mi, ni), which is the ith lowest frequency mode.

The spatial controllability is the normalized value of the approximate spatial

H2 norm of the system, where β is the maximum value of the norm. The

spatial controllability represents the actuator control authority contributed by

selected modes. However, placing actuators in the location of highest spatial

controllability may not be enough to ensure a good performance for every mode.

It is possible that at the chosen locations, modal controllability of several modes

may be unacceptably low. To avoid such a problem, a minimum level of modal

controllability for each mode needs to be guaranteed. Hence, the actuators are

to be placed in locations where the spatial controllability is sufficiently high.

At the same time, the modal controllability of each important mode has to be

above a certain minimum level.

5.2.2 Control spillover reduction

Here, we extend the optimization methodology to take into account the control

spillover effect. Suppose that the actuators are optimally placed according to

the previous procedure. It is still possible that the chosen locations correspond

to high modal controllability for higher frequency modes. This leads to a control

spillover problem which may affect the performance of the controller since the

actuators could be exciting the higher frequency modes.

It is thus important to place restrictions on the authority of several high-

frequency modes. This can be done by restricting the level of modal control-

lability of those modes, which will add extra constraints to the optimization

[HM02b]. An alternative is to add only one extra constraint that guarantees a
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sufficiently low level of spatial controllability for several higher frequency modes.

By doing so, the spillover effect on the system can be reduced. Suppose a few

higher frequency modes from mode Im +1 up to mode Ī are considered. Several

higher frequency modes can be chosen, and the spatial controllability associated

with these modes is expressed in the following:

Definition 5.3 Spatial controllability for spillover:

Sc2(x1, y1) =
1

β2

√√√√√
Ī∑

i=Im+1

fmini
(x1, y1)2 × 100% (5.29)

where β2 = max(x1,y1)∈R1

√∑Ī
i=Im+1 fmini

(x1, y1)2 and Ī corresponds to the high-

est frequency mode that is considered for the control spillover reduction.

Therefore, the constrained optimization problem for optimal placement of

actuators can be set up as:

max
(x1,y1)∈R1

Sc(x1, y1)

subject to:Mmini
(x1, y1) ≥ bi, i = 1, 2, . . . , Im

Sc2(x1, y1) ≤ c (5.30)

where (mi, ni) is the mode corresponding to the ith lowest frequency mode, and

bi is the minimum level for modal controllability of mode (mi, ni). Also, c is the

highest allowable level for spatial controllability for spillover reduction.

We can set the allowable levels for modal controllability and spatial control-

lability depending on the requirements. For reduction of control spillover, it is

important to include only a few dominant higher frequency modes. It is not

practical to include too many constraints in the optimization. It may be suffi-

cient to consider only a few such modes since the controller can be designed so

that its response will roll off at higher frequencies. Thus, the spillover effect can

be reduced even further.

An extension to this optimal placement methodology is to include only a

number of selected modes that are of control significance, and not all low fre-

quency modes. In this case, the spatial controllability Sc is calculated based on
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only the selected modes, while Sc2 is calculated based on several other modes

that are important for spillover reduction purposes.

5.3 Optimal placement of sensors

In this section, we propose a new optimal placement methodology for sensors.

Here, we introduce a performance measure that can be used to indicate the

authority of sensors over the entire structure in a spatially-averaged sense.

5.3.1 Spatial and modal observability measures
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Figure 5.4: A plate with a piezoelectric sensor and a point disturbance u(t)

Consider a point disturbance u acting on a structure at an arbitrarily chosen

location (xu, yu) as shown in Figure 5.4. This disturbance causes structural

vibration that may be observed by sensors. The generalized force as in (2.49)

can be found to be:

∫ b

0

∫ a

0
φmn(x, y)δ(x − xu)δ(y − yu)dx dy u(t) = φmn(xu, yu)u(t). (5.31)

Suppose there are J sensors distributed over the structure. The j th sensor ob-

serves the structural vibration according to (5.19). The transfer function from
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the point disturbance u to the sensor output v = [v1 . . . vJ ]T is

Gvu(s, xu, yu) =
∞∑

m=1

∞∑

n=1

φmn(xu, yu) (Qmn + Q̄mns)

s2 + 2ζmn ωmn s + ω2
mn

(5.32)

where

Qmn = [Cmn1 . . . CmnJ ]T

Q̄mn =
[
C̄mn1 . . . C̄mnJ

]T
. (5.33)

Notice that the transfer function Gvu depends on where the disturbance is acting

on a structure, i.e. it is a function of the spatial location (xu, yu).

Suppose we wish to find the best place for the sensors, assuming that the

disturbance comes from that specific location at (xu, yu). We may consider the

placement that optimizes the energy of the sensor signal due to the excitation

of the point disturbance. We may use a measure of the output energy due to a

white noise input signal that is represented by the H2 norm of the system Gvu.

This allows the sensor to be located at a location where it can observe effectively

the structural vibration caused by a point disturbance at (xu, yu). However, the

sensor may not be able to effectively observe vibration caused by disturbances

at other locations.

To ensure that vibration caused by disturbances at other locations can be

observed in a spatial sense, it is advantageous to include the spatial information

contained in the system. As a consequence, we use a measure that can incor-

porate the spatial information of the system, which is the spatial H2 norm. We

will need the following theorem:

Theorem 5.1 Consider Gvu(s, xu, yu) in (5.32), then

� Gvu �2
2 =

∞∑

m=1

∞∑

n=1

f̄ 2
mn (5.34)

where

f̄mn(x1, y1) =

√√√√√
1

ρh

J∑

j=1

wwwww
Cmnj + C̄mnjs

s2 + 2ζmnωmns + ω2
mn

wwwww

2

2

(5.35)

and f̄mn is a function of the sensor locations that are expressed by (x1, y1).
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Proof

� Gvu(s, xu, yu) �2
2

=
1

2π

∫ ∞

−∞

∫ b

0

∫ a

0
{Gvu(jω, xu, yu)

∗Gvu(jω, xu, yu)} dxu dyu dω

=
1

2π

∫ ∞

−∞

∫ b

0

∫ a

0

{
∞∑

m=1

∞∑

n=1

φmn(xu, yu)(Q
T
mn − Q̄T

mnjω)

(ω2
mn − ω2) − 2ζmnωmnjω

×
∞∑

p=1

∞∑

q=1

φpq(xu, yu)(Qpq + Q̄pqjω)

(ω2
pq − ω2) + 2ζpqωpqjω



 dxu dyu dω

Incorporating the orthogonality condition of the eigenfunctions (5.13) and since

Qmn and Q̄mn are described in (5.33), we have

� Gvu �2
2 =

1

ρh
× 1

2π

∫ ∞

−∞

∞∑

m=1

∞∑

n=1

J∑

j=1

Cmnj − C̄mnjjω

(ω2
mn − ω2) − 2ζmnωmnjω

× Cmnj + C̄mnjjω

(ω2
mn − ω2) + 2ζmnωmnjω

dω

=
1

ρh

∞∑

m=1

∞∑

n=1

J∑

j=1

wwwww
Cmnj + C̄mnjs

s2 + 2ζmnωmns + ω2
mn

wwwww

2

2

.

Note that Gvu is a column vector, so no trace operation is required to compute

the norm. This completes the proof.

The measure used in Theorem 5.1 differs from the one used for actuator

placement since now the input signal is spatially distributed over the structure.

On the other hand, for actuator placement, the output signal is spatially dis-

tributed. The theorem shows that the spatial H2 norm of Gvu contains an

independent contribution from each mode. It is interesting to compare this with

the spatial H2 norm of G in (5.24). Both results show the contribution of each

mode to the spatial H2 norm of certain systems without any mode coupling.

The result of this theorem simplifies the optimization for sensor placement sig-

nificantly since the contribution of each mode is clearly defined.

In a physical sense, the system spatial H2 norm measures the detected signal

energy of the sensor due to excitation of a point disturbance at all possible

locations over the structure in a spatially-averaged sense. Since the system is
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linear and arbitrary disturbances can be regarded as a linear superposition of

point disturbances, the measure also reflects the way sensors will perform when

the structure is excited by arbitrary disturbances. Hence, we can optimize the

placement of sensors by finding locations where the value of the spatial H2 norm

is sufficiently high. Based on Theorem 5.1, we can define several measures as

follows:

Definition 5.4 Modal observability: The modal observability of mode (m, n)

is a normalized value of f̄mn in (5.35):

Kmn(x1, y1) =
f̄mn(x1, y1)

ᾱmn

× 100% (5.36)

where ᾱmn = max(x1,y1)∈R1
f̄mn(x1, y1).

The modal observability of mode (m, n) represents the level of contribution

of the mode to the spatial H2 norm of the system Gvu.

Definition 5.5 Spatial observability: Suppose that only the Im lowest fre-

quency modes are of interest. The spatial observability is a normalized value of

the approximate � Gvu �2 in (5.34):

So(x1, y1) =
1

β̄

√√√√
Im∑

i=1

f̄mini
(x1, y1)2 × 100% (5.37)

where β̄ = max(x1,y1)∈R1

√∑Im

i=1 f̄mini
(x1, y1)2. Here, mi and ni correspond to

mode (mi, ni), which is the ith lowest frequency mode.

5.3.2 Observation spillover reduction

The sensors that are placed on the structure may have high authority in ob-

serving some high frequency modes that are not of control significance. This

leads to the observation spillover that may be detrimental to the closed-loop

performance and stability. We can define the spatial observability for several

higher frequency modes to reduce the effect of observation spillover.
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Definition 5.6 Spatial observability for spillover reduction: The spatial

observability for spillover reduction So2 is defined as:

So2(x1, y1) =
1

β̄2

√√√√√
Ī∑

i=Im+1

f̄mini
(x1, y1)2 × 100% (5.38)

where β̄2 = max(x1,y1)∈R1

√∑Ī
i=Im+1 f̄mini

(x1, y1)2 and Ī corresponds to the high-

est frequency mode that is considered for the observation spillover reduction.

Therefore, the optimization problem for optimal placement of sensors is

max
(x1,y1)∈R1

So(x1, y1)

subject to:Kmini
(x1, y1) ≥ bi, i = 1, 2, . . . , Im

So2(x1, y1) ≤ c (5.39)

where bi is the minimum level for modal observability of mode (mi, ni), while c

is the highest allowable level for spatial observability for spillover reduction.

As in the case for actuator placement, it is also possible to include only

a number of selected modes in determining So and So2. Therefore, we can

concentrate on only selected modes that are of control significance.

5.4 Optimal placement of piezoelectric actua-

tors and sensors

In this section, we implement the results based on the previous sections for a

specific case of piezoelectric actuators and sensors. It has been shown that the

moment generated by rectangular piezoelectric actuators depends on locations

of the corner points of the patches. Similarly, the amount of voltage induced by

piezoelectric sensors also depends on locations of the corner points. This fact

makes the placement of the actuators and sensors interesting. It is important

to be able to place these actuators and sensors at locations where they have

sufficiently high authority over those modes that are of control significance.
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The previous results in optimal placement methodology allow the placement

for several actuators and sensors simultaneously. However, simultaneous place-

ment may complicate the optimization when actuators/sensors have consider-

able dimensions relative to the structure, such as for the case of piezoelectric

actuators/sensors. The difficulty is due to the fact that geometric constraints

have to be included to prevent patches overlapping. Hence, our approach here

is to consider the optimal placement for each piezoelectric actuator/sensor. The

geometric constraints can then be considered by selecting possible locations that

do not overlap patches. It is obvious that some compromises are needed.

As mentioned previously, we assume negligible contribution of piezoelectric

patches to the overall mass and stiffness of the structure. This assumption is

useful in simplifying the optimization, since initially the locations of patches

are unknown. This assumption is reasonable as the patches that are commonly

used are relatively thin with respect to the thickness of the main structure.

However, when the dimensions of patches are considerable, the contributions of

the patches to the structure may be significant. Hence, an iterative optimization

process will be needed because the overall structural properties will be a function

of the actuator/sensor location.

5.4.1 Piezoelectric actuators

Consider the placement of a single actuator, say the j th actuator. In this case,

we consider only a single input version of system G in (5.16), i.e. the transfer

function from jth actuator signal to the structural deflection. Each modal con-

tribution depends on the location of the jth actuator on the structure. Thus,

if we intend to find the optimal placement for the actuator, the contribution of

mode (m, n) due to the jth actuator is ‖G̃mnj‖2
2, where

G̃mnj =
Pmnj√

ρh(s2 + 2ζmnωmns + ω2
mn)

(5.40)

and Pmnj = ĀjΨmnj is described in (5.18). Suppose that one corner of the j th

piezoelectric actuator patch with a fixed size is located at x1j and y1j , as shown
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in Figure 5.3. A function fmnj can be defined as:

fmnj(x1j , y1j) = ‖G̃mnj‖2

=

∣∣∣∣∣
ĀjΨmnj(x1j , y1j)√

ρh

∣∣∣∣∣

wwwww
1

s2 + 2ζmns + ω2
mn

wwwww
2

(5.41)

The modal controllability is

Mmn(x1j , y1j) =
fmnj(x1j , y1j)

αmnj

× 100% (5.42)

where αmnj = max(x1j ,y1j)∈R1 fmnj(x1j , y1j) and R1 is the set of all possible ac-

tuator locations.

If only the Im lowest frequency modes are taken into account, the spatial

controllability is

Sc(x1j , y1j) =
1

βj

√√√√
Im∑

i=1

fminij(x1j , y1j)2 × 100% (5.43)

where βj = max(x1j ,y1j)∈R1

√∑Im

i=1 fminij(x1j , y1j)2.

Several higher frequency modes can be chosen to reduce control spillover and

the spatial controllability contributed by these modes Sc2 is

Sc2(x1j , y1j) =
1

β2j

√√√√√
Ī∑

i=Im+1

fminij(x1j , y1j)2 × 100% (5.44)

where β2j = max(x1j ,y1j)∈R1

√∑Ī
i=Im+1 fminij(x1j , y1j)2 and Ī again corresponds

to the highest frequency mode that is considered for the control spillover re-

duction. Hence, the optimization problem for the placement of piezoelectric

actuators can be set up as in (5.30).

5.4.2 Piezoelectric sensors

For the case where k31 = k32 and g31 = g32, the voltage induced in the jth

piezoelectric sensor Vsj(t) in (5.23) can be shown to be:

Vsj(t) =
k2

31j

Cj g31j

(
h + hpj

2

)
∞∑

m=1

∞∑

n=1

Ψmnj(x1j , y1j) qmn(t) (5.45)
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where Ψmnj is in (5.15).

If we compare Vsj to the general description for the jth sensor output vj

(5.19), we can observe that

Vsj(t) =
∞∑

m=1

∞∑

n=1

Cmnj qmn(t) (5.46)

where Cmnj is obtained from (5.45). Then from Theorem 5.1, we obtain f̄mn for

the jth sensor:

f̄mnj(x1, y1) =

√√√√ 1

ρh

wwwww
Cmnj

s2 + 2ζmnωmns + ω2
mn

wwwww

2

2

. (5.47)

Hence, the modal observability can be defined as:

Kmn(x1j , y1j) =
f̄mnj(x1j , y1j)

ᾱmnj

× 100% (5.48)

where

f̄mnj =

∣∣∣∣∣
k2

31j

Cj g31j

√
ρh

(
h + hpj

2

)
Ψmnj(x1j , y1j)

∣∣∣∣∣

wwwww
1

s2 + 2ζmnωmns + ω2
mn

wwwww
2

ᾱmnj = max
(x1j ,y1j)∈R1

f̄mnj(x1j , y1j). (5.49)

The spatial observability is

So(x1j , y1j) =
1

β̄j

√√√√
Im∑

i=1

f̄minij(x1j , y1j)2 × 100% (5.50)

where β̄j = max(x1j ,y1j)∈R1

√∑Im

i=1 f̄minij(x1j , y1j)2.

Moreover, the spatial observability for observation spillover reduction is

So2(x1j , y1j) =
1

β̄2j

√√√√√
Ī∑

i=Im+1

f̄minij(x1j , y1j)2 × 100% (5.51)

where β̄2j = max(x1j ,y1j)∈R1

√∑Ī
i=Im+1 f̄minij(x1j , y1j)2.

The optimization problem for the placement of piezoelectric sensors is similar

to that of the general case in (5.39).

Now, consider a particular case where identical piezoelectric patches are used

as actuators and sensors. By comparison of (5.42) and (5.48), M and K are
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clearly similar since they are both linearly proportional to |Ψmnj(x1j , y1j)|, which

is the only function that depends on the locations of patches. Hence, the spatial

controllability and spatial observability are also similar. That is

Mmn(x1j , y1j) = Kmn(x1j , y1j)

Sc(x1j , y1j) = So(x1j , y1j)

Sc2(x1j , y1j) = So2(x1j , y1j). (5.52)

The above results have an implication on the optimal placement of a collo-

cated piezoelectric actuator/sensor pair. Suppose we place a pieozelectric actu-

ator on a structure that gives certain levels of spatial controllability and modal

controllability. Placing a pieozelectric sensor at the same location would yield

similar levels of spatial observability and modal observability. Thus, we only

need to optimize the placement of either actuator or sensor.

A similar optimization procedure can be used to find the optimal position

and size of each collocated actuator/sensor pair to obtain optimal spatial con-

trollability, while maintaining sufficient modal controllability levels. In this case,

four optimization variables are needed, two variables for the position, and the

other two for the actuator/sensor size.

5.5 Illustrative example: a plate structure

We consider the optimal placement of a collocated piezoelectric actuator/sensor

pair on a thin rectangular plate with simply-supported edges. The piezoelectric

actuator/sensor pair has similar properties in x and y directions, i.e. k31 =

k32, g31 = g32 and d31 = d32. The sizes of the patches are fixed and they are

oriented in similar directions with respect to the plate. The properties of the

plate and piezoelectric patches used are similar to those used in Chapter 4 (see

Table 4.1). Initially, each mode of the plate is assumed to have a damping ratio

of ζmn = 0.002. This, however, is later refined using the experimental data

obtained from the experimental rig.
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No. Mode

(m, n)

Frequency (Hz)

1 (1, 1) 41.9

2 (2, 1) 87.1

3 (1, 2) 122.4

4 (3, 1) 162.4

5 (2, 2) 167.6

6 (3, 2) 242.9

7 (1, 3) 256.5

8 (4, 1) 267.9

9 (2, 3) 301.7

10 (4, 2) 348.3

Table 5.1: First ten modes of the plate

Following the previous result, we only need to optimize the placement of

the piezoelectric actuator. The previous optimization procedure is employed

for this purpose. In this case, we wish to maximize Sc that is contributed by

the first five modes. For control spillover reduction, the next five modes are

considered. Table 5.1 shows the frequencies of the relevant modes obtained

from the simulated model.

Figures 5.5, 5.6 and 5.7 show the modal controllability of the first five modes

versus the piezoelectric actuator location. The location of the patch is described

as the location of one corner of the patch (x11, y11). For example, it is observed

that the maximum modal controllability of 100% for mode (1, 1) occurs when

one of the corners of the actuator is placed at x11 = 0.36 m and y11 = 0.26 m.

This location corresponds to placing the actuator in the middle of the plate.
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(a) mode (1, 1)
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(b) mode (2, 1)

Figure 5.5: Modal controllability - modes 1 and 2
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(a) mode (1, 2)
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(b) mode (3, 1)

Figure 5.6: Modal controllability - modes 3 and 4
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(a) mode (2, 2)

Figure 5.7: Modal controllability - mode 5

Figure 5.8 shows the spatial controllability Sc due to the first five modes. If an

actuator is placed in the middle of the plate, it would have a considerably high

spatial controllability. Figure 5.9 shows the spatial controllability for the next

five modes for control spillover reduction Sc2. It is desirable to find a location

where Sc2 is sufficiently small.

We set the minimum level of modal controllability for the first five modes

at 50% for each mode. The contributions to spatial H2 norm of the next five

modes are limited to 60%. The constrained optimization problem is set up as

follows:

max
(x11,y11)∈R1

Sc(x11, y11)

subject to:Mmini
(x11, y11) ≥ 50%, i = 1, 2, . . . , 5

Sc2(x11, y11) ≤ 60%. (5.53)
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The optimization problem is then solved using the Matlab Optimization Tool-

box. The optimum solution found is x11 = 0.1536 m and y11 = 0.1418 m, where

Sc = 92.6%

M11 = 55.1%

M21 = 80.6%

M12 = 65.3%

M31 = 63.4%

M22 = 96.1%

Sc2 = 55.6%. (5.54)

This solution shows that the optimal spatial controllability is over 90%, while

maintaining the modal controllability of all five modes above 50%. On the other

hand, the spatial controllability Sc2 of the next five higher frequency modes

is also maintained at a level below 60%, which means that the contributions

of those modes to the control spillover will be relatively low. In general, the

objective function Sc has multiple local optima. A range of initial guesses for

x11 and y11 have been tried to obtain the global optimum. The optimization

result shows that the collocated piezoelectric actuator/sensor pair should be

placed at x11 = 0.1536 m and y11 = 0.1418 m as also shown in Figure 4.1.

5.5.1 Experiments

Here, we will validate the results that we obtain from the previous optimization

on a plate structure. The plate was made from an aluminium alloy, which was

held by a supporting frame. At design stage, FE modelling using STRAND7

software was performed to ensure sufficient rigidity of the supporting frame

up to at least 350 Hz, which would cover the first ten vibration modes based

on our plate model. The supporting frame is shown in Figure 5.10. The

plate and frame apparatus were placed on an optical table to minimize ex-

ternal vibrations affecting the experimental measurements (see Figure 5.11).

We used aluminium shims to simulate the simply-supported boundary condi-
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Figure 5.8: Spatial controllability Sc - based on the first five modes
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Figure 5.9: Spatial controllability Sc2 (control spillover reduction)
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Figure 5.10: The supporting frame

tions as shown in Figure 5.12. The shims were inserted along the edges of the

plate and clamped to the supporting frame. Based on our observation, the shims

approximated simply-supported boundary conditions sufficiently, although some

degree of rotational and transverse movements of the shims were expected.

A high voltage amplifier, capable of driving highly capacitive loads, was used

to supply necessary voltage for the piezoelectric actuator. An HP89410A Dy-

namic Signal Analyzer and a Polytec PSV-300 Laser Doppler Scanning Vibrom-

eter were used to obtain frequency responses from the piezoelectric laminate

plate.

Table 5.2 compares the experimentally measured, and the simulated six low-

est resonance frequencies of the plate. Larger errors were observed at higher

frequencies. The errors of the model in predicting the actual resonance frequen-

cies vary around a few percent. In general, the model is reasonably close to the

actual plate based on our experimental results.
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Figure 5.11: The experimental apparatus
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Figure 5.12: Shims - boundary conditions
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Figure 5.13: The frequency response of the collocated actuator/sensor system:

a plate structure [V/V]
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No. Mode Simulation Experiment Error

(m, n) ωmn (Hz) ωmn (Hz) (%)

1 (1, 1) 41.9 41.8 0.2

2 (2, 1) 87.1 85.9 1.4

3 (1, 2) 122.4 121.1 1.1

4 (3, 1) 162.4 159.2 2.0

5 (2, 2) 167.6 164.3 2.0

6 (3, 2) 242.9 234.5 3.6

Table 5.2: First six modes of the plate

Figure 5.13 compares frequency responses of the collocated actuator/sensor

system. The dashed line represents the simulation, while the solid line represents

the experimental results. The resonance frequencies and damping ratios from

the experiment have been used to correct the model. The experimental results

show reasonably close response between the simulation and experiment.

It is observed that the first five modes from 41.8 Hz to 164.3 Hz, have rel-

atively large resonant responses. Furthermore, in the optimization, the spatial

controllability/observability contribution of the next five modes from 234.5 Hz

to 327.2 Hz has been reduced to 55.6% to reduce the spillover effect. The result

can be observed in Figure 5.13 where the next five modes, but not the sixth

mode (at 234.5 Hz), have less resonant responses than the first five modes. It is

noticed that mode 8 at 256.9 Hz and mode 10 at 327.2 Hz can hardly be seen

in the figure.

The sixth mode at 234.5 Hz has a comparable profile to those of the first

five modes. This is not surprising since the optimization process only reduces

the spatial controllability level associated with modes 6 to 10. We can also try

to reduce the modal controllability level corresponding to each of those modes
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(a) mode (1, 1) (b) mode (2, 1)

(c) mode (1, 2) (d) mode (3, 1)

Figure 5.14: Mode shapes of the first four modes

to ensure that each modal controllability is sufficiently low. However, more

constraints will result in a more complex optimization problem.

Figure 5.14 shows the mode shapes that were obtained using the PSV-300

Laser Doppler Scanning Vibrometer. The mode shapes are reasonably close to

the mode shapes for a simply-supported plate in Figure 2.13. It confirms our

prediction that the use of aluminium shims for the simply-supported boundary

conditions is reasonable, at least for low frequency modes.
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5.6 Optimal placement for finite element based

models

The optimal placement of a collocated piezoelectric actuator/sensor pair on a

simply-supported plate has been discussed previously. The notions of spatial

controllability/observability and modal controllability/observability have been

found to be useful for dealing with the optimal placement problem. These

performance measures can be used for finding the optimal placement of actua-

tors/sensors for models that are based from modal analysis [MR99, HM99].

However, many complex structures cannot be modelled using the modal

analysis method. Alternative modelling methods such as the FE method can be

useful for modelling such structures. Thus, it is convenient to extend the previ-

ous developed methodology for more general structures, which can be modelled

using approximate methods. This section is aimed at extending the previous

methodology to FE based models. In particular, we concentrate on the FE

model of a beam described in Section 2.7.

Consider a flexible beam, with several actuators attached to it, whose transfer

function is described in (2.111):

Gr(s, r) =
k∑

i=1

Cw(r) φi Pi

s2 + 2ζiωi + ω2
i

where r ∈ R = {r | 0 ≤ r ≤ L} and Pi = φT
i F̄ . The transfer function

only includes a finite number of modes k that are obtained from the FE for-

mulation. Since higher frequency modes obtained from the FE method are less

accurate than the lower frequency modes, it is necessary to include only the

lower frequency modes for the modelling. To obtain a relatively accurate model

with k modes, Meirovitch [Mei75] suggests constructing a FE model of at least

2k modes.

For general structures, Theorem 3.2 cannot be used to calculate the spatial

H2 norm of Gr since the orthogonality property in (3.6) is not satisfied. How-

ever, Lemma 4.2 states that the eigenvectors are orthogonal with respect to the
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distributed mass. Therefore, we propose to use the weighted spatial H2 norm

as a performance measure (see Definition 3.4). Based on Theorem 4.1, we use

the following performance measure as the spatial controllability measure:

� Gr(s, r) �2
2,m=

k∑

i=1

f 2
i (5.55)

where

fi(r1) =

wwwww
Pi

s2 + 2ζiωis + ω2
i

wwwww
2

. (5.56)

Here, we assume that the locations of actuators are represented by r1 ∈ R1

where R1 is the set of all possible locations of actuators.

From (5.55) and (5.56), we can define the spatial controllability Sc and modal

controllability Mi in the following:

Definition 5.7 Spatial controllability: Suppose only the first Im modes are

of interest, then the spatial controllability is

Sc(r1) =
1

β

√√√√
Im∑

i=1

fi(r1)2 × 100% (5.57)

where β = maxr1∈R1

√∑Im

i=1 fi(r1)2.

Definition 5.8 Modal controllability: The modal controllability is

Mi(r1) =
fi(r1)

αi

× 100% (5.58)

where αi = maxr1∈R1 fi(r1).

Furthermore, we can also consider the optimal placement of sensors for FE

based models. As in Section 5.3, we consider a transfer function that relates a

point disturbance u at location ru to the signals observed by sensors. The nodal

forces can be calculated by calculating the virtual work done by the structure:

δW (t) =
∫ L

0
δ(r − ru)u(t) δw(t, r) dr

= δw(t, ru)u(t). (5.59)
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Since displacement w can be expressed as in (2.96), we obtain

δW (t) = Cw(ru)δw(t)u(t)

= F̂ (t)T δw(t). (5.60)

Thus, the nodal force is F̂ = Cw(ru)
T u(t) where u(t) is a scalar.

We consider a general jth sensor whose output can be described by

vj(t) =
k∑

i=1

(
Cv

ijqi(t) + C̄v
ij q̇i(t)

)
(5.61)

where Cv
ij and C̄v

ij are constants that depend on the properties and location of

the sensor.

If there are J sensors distributed over the structure, then the transfer function

from the point disturbance to sensor output v = [v1 . . . vJ ]T is

Gvu(s, ru) =
k∑

i=1

(Qi + Q̄is) φT
i Cw(ru)

T

s2 + 2ζi ωi s + ω2
i

(5.62)

where

Qi = [Cv
i1 . . . Cv

iJ ]T

Q̄i =
[
C̄v

i1 . . . C̄v
iJ

]T
. (5.63)

Again, the weighted spatial H2 norm is used as a performance measure of the

sensors. The distributed mass m is used as the spatial weighting function. The

following theorem is central for the optimal placement of sensors:

Theorem 5.2 Consider the transfer function Gvu in (5.62), then

� Gvu(s, ru) �2
2,m =

k∑

i=1

f̄ 2
i (5.64)

where

f̄i =

√√√√√
J∑

j=1

wwwww
Cv

ij + C̄v
ijs

s2 + 2ζiωis + ω2
i

wwwww

2

2

. (5.65)
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Proof We use the fact that for two compatible column vectors, x and y, then

xT y = tr {xyT}. Since Gvu is also a column vector, we have

� Gvu �2
2,m =

1

2π

∫ ∞

−∞

∫ L

0
{Gvu(jω, ru)

∗m(ru)Gvu(jω, ru)} dru dω

=
1

2π

∫ ∞

−∞

∫ L

0
tr
{
Gvu(−jω, ru)m(ru)Gvu(jω, ru)

T
}

dru dω

=
1

2π

∫ ∞

−∞

∫ L

0
tr

{
k∑

i=1

(Qi − Q̄ijω)φT
i Cw(ru)

T

(ω2
i − ω2) − 2ζiωijω

× m(ru)

×
k∑

l=1

Cw(ru)φl(Q
T
l + Q̄T

l jω)

(ω2
l − ω2) + 2ζlωljω

}
dru dω

=
1

2π

∫ ∞

−∞
tr

{
k∑

i=1

(Qi − Q̄ijω)

(ω2
i − ω2) − 2ζiωijω

× (QT
i + Q̄T

i jω)

(ω2
i − ω2) + 2ζiωijω

}
dω

where the last equation is obtained by incorporating the orthogonality condition

in Lemma 4.2. Since Qi and Q̄i are defined as in (5.63), we can further simplify

the equation to obtain:

� Gvu �2
2,m =

k∑

i=1

J∑

j=1

wwwww
Cv

ij + C̄v
ijs

s2 + 2ζiωis + ω2
i

wwwww

2

2

.

This completes the proof.

Based on Theorem 5.2, we can define the following performance measures:

Definition 5.9 Modal observability: The modal observability can be ob-

tained from (5.65), where

Ki(r1) =
f̄i(r1)

ᾱi

× 100% (5.66)

where ᾱi = maxr1∈R1 f̄i(r1).

The spatial observability can now be set up using the result in (5.64).

Definition 5.10 Spatial observability: If only the Im lowest frequency modes

are taken into account, the spatial observability is defined as:

So(r1) =
1

β̄

√√√√
Im∑

i=1

f̄i(r1)2 × 100% (5.67)

where β̄ = max(r1)∈R1

√∑Im

i=1 f̄i(r1)2.

Hence, optimization problems similar to those in (5.30) and (5.39) can also

be set up for FE based models.
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5.7 Illustrative example: a wing model
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Figure 5.15: A wing model

We consider the optimal placement of a piezoelectric actuator patch over a wing

model to illustrate our optimization methodology for FE models. The wing

model is shown in Figure 5.15. The wing is modelled by a flexible beam with

a uniform thickness h. The moment of inertia I and the cross-sectional area A

of the wing linearly change across the half wing span as shown in Figure 5.16.

Table 5.3 gives some of the properties of the wing model. A damping ratio of

0.002 for the wing model is assumed for each mode. The size of the patch is

fixed, so we only need to optimize the location of one end of the patch.

We wish to find the actuator placement that gives relatively high control

authority over the first four modes. On the other hand, we also wish to reduce

the authority of the next three modes. The model consists of 20 modes, which

is sufficient since only the first seven modes are of interest.

The optimization procedure given earlier in (5.30) is used. In this case the

four lowest frequency modes are used to calculate the spatial controllability level

Sc. The next three higher frequency modes are considered for control spillover

reduction. Table 5.4 shows the frequencies of the relevant modes.
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Figure 5.16: The wing property distribution

Half wing span, L 6.0 m

Wing thickness, h 0.10 m

Wing Young’s modulus, E 7.50 × 1010 N/m2

Wing root moment of inertia, Iroot 3.50 × 10−6 m4

Wing root cross-sectional area, Aroot 4.00 × 10−3 m2

Wing density, ρb 2.77 × 103 kg/m3

Piezoceramic r-length 0.30 m

Piezoceramic z-length 0.15 m

Piezoceramic thickness 2.00 × 10−3 m

Piezoceramic Young’s modulus, Ep 6.60 × 1010 N/m2

Charge constant, d31 −1.90 × 10−10 m/V

Voltage constant, g31 −1.16 × 10−2 Vm/N

Capacitance, C 4.00 × 10−8 F

Electromechanical coupling factor, k31 0.32

Table 5.3: Properties of the wing model
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Mode Frequency

(Hertz)

1 3.35

2 16.8

3 43.9

4 84.2

5 137.9

6 205.1

7 285.7

Table 5.4: First seven modes of the wing model

Figures 5.17 and 5.18 show the modal controllability of the first four modes

of the plate versus the piezoelectric actuator location on the plate. For example,

it can be observed that the maximum modal controllability of 100% for mode

2 happens when one end of the actuator patch is placed at r1 = 3.3 m. The

spatial controllability is plotted in Figure 5.19. It can be observed that an

actuator placed in the region near the wing root has a considerably high spatial

controllability level. Figures 5.20 and 5.21 show the modal controllability of the

next three modes for control spillover reduction.

The constrained optimization problem is set up as:

max
r1∈R1

Sc(r1)

subject to:Mi(r1) ≥ 50%, i = 1, . . . , 4

Mi(r1) ≤ 50%, i = 5, . . . , 7

The minimum level of modal controllability for each of the first four modes is

thus set at 50% for each mode, while the modal controllability level for each

of the next three modes is limited to 50%. The optimization problem is then
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(a) mode 1
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(b) mode 2

Figure 5.17: Modal controllability - modes 1 and 2
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(a) mode 3
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(b) mode 4

Figure 5.18: Modal controllability - modes 3 and 4
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Figure 5.19: Spatial controllability - based on the first four modes

solved using the Matlab Optimization Toolbox. A range of initial guesses for

r1 needs to be tried to obtain a satisfying solution or the global optimum. The

optimum solution is obtained at r1 = 0.0370 m with

Sc = 99.7%

M1 = 99.5%

M2 = 93.7%

M3 = 72.7%

M4 = 60.1%

M5 = 50.0%

M6 = 40.9%

M7 = 32.7%

The result corresponds to placing the actuator close to the root. This is as

expected because of high average strain at the root of a cantilevered structure.

As mentioned in Section 5.4.2, the controllability and observability levels are

similar for a system with an identical collocated piezoelectric actuator/sensor

pair. Hence, it is reasonable to analyze the optimization results from the collo-
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(a) mode 5
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(b) mode 6

Figure 5.20: Modal controllability - modes 5 and 6
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(a) mode 7

Figure 5.21: Modal controllability - mode 7

cated actuator/sensor frequency response in Figure 5.22. The first four modes

show higher resonant responses than the next three modes. This reflects the

modal controllability level of each mode obtained previously.

5.8 Optimal placement for other modelling meth-

ods

As mentioned in Section 4.5, the estimated eigenfunctions from other approx-

imate methods (such as Rayleigh-Ritz and assumed-modes methods) are or-

thogonal with respect to the distributed mass [Mei75]. Hence, using the ap-

proximate weighted spatial H2 norm of the system as the spatial controllabil-

ity/observability measure, we can derive the optimal placement methodology in

a similar way.



5.8 Optimal placement for other modelling methods 139

0 50 100 150 200 250 300

−80

−70

−60

−50

−40

−30

−20

−10

0

Frequency [Hz]

M
ag

ni
tu

de
 [d

B
]

(a) magnitude

0 50 100 150 200 250 300
−180

−160

−140

−120

−100

−80

−60

−40

−20

0

Frequency [Hz]

P
ha

se
 [d

eg
re

e]

(b) phase

Figure 5.22: The frequency response of the collocated actuator/sensor system:

a wing model [V/V]
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For models that are obtained from system identification, a similar result can

be obtained. For instance, a FE model of the system can be updated based

on the modal testing data [Ewi84, Fri95]. The orthogonality property of the

eigenvectors in Lemma 4.2 can still be ensured from this updating method.

Hence, the proposed FE approach can also be used for such models.

5.9 Summary

We extended the methodology for optimal placement of actuators by introduc-

ing an extra constraint for control spillover reduction. In addition, we proposed

a new methodology for finding optimal placement of general sensors over a flex-

ible structure. In particular, optimal placement of piezoelectric actuators and

sensors were considered. The method was used for optimal placement of a

collocated piezoelectric actuator/sensor pair over a thin plate, which was then

tested experimentally. Finally, we extended the methodology for models that

are obtained from other modelling methods such as the FE method. Therefore,

optimal placement of actuators and sensors over a wide range of structures can

also be dealt with by the proposed methodology.



Chapter 6

Resonant control

In the remaining three chapters, we will concentrate on the issue of designing

active controllers to control vibrations of smart structures, starting with resonant

controllers.

One of the characteristics of a flexible structure is its highly resonant nature.

This is due to inherently small energy dissipation of kinetic and strain energy of

the structure, which is reflected by a relatively small structural damping. This

implies that a structure may experience considerable vibration when it is excited

at frequencies at, or close to, its resonance frequencies. Excessive vibrations

can be detrimental to the reliability and performance of the structure and thus

need to be controlled. Realizing the highly resonant characteristic of flexible

structures, we propose a class of controllers that exploit this characteristic, i.e.

resonant controllers.

In other words, a resonant controller applies high gain at, or close to, res-

onance frequencies of interest to suppress vibration at those resonances. This

type of controller is motivated by resonant controllers originally developed in

[PMS99]. However, we will extend the idea to include a more general class of

controllers that allows for control of multi-variable resonant systems and in-

cludes the work of [PMS99] as a special case. By appropriate design, we can

implement the resonant controller in a feedback control framework to minimize

vibration of structures.
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Due to the highly resonant nature of the proposed controller, we expect the

effect of the controller to be localized to each resonant peak. This is expected es-

pecially if the resonant peaks are sufficiently separated from one another. Hence,

we can choose the resonant modes that we wish to control since it may not be

necessary to control every mode.

6.1 Controller structures

Here, we propose a multivariable controller structure that is applicable to flex-

ible structures with compatible and collocated actuators and sensors [HM01d,

HM01c]. In addition, we will discuss a special type of resonant controller that

has good robustness properties when implemented on collocated systems. In

this section we concentrate on piezoelectric laminate structures.

� � � �� � � �
� � � �� � � � � � � �� � � �

� � � �� � � � � � � �� � � �
� � � �� � � �

� � � �� � � �
� � � �� � � � � � � �� � � �
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Figure 6.1: A flexible structure with collocated actuator/sensor pairs

Consider a flexible structure with a number of piezoelectric actuator/sensor

pairs attached to it as shown in Figure 6.1. Suppose there are Ī collocated

actuator/sensor pairs distributed along the structure. Piezoelectric patches on

one side of the beam are used as sensors, while patches on the other side serve as

actuators. The actuator voltage is Va = [Va1 . . . VaĪ ]
T , while the sensor voltage
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is Vs = [Vs1 . . . VsĪ ]
T . The controller output voltage is m = [m1 . . .mĪ ]

T , while

the external disturbance is w̄ = [w̄1 . . . w̄Ī ]
T .

The system has a collocated nature whose transfer function can be shown to

be as in (2.89). We consider Υi = ci P
T
i with ci > 0, so ΥiPi ≥ 0. Here, we use

the truncated version of GVs
(2.89):

GM
V s(s) =

M∑

i=1

ciP
T
i Pi

s2 + 2ζi ωi s + ω2
i

(6.1)

where M � N and N is the highest resonant mode that is to be controlled. The

task is to design a decentralized controller K to control structural vibration due

to a number of modes of interest.

As mentioned previously, considerable vibration of a flexible structure occurs

when it is excited at a frequency at or near its resonance frequencies. Hence,

we can suppress structural vibration due to a particular mode by minimizing

the resonant response of that mode. We design a feedback controller with a

particular structure that applies high gain at the resonance frequency. By careful

design, we can suppress structural vibration due to that mode by implementing

the feedback controller.

We consider again the control system in Figure 6.1. The lth actuator/sensor

pair is controlled independently by the controller Kl. The measured voltages

from the piezoelectric sensors Vs act as the input to the controller. The controller

applies voltages m to the piezoelectric actuators. The external disturbance w̄ is

assumed to enter the system through the actuators.

We extend the resonant controller proposed in [PMS99] to include a more

general class of resonant controllers. The proposed decentralized resonant con-

troller is

K(s) = diag(K1(s) K2(s) . . .KĪ(s)) (6.2)

where

Kl(s) =
N∑

i=1

(
αli s (s + 2dli ωi)

s2 + 2dli ωi s + ω2
i

+ Rli

)
,

l = 1, 2, . . . , Ī, αli ≥ 0 ∀ l, i. (6.3)
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Here, N modes lie within the controlled bandwidth, and out of these modes

Nc ≤ N modes are to be controlled. The term αli is the ith modal gain of the

controller for the lth actuator/sensor pair and Rli is a feedthrough term. If a

particular mode is not to be controlled, then αli corresponding to that mode is

set to zero for all l. The resonant controller structure proposed in [PMS99] can

be shown to be a special case of our resonant controller structure when Rli = 0

for all i and l = 1, i.e. a SISO controller. Our proposed structure involves a

more general case of resonant controllers, with Rli not necessarily zero for all l

and i. This leads to a more flexible choice for finding the optimal controller for

vibration control.

This resonant controller can be designed and implemented to suppress struc-

tural vibration. However, the robustness of the controller needs to be ensured

first before it is implemented. This is important since the model used always

contains some degree of uncertainty. In general, we can design the controller

and check the robustness of the controller afterwards.

However, there is a special case of these resonant controllers that has an inher-

ent robustness against parametric uncertainties and unmodelled dynamics. The

parametric uncertainties may involve the uncertainties in determining the reso-

nance frequency and damping associated with each mode. The uncertainties in

unmodelled dynamics occur since the model may only include the in-bandwidth

modes, neglecting the dynamics of out-of-bandwidth modes. Hence, the con-

troller may undesirably sense/excite higher frequency modes, which may result

in instability and performance reduction once implemented on the real systems.

This problem is referred to as the spillover effect [Bal78a, Bal78b]. Next, we

consider a type of robust resonant controller.
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6.1.1 Robust resonant controller

We consider a particular type of the resonant controller structure. This is the

special case of resonant controllers in (6.3) with Rli = 0 ∀ l, i.

K(s) = diag(K1(s) K2(s) . . .KĪ(s)) (6.4)

where

Kl(s) =
N∑

i=1

αli s (s + 2dli ωi)

s2 + 2dli ωi s + ω2
i

, l = 1, 2, . . . , Ī, αli ≥ 0 ∀l, i.

(6.5)

We will show that this type of resonant controller guarantees closed-loop

stability in the presence of parametric and unmodelled dynamics uncertainties.

K(s)

GM
Vs

(s)

Figure 6.2: A feedback system

K̃(s)

Ḡ(s)

Figure 6.3: An equivalent feedback system
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Consider the negative feedback connection shown in Figure 6.2. Here, we

assume that K(s) has a structure defined by (6.4) and (6.5). We work with a

finite-dimensional model GM
V s (6.1) since we intend to use stability results that

are applicable to finite-dimensional LTI systems. It is acceptable to work with

a truncated version of GVs
(2.89) since the transfer function rolls off at higher

frequencies [Hug87]. Therefore, for a large enough M , the stability results will

extend to the full infinite-dimensional model of the system.

To prove closed-loop stability of the negative feedback loop in Figure 6.2, we

consider the equivalent feedback system shown in Figure 6.3 where

Ḡ(s) = s GM
V s(s) (6.6)

and

K̃(s) =
K(s)

s
. (6.7)

Here, Ḡ can be seen as the transfer function from the actuator voltage to the

rate of change of the sensor voltage.

We can show that Ḡ is a positive-real transfer function since Ḡ(jω)+ Ḡ(jω)∗

is positive-semidefinite for all ω ∈ R. That is

Ḡ(jω) + Ḡ(jω)∗ =
M∑

i=1

(
ciP

T
i Pijω

(ω2
i − ω2) + 2ζiωijω

+
−ciP

T
i Pijω

(ω2
i − ω2) − 2ζiωijω

)

=
M∑

i=1

4ciP
T
i Piζiωiω

2

(ω2
i − ω2)2 + (2ζiωiω)2

≥ 0 ω ∈ R. (6.8)

Having established the positive-realness of Ḡ, closed-loop stability follows if we

can show that K̃ is strictly positive-real in the weak sense. Following [JG96],

a stable square transfer function matrix K̃ is strictly positive-real in the weak

sense if K̃(jω) + K̃(jω)∗ > 0 for ω ∈ (−∞,∞).
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Noticing that K̃ is diagonal, we only need to consider its diagonal elements:

K̃i(jω) + K̃l(jω)∗ =
N∑

i=1

{
αli

(
jω + 2dliωi

(ω2
i − ω2) + 2dliωijω

+
−jω + 2dliωi

(ω2
i − ω2) − 2dliωijω

)}

=
N∑

i=1

4αlidliωi
3

(ωi
2 − ω2)2 + (2dliωiω)2

> 0, ω ∈ (−∞,∞), l = 1, 2, . . . , Ī . (6.9)

This implies that K̃(jω) = diag(K̃1(jω) . . . K̃Ī(jω)) > 0 for ω ∈ (−∞,∞).

Therefore, using Corollary 1.1 of [JG96], the negative feedback connection of K̃

and Ḡ is stable. Hence, the negative feedback connection of Figure 6.2 is also

stable.

The positive-realness of Ḡ is ensured by collocating compatible actuators and

sensors. Hence, any controller K with K̃(s) = K(s)/s such that K̃ is strictly

positive-real in the weak sense will ensure closed-loop stability.

Therefore, the class of controllers defined by (6.4) and (6.5) are robustly

stable with respect to incorrect resonance frequencies and damping ratios. The

closed-loop stability is also guaranteed in the presence of high frequency and

in-bandwidth modes that are left uncontrolled. If the resonance frequencies and

damping ratios of the model are incorrect, the controller will not destabilize

the closed-loop system. However, the controller may not be able to perform

optimally.

In the next section, we will determine controller parameters of the general

resonant controllers in (6.2) and (6.3) via an optimization procedure.

6.2 Optimization for resonant controllers

To design our proposed resonant controller, three parameters for each mode are

needed, i.e. αli, dli and Rli. These parameters can be determined in a fairly

simple way for a SISO system, since it can be done by trial and error. However,

a more systematic method is desirable for multivariable systems, which will be

discussed in this section.
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From (6.3), the controller K(s) is parameterized in terms of αli, dli and Rli.

Therefore, any optimization has to be carried out over these parameters. Among

these parameters, the damping ratio has a considerable role in determining the

achievable vibration reduction of its associated mode. This is because the sys-

tem has a resonant nature and the controller only needs to apply high gain at

frequencies at, or close to, the system resonances. Choosing a smaller damping

ratio would lead to higher gain applied to the corresponding resonance, which

is desirable. However, the damping ratio need to be carefully optimized since

an inappropriate damping ratio may even increase the response at frequencies

around the resonance. Hence, our approach here is to concentrate on choosing

a set of parameters αli and Rli first and then optimize over dli. Later, it will be

shown that it is reasonable to use αli that is obtained from a single-mode con-

troller, assuming the resonant peaks of interest are sufficiently separated from

one another.

We consider systems G in (2.83) and GV s in (2.89). As a reminder, G is

the transfer function from the actuator output to the structural deflection at

any location r along the structure. The truncated version of G and GV s can be

written in state-space form:

ẋb(t) =




0 I

−W 2
b −2ZbWb


 xb(t) +




0

H


 w̄(t)

y(t, r) = [Ud(r) 0]xb(t)

Vs(t) = [U 0] xb(t) (6.10)

where

Zb = diag(ζ1 . . . ζM)

Wb = diag(ω1 . . . ωM)

H = [P T
1 . . . P T

M ]T

U = [c1P
T
1 . . . cMP T

M ]

Ud(r) = [φ1(r) . . . φM(r)] (6.11)
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and the number of modes considered in the truncated model is M . The state

xb is [q1 . . . qM q̇1 . . . q̇M ]T .

For a MIMO system, each independent controller Kl in (6.3) can be written

in its state-space form as:

˙̂xl(t) =




0 I

−W 2
c −2DlWc


 x̂l(t) +




0

Xl


Vsl(t)

ml(t) = [Yl 0] x̂l(t) + ZlVsl(t). (6.12)

If we order the vibration modes that are to be controlled as n1, . . . , nNc
, where Nc

is the number of modes to be controlled, we can define Dl = diag(dln1 . . . dlnNc
),

Wc = diag(ωn1 . . . ωnNc
) and x̂l = [q̂ln1 . . . q̂lnNc

˙̂qln1
. . . ˙̂qlnNc

]T . The terms Xl, Yl

and Zl can also be obtained in a straightforward manner from (6.3).

We then combine all independent controllers to obtain the MIMO controller:

˙̂x(t) =




0 I

−W̃ 2 −2D̃W̃


 x̂(t) +




0

X


Vs(t)

m(t) = [Y 0] x̂(t) + ZVs(t) (6.13)

where m = [m1 . . .mĪ ]
T is the output voltage from the controller and

W̃ = diag(Wc . . .Wc)

D̃ = diag(D1 . . .DĪ)

X = diag(X1 . . .XĪ)

Y = diag(Y1 . . . YĪ)

Z = diag(Z1 . . . ZĪ). (6.14)

Moreover, the controller states follow from ordering the states of all independent

controllers as:

x̂ = [q̂1n1 q̂1n2 . . . q̂Īn(Nc−1)
q̂ĪnNc

˙̂q1n1
˙̂q1n2

. . . ˙̂qĪn(Nc−1)

˙̂qĪnNc
]T . (6.15)
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The closed-loop system can then be obtained from (6.10) and (6.13):

˙̄x(t) = Āx̄(t) + B̄w̄(t)

y(t, r) = C̄d(r)x̄(t)

Vs(t) = C̄x̄(t) (6.16)

where x̄ = [xb
T x̂T ]T and

Ā =




0 I 0 0

−W 2
b − HZU −2ZbWb −HY 0

0 0 0 I

XU 0 −W̃ 2 −2D̃W̃




B̄ =
[
0 HT 0 0

]T

C̄ = [U 0 0 0]

C̄d(r) = [Ud(r) 0 0 0] . (6.17)

We wish to parameterize the closed-loop system (6.16) in terms of controller

damping ratios dli for fixed values of αli. For this purpose, Ā can be represented

as a finite sum:

Ā = A − 2
Ī∑

l=1

Nc∑

j=1

ωnj
dlnj

Elnj
ET

lnj
(6.18)

where A is independent of damping ratio dli.

Here, the use of i and nj should not be confused since nj is used to specify

each vibration mode that is to be controlled in the optimization process. This

notation is adopted here since only a limited number of in-bandwidth modes are

to be controlled. For instance, [n1 n2 n3] = [1 3 4] implies that only modes

i = 1, 3 and 4 are to be controlled. However, we will use i to signify vibration

modes in the general case throughout this chapter.
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Matrix Elnj
is used to locate the corresponding dlnj

in the matrix Ā. The

term Elnj
associated with dlnj

is defined as:

Elnj
=




0M×1

0M×1

0(Ī Nc)×1

Ēlnj (Ī Nc)×1




(6.19)

where the dimensions of each matrix are defined above. Here, Ēlnj
consists of

zero elements except for the corresponding row of dlnj
, where

Ēlnj
((l − 1)Nc + j, 1) = 1.

The optimization can be set to find the optimal dli parameters. Here, we

use the spatial H2 norm of the closed-loop system as the cost function to be

minimized. However, other performance measures such as H2 norm can also be

used. The optimization task is to determine

d∗
li = arg min � Tyw̄(s, r) �2

2
(6.20)

where Tyw̄ represents the closed-loop transfer function from disturbance w̄ to

deflection y at every point on the structure. By solving the optimization prob-

lem, we wish to obtain a resonant controller that minimizes structural vibration

in a spatially-averaged sense.

We consider the results in Chapter 3 to simplify this spatial H2 norm opti-

mization. Theorem 3.1 implies that the spatial H2 norm of (6.16) is equivalent

to the H2 norm of the finite-dimensional system:

˙̄x(t) = Āx̄(t) + B̄w̄(t)

ȳ(t) = Γ̄x̄(t)

Vs(t) = C̄x̄(t) (6.21)

where

Γ̄T Γ̄ =
∫ L

0
C̄d(r)

T C̄d(r)dr. (6.22)



Chapter 6. Resonant control 152

Hence, the optimization problem from (6.20) can be shown to be:

min tr(B̄T LoB̄)

subject to : ĀT Lo + LoĀ + Γ̄T Γ̄ = 0
(6.23)

where Ā depends on dli via (6.18).

For a fixed value for αli, it is not possible to make the cost function arbitrarily

small. If dli → ∞, it can be shown that the controller in (6.3) reduces to a simple

gain. Hence, the only way that the cost function can be made arbitrarily small,

is by making αli arbitrarily large. This may yield a controller with excessive

gain, which is not desirable. The cost function can be reduced more effectively

by optimizing the damping ratios.

We introduce a matrix of Lagrange multipliers S to solve this constrained

optimization problem. The Lagrangian is formed by incorporating (6.18):

L = tr(B̄T LoB̄) + tr(ĀT Lo + LoĀ + Γ̄T Γ̄)S

= tr(B̄T LoB̄) + tr

{
AT LoS + LoAS + Γ̄T Γ̄S

−2
Ī∑

l=1

Nc∑

j=1

ωnj
dlnj

Elnj
ET

lnj
LoS

−2Lo

Ī∑

l=1

Nc∑

j=1

ωnj
dlnj

Elnj
ET

lnj
S

}
(6.24)

To obtain the first-order necessary conditions for optimality, we need to take

derivatives of the Lagrangian L with respect to parameters Lo, S and dlnj
. Hence,

setting these derivatives to zero gives

∂L

∂Lo

= B̄B̄T + ĀS + SĀT = 0 (6.25)

∂L

∂S
= ĀT Lo + LoĀ + Γ̄T Γ̄ = 0 (6.26)

∂L

∂dlnj

= −4ωnj
ET

lnj
LoSElnj

= 0,

j = 1, 2, . . . , Nc l = 1, 2, . . . , Ī (6.27)

These equations (6.25), (6.26), and (6.27) have to be solved simultaneously to

satisfy the optimality condition of the spatial H2 norm of the system. Since the
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closed-form solution is not possible, a numerical approach is used instead. The

form given in (6.27) can be used as the gradient to obtain a local minimum of

the function.

We will summarize the above optimization procedure as follows. The modal

gains αli and Rli are set at some specific levels to obtain a sufficient reduction of

each resonant response. It is, however, possible to optimize over αli and Rli as

well as dli. The value Rli will determine the feedthrough term of the controller.

The selection of modal gains will be discussed in the next section. An initial

guess for each controller damping ratio dli (or its corresponding dlnj
) is made.

Any positive dli can be used as a starting point since that would guarantee

stability.

Matrices B̄ and Γ̄ only need to be calculated once since they are independent

of damping dli. Matrix Ā is obtained from (6.18), while the observability and

controllability Gramian matrices Lo and S are calculated by solving the Lya-

punov equations in (6.25) and (6.26). The gradient for each value of damping dli

is calculated from (6.27). The process is iterated by updating the damping ratio

dli until a solution with acceptable accuracy is obtained. Furthermore, since

the optimization problem is non-convex in general, the iterative optimization

procedure can be carried out for a number of initial guesses, and then the best

solution can be used.

We will explore the optimization in more detail in the next section. The use

of the optimization to design a resonant controller for a piezoelectric laminate

beam will also be demonstrated.

6.3 Resonant control of a piezoelectric lami-

nate beam

Here, we design and implement a resonant controller for minimizing vibration

of a piezoelectric laminate structure. The structure is a simply-supported beam
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Figure 6.4: A piezoelectric laminate beam

with a collocated piezoelectric actuator/sensor pair attached to either side of it

(Figure 6.4). The structure used is similar to the one described in Section 4.4.

The piezoceramic elements used in our experiment are PIC151 patches. The

properties of the structure and PIC151 can be found in Table 4.2.

Modal analysis is used to obtain a model of the structure. The model is

truncated by keeping the first 10 structural modes, i.e. M = 10. The model

correction approach, explained in Chapter 4, is used in our model. In this

approach, we add feedthrough terms Dd(r) and DV s to the system outputs in

(6.10):

ẋb(t) = Adxb(t) + Bdw̄(t)

y(t, r) = Cd(r)xb(t) + Dd(r)w̄(t)

Vs(t) = CV sxb(t) + DV sw̄(t) (6.28)

where Ad, Bd, Cd and CV s are defined from the system in (6.10).

We can rely on experiments to estimate a feedthrough term such as DV s.

However, the estimation of feedthrough term Dd(r) is not straightforward since

it is a function of spatial location r. Furthermore, a numerical spatial integration

will be needed to calculate the system spatial H2 norm (6.22). Thus, we decide

to use the method explained in Chapter 4 to determine Dd(r).

The feedthrough term Dd(r) is calculated to minimize the spatial H2 norm

of the error between the infinite-dimensional model and the corrected model,
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assuming the system damping is small. The assumption is reasonable since

based on our experiments, the damping ratio associated with each mode is in

the order of 0.01 or 0.001. Hence,

Dd(r) =
Ma∑

i=M+1

φi(r)K
opt
ri (6.29)

where mode Ma is the highest out-of-bandwidth mode considered and Kopt
ri is as

in (4.16):

Kopt
ri =

1

2ωcoωi

ln
(

ωi + ωco

ωi − ωco

)
Pi. (6.30)

Here, ωco lies within the interval ωco ∈ (ωM , ωM+1) and Pi = K1Ψi1, where Ψk1

is defined in (2.81). The above term is calculated by considering modes M + 1

to Ma = 200 to obtain a sufficient approximation to the feedthrough term.

However, adding feedthrough terms into the system implies that the spatial

H2 norm from the input to output y will not be finite. To avoid this problem, we

absorb the effect of feedthrough terms into the dynamics of the system by adding

second-order out-of-bandwidth terms as suggested in [Cla97]. The second-order

term has the form of

αc(r)

s2 + 2ζcωcs + ω2
c

where gain αc(r) is determined to ensure that the DC content of the second-order

term is close to that of the system in (6.28).

The resonance frequency of the second-order system is set at ωc = 16 KHz,

well above the bandwidth of interest of about 2 KHz. A relatively high damping

ratio of ζc = 0.7 is used so that the second-order system behaves like a low-pass

filter. Since the controller and the system are highly resonant, this addition will

have minimal effect on the optimization result. This will make the optimization

procedure feasible, and will not increase the controller bandwidth.

The modified system after the inclusion of the second-order mode to the

system can be shown to be:

Ãd =




0(M+1)×(M+1) I(M+1)×(M+1)

Ãd1(M+1)×(M+1)
Ãd2(M+1)×(M+1)




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where dimensions of each matrix are defined accordingly and

Ãd1 = −diag(ω2
1 . . . ω2

M ω2
c )

Ãd2 = −2 diag(ζ1ω1 . . . ζMωM ζcωc).

Moreover,

B̃d = [0 · · ·0 0 K1Ψ11 · · ·K1ΨM1 1]T

C̃d(r) =
[
φ1(r) · · ·φM(r) ω2

c

Ma∑

i=M+1

Kopt
ri φi(r) 0 · · · 0 0

]

C̃V s =
[
Ω1Ψ11 · · ·Ω1ΨM1 DV sω

2
c 0 · · ·0 0

]
(6.31)

where Ãd, B̃d, C̃d and C̃V s signify the modified system of Ad, Bd, Cd and CV s

that are defined in (6.10).

The closed-loop system in (6.21) can be constructed from (6.13) and (6.31).

Here, Γ̄ in (6.22) is calculated by taking advantage of the orthogonality property

of eigenfunctions φi in (3.6):

Γ̄ =




Γ̃ 0

0 0


 (6.32)

where Γ̃ = diag
(
1 . . . 1 ω2

c

(
ΣMa

i=M+1(K
opt
ri )2

) 1
2

)
.

As mentioned previously, one of the advantages of this particular controller

structure is that we can choose the resonant modes that need to be controlled.

For this particular beam, the placement of the piezoelectric actuator/sensor pair

on the beam (see Figure 6.4) results in relatively low control authority over the

first resonant mode (at a frequency of about 20 Hz). The low control authority

of this mode is reflected in the frequency response (actuator voltage to sensor

voltage) shown in Figure 6.11, that also reflects the low sensing authority of the

collocated sensor. Thus, more control effort is needed to dampen the first mode

than to control modes 2 and 3, for instance.

In this experiment, we will demonstrate the effectiveness of the controller in

controlling some specific resonant modes. We attempt to control only selected

modes, modes 2 and 3, and will leave the first mode uncontrolled, i.e. α11 = 0.
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To demonstrate our proposed controller, we choose a particular SISO resonant

controller, i.e. l = 1:

K(s) =
3∑

i=1

(
αli s (s + 2dli ωi)

s2 + 2dli ωi s + ω2
i

− αli

)

=
3∑

i=1

−αli ω
2
i

s2 + 2dli ωi s + ω2
i

, l = 1, α11 = 0. (6.33)

This particular resonant controller does not contain a feedthrough term since

we choose Rli = −αli.

Next, we need to determine modal gain αli and damping ratio dli for each

mode. Our approach is to select the modal gains first and to optimize the

damping ratios afterwards. For this purpose, it is important to consider the

effect of the modal gains on the cost function (i.e. the spatial H2 norm of the

closed-loop system).

Previously, we mentioned that if the resonant peaks of the structure are suf-

ficiently separated from each other, the controller effect tends to be localized.

Hence, we can consider the case when we wish to control each mode indepen-

dently, i.e. a single-mode control. By doing so, we can obtain an insight into

how each modal gain affects the cost function. It will be shown later on that

modal gains from single-mode control can be used as a basis for choosing modal

gains for multiple-mode control. Modes 2 and 3 will be considered in our next

analysis.

To analyze the effect of the modal gain, we plot the cost function versus

modal gain and damping ratio for each mode. The plots for the second and

third modes are shown in Figures 6.5 and 6.6 respectively. We wish to find a

combination of modal gains and damping ratios that gives a sufficiently low cost

function for each mode.

From Figures 6.5 and 6.6, the cost function is barely affected by the choice of

damping ratio when the modal gain is less than 10−1. However, when the gain

is increased, a lower cost function can be achieved by increasing the damping

ratio. It seems that we can reduce the cost function by increasing the modal gain

and damping ratio simultaneously. Unfortunately, this is not a desirable way of
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Figure 6.5: Cost function versus gain and damping ratio, mode 2

achieving our objective for vibration control. A very high gain controller is not

desirable because of excessive controller effort, sensitivity to noise, and reduction

of system robustness. Furthermore, a high modal gain may result in the loss of

the highly localized nature of the controller. Based on these considerations and

the cost function plots, we can find the sub-optimal solutions whose modal gains

for the second and third modes are α12 = 1.5 and α13 = 0.4 respectively. These

modal gains correspond to damping ratios of d12 = 0.0330 and d13 = 0.0209.

The optimization is then performed using results for single-mode control

where α12 = 1.5 and α13 = 0.4. We use d12 = 0.0330 and d13 = 0.0209 as a start-

ing point. A plot of the cost function versus the two damping ratios is shown

in Figure 6.7. The optimal damping ratios are d12 = 0.0320 and d13 = 0.0182

as shown by the arrow in Figure 6.7. It is important to note that the damp-

ing ratios obtained here are relatively close to those obtained for single-mode

controllers. This fact confirms that the effect of our resonant controller on the

system is highly localized. Thus, our decision to use the modal gains obtained

from the single-mode control approach is reasonable.
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Figure 6.6: Cost function versus gain and damping ratio, mode 3

6.4 Experimental implementation

The experiment was set up at the Laboratory for Dynamics and Control of

Smart Structures at the University of Newcastle, Australia. The experimental

set-up is depicted in Figure 6.8, while the experimental apparatus is shown in

Figure 6.9. The controller was implemented on a dSPACE DS1103 rapid pro-

totyping Controller Board using Matlab and Simulink software. The sampling

frequency was set at 20 KHz. The cut-off frequencies of the two low-pass filters

were set at 10 KHz each. An HP89410A Dynamic Signal Analyzer and a Poly-

tec PSV-300 Laser Doppler Scanning Vibrometer were used to obtain frequency

responses from the piezoelectric laminate beam. The PSV-300 laser vibrometer

allows accurate vibration measurement at any point on the beam. Important

parameters of the beam, such as resonance frequencies and damping ratios, were

obtained from the experimental apparatus and were used to correct our model.

Our simulation and experimental results are presented as follows. The fre-

quency response of the controller is plotted in Figure 6.10. The controller has a
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Figure 6.7: Cost function versus damping ratios
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Figure 6.8: The experimental set-up
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Figure 6.9: The experimental apparatus

resonant structure, as expected. Figure 6.11 compares the frequency responses

(actuator voltage to sensor voltage) of the open-loop and closed-loop systems

where simulation and experimental results are presented. The performance of

the controller applied to the real system is as predicted by the model. The reso-

nant responses of modes 2 and 3 of the system have been reduced significantly,

while modes 1 and 4 are not affected significantly.

To evaluate the robustness of our controller, the experimental and simulated

loop gains up to 520 Hz are shown in Figures 6.12 and 6.13. Our simulation

gives a theoretical value of infinity for the gain margin and a phase margin of

−35.9o at 72.1 Hz. The experiment gives a gain margin of 19.5 dB at 41.7 Hz,

and a phase margin of −41.9o at 72.6 Hz. These results demonstrate sufficient

robustness for our controller.

Our controller was designed to minimize the spatial H2 norm of the closed-

loop system. Hence, we will demonstrate the controller effect on the vibration

of the entire beam. To do this, we have plotted the spatial frequency responses

of the beam.

Figures 6.14 and 6.15 show the simulated spatial frequency responses of the

uncontrolled and controlled beam respectively. The location r is measured from

one end of the beam, which is closer to the patches. The magnitude of the
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Figure 6.10: The frequency response of the controller (input voltage to output

voltage [V/V])
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Figure 6.11: Simulation and experimental frequency responses (actuator voltage

to sensor voltage [V/V])



Chapter 6. Resonant control 164

50 100 150 200 250 300 350 400 450 500
−80

−70

−60

−50

−40

−30

−20

−10

0

10

20

30

Frequency [Hz]

M
ag

ni
tu

de
 [d

B
]

(a) simulation

50 100 150 200 250 300 350 400 450 500
−80

−70

−60

−50

−40

−30

−20

−10

0

10

20

30

Frequency [Hz]

M
ag

ni
tu

de
 [d

B
]

(b) experiment

Figure 6.12: Loop gain [V/V]: simulation and experiment (magnitude)
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Figure 6.13: Loop gain [V/V]: simulation and experiment (phase)
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frequency response represents the beam transverse deflection (deflection in y-

axis, see Figure 6.1).

Next, a Polytec PSV-300 Laser Scanning Vibrometer was used to obtain the

experimental frequency response of the beam vibration at a number of points

along the beam. The results allow us to plot the spatial frequency responses of

the uncontrolled and controlled beam from the experiments as shown in Figures

6.16 and 6.17 respectively. Our experiment confirms the simulation results,

where we obtain vibration reduction for modes 2 and 3 over the entire structure.

The experiments show that the resonant responses of modes 2 and 3 have been

reduced by around 20 and 15 dB respectively, over the entire beam.

50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

−190

−180

−170

−160

−150

−140

−130

−120

−110

−100

−90

Frequency [Hz]

r−location [m]

M
a

g
n

itu
d

e
 [

d
B

]

Figure 6.14: The simulated spatial frequency response: actuator voltage to beam

deflection [m/V] (open loop)
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Figure 6.15: The simulated spatial frequency response: actuator voltage to beam

deflection [m/V] (closed loop)

6.5 Summary

We proposed a class of resonant controllers in this chapter. These controllers can

be applied to structures which contain compatible pairs of collocated actuators

and sensors. The controller reduces resonant responses of the structure by ap-

plying high gain at each resonance. A special class of robust resonant controllers

were introduced. The passivity of the system guarantees closed-loop stability

in the presence of unmodelled dynamics and inaccurate structural models. The

controller damping ratios are chosen such that the spatial H2 norm of the closed-

loop system is minimized. The experiment presented shows the effectiveness of

the developed controller in reducing structural vibration on a piezoelectric lam-

inate beam.
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Figure 6.16: The experimental spatial frequency response: actuator voltage to

beam deflection [m/V] (open loop)
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Figure 6.17: The experimental spatial frequency response: actuator voltage to

beam deflection [m/V] (closed loop)


