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Abstract 

 Immunotherapy based on T cell responses to the tumor is believed to involve 

killing of cancer cells by induction of apoptosis.  The predominant mechanisms are death 

ligand induced signaling mainly by TNF related apoptosis inducing ligand (TRAIL) 

mediated by CD4 T cells, monocytes and dendritic cells, and perforin/granzyme mediated 

apoptosis mediated by CD8 T cells and NK cells.  Resistance against TRAIL involves 

loss of TRAIL death receptors and/or activation of the MEK and/or Akt signal pathways.  

Resistance to CD8 CTL responses also involves activation of the MEK and/or Akt 

pathways.  Apoptosis induced by immune responses is regulated by the Bcl-2 family of 

proteins. Many reagents have been developed against the Bcl-2 antiapoptotic proteins and 

clinical trials combining them with immunotherapy are awaited. The second group of 

agents that regulate the Bcl-2 family of proteins are the signal pathway inhibitors. 

Clinical trials with inhibitors of RAS, RAF or MEK are in progress and would appear an 

exciting combination with immunotherapy.  One of the main drivers of resistance to 

apoptosis are adaptive mechanisms that allow cancer cells to overcome endoplasmic 

reticulum (ER) stress.  These adaptive mechanisms inhibit practically all known apoptotic 

pathways and create an acidic environment that may reduce infiltration of lymphocytes 

against the tumor. The signal pathway inhibitors may be effective against these adaptive 

processes but additional agents that target ER stress pathways are in development. In 

conclusion, combination of immunotherapy with agents that target antiapoptotic 

mechanisms in cancer cells offers a new approach that requires evaluation in clinical 

trials. 

Keywords: Apoptosis, Bcl-2 proteins, signal pathway inhibitors, endoplasmic reticulum 

stress 
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Introduction 

 

Immunological responses are believed to play a role in the natural history of cancers such 

as melanoma and can be demonstrated in immunohistological studies and by a variety of 

assays carried out ex vivo on lymphocytes from patients.  Evidence from these sources 

has prompted clinical trials with vaccines using whole cells or cell lysates or more 

purified antigens known to be recognized by the immune system.  The results of these 

studies have generally been disappointing, as reviewed elsewhere [39, 90, 111]. 

 These results have posed somewhat of a dilemma as in many of the studies ex 

vivo assays have reported the induction of lymphocyte responses against the tumor but 

with little or no clinical benefits.  Various explanations have been proposed to account for 

this lack of correlation, such as inhibition of antigen presentation, inhibition of cytokine 

production from T cells, anergy of T cells due to lack of costimulatory CD80, CD86 

ligands, or interaction with PD1 ligands, induction of T regulatory cells, shift of T cell 

populations to TH2 or TH17 helper cells due to cytokines from tumor cells such as IL-6, 

TNF-α, IL-23, inhibition of leukocyte migration due to release of VEGF or PGE2 from 

tumor cells, selection of MHC and antigen loss variants [41].  Good studies and models 

supporting these explanations are numerous.   To a large extent however they are focused 

on defects in the immune system and may be overlooking more fundamental properties of 

tumor cells that limit the effectiveness of immunotherapy even in the face of otherwise 

strong immune responses. 

 One of these properties is resistance to apoptosis, which is regarded as important 

as dysregulated cell division in development of tumors [33].  Given that the immune 

system kills tumor cells by induction of apoptosis, combining immunotherapy with 
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agents which overcome apoptosis resistance pathways would appear a logical step in 

treatment.  In the sections below we indicate the principal mechanisms involved in 

resistance of cancer cells to apoptosis and new agents that may be effective in 

overcoming the resistance pathways. 

 

How lymphocytes kill tumor cells 

 

In general, there are two main killing pathways.  The death ligand route utilized by CD4 

T cells, monocytes and dendritic cells (DCs) involves interaction of members of the TNF 

family with their receptors in cell membranes of the cancer cells which results in 

aggregation of the receptors, binding of adapter proteins such as Fas associated death 

domains (FADD) and activation of apical caspases such as caspase 8 through death 

effector domains (DED) [3, 4].  In some sensitive lymphoma cells the caspase cascade 

activated by caspase 8 can lead to direct activation of the effector caspases such as 

caspase 3 but in most solid cancers the pathway involves cleavage of the proapoptotic 

BH3 (Bcl-2 homology domain 3) protein Bid, which leads to activation of Bax/Bak 

proteins and mitochondrial outer membrane permeabilisation (MOMP).  This leads to 

release of aptogenic proteins from mitochondria and activation of the mitochondrial 

apoptosis pathway involving cytochrome c, APAF-1 and caspase 9, leading to formation 

of the apoptosome and activation of the effector caspases 3 and 7 [40].  This process is 

also facilitated by release of proteins such as Smac/DIABLO which inhibit “inhibitor of 

apoptosis proteins” (IAPs), particularly XIAP, which inhibits events downstream of 

mitochondria [126]. 
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 The other main route utilized by CD8, CTL and NK cells depends on the transfer 

of cytotoxic granules into the immunological synapse formed between the effector and 

tumor cell.  Proteases called granzymes are released from the granules and delivered to 

the tumor cell by perforin, which is a Ca++ depending pore forming protein[9, 109] 

which multimerizes in the cell membrane[83].  This results in cleavage of substrates such 

as Bid by Granzyme B, resulting in MOMP and the events described above downstream 

from mitochondria that lead to apoptosis.  This is an oversimplified view of killing by 

CD8 CTL in that granzyme B may also trigger other pathways to apoptosis such as 

cleavage of caspase 3 and 7 [117].  Additional granzymes such as granzyme A may 

contribute to cell death either by generation of reactive oxygen species or by cleavage of 

proteins in the SET complex that leads to single strand breaks in DNA[109], leading to 

activation of p53.  Killing by CTL appears to involve p53, which would be consistent 

with the above [76].  Granzymes H and K are called orphan enzymes as their substrates 

are unknown.  They and granzyme M cause apoptosis by caspase independent pathways 

[121]. 

 

Inhibitors of the cell death pathways 

 

Mitochondrial dependent apoptotic pathways are regulated mainly by the Bcl-2 family of 

proteins, which, as reviewed elsewhere [15, 31, 43, 118] consist of a family of BH3 only 

proapoptotic proteins, two multidomain proapoptotic proteins (Bax and Bak) and several 

multidomain antiapoptotic proteins (Bcl-2, Bcl-XL, Bcl-w, Mcl-1 and A1).  In one model 

the antiapoptotic proteins bind the BH3 proteins and this displaces Bax or Bak from the 
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antiapoptotic proteins, allowing them to bind to mitochondria and induce MOMP [12, 

118].  Certain of the BH3 proteins have selectivity for different antiapoptotic proteins.  In 

particular, Noxa binds selectively to Mcl-1.  The latter also binds Bak and hence Noxa 

may displace Bak from Mcl-1, allowing it to bind to mitochondria [13, 119]. 

 These findings are of particular interest in that immunohistological studies on 

tissue sections from melanoma have shown that Mcl-1 and Bcl-XL increase in expression 

with progression of the disease whereas Bcl-2 decreased during progression of the 

disease [128].  The factors determining the changes in the antiapoptotic proteins are not 

entirely clear but Mcl-1 and Bcl-XL appeared inversely  correlated with expression of the 

transcription factor AP-2 and was weakly associated with Stat 3 expression.  Further 

studies are needed to more closely define the regulators of these proteins, particularly 

Mcl-1 as current studies suggested it is upregulated as part of the unfolded protein 

response (UPR) to endoplasmic reticulum (ER) stress and is a major adaptive mechanism 

that prevents ER stress induced apoptosis [42].  We [123] and others [60, 114] have also 

shown Mcl-1 is a critical factor in resistance to TRAIL. 

 These findings with respect to Mcl-1 in melanoma are important in design of 

treatment strategies in melanoma.  As shown in table 1, there are now a number of new 

agents that can be used clinically to target the antiapoptotic proteins.  One of these is the 

Abbott ABT 737 agent, which has high affinity for Bcl-2 and Bcl-XL and Bcl-W.  

Preclinical studies have shown that many tumors were resistant to this agent due to Mcl-1 

proteins in the tumor.  Downregulation of Mcl-1 resulted in sensitivity to ABT 737 [14, 

104].  These results are relevant to immunotherapy, particularly as ABT 737 was shown 

to sensitize tumor cells to killing by CTL [64].  ABT 263 is an orally active form of ABT 

737 [103].  As shown in Table 1 however, there are a number of small mol. wt. inhibitors 
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of the antiapoptotic proteins which have selectivity for all the antiapoptotic proteins, e.g. 

Obatoclax is now in preliminary trials in patients with hematological malignancies 

[92;101].  At this stage we would expect that these broad spectrum inhibitors would 

potentiate the effects of various forms of immunotherapy. 

 

Death ligand mediated killing.  The Yin Yang of TRAIL death receptor signals 

 

In the special case of TRAIL, the level of expression of death receptors, TRAIL-R1 and 

R2 were found to be major determinants of their susceptibility to killing by TRAIL [124].  

Furthermore, progression of melanoma was associated with downregulation of receptors 

[129].   The cause of receptor downregulation is unknown but it is clear that 

immunotherapy that depends on administration of TRAIL or TRAIL mediated killing by 

CD4 T cells, DCs and monocytes, would be ineffective against TRAIL-R negative 

cancers.  Upregulation of death receptors in some cancers can be achieved by 

chemotherapy that targets DNA and is p53 dependent [20].  However, in melanoma a 

wide range of chemotherapy agents and signal pathway inhibitors did not upregulate 

death receptors.  As reported in studies on colon carcinoma cells [55] and prostate 

carcinoma [95], the ER stress inducer Tunicamycin was able to do so [53].  This was 

related to induction of the unfolded protein response (UPR) response to stress.  The 

transcription factor CCAAT/Enhancer binding protein homologous protein (CHOP) 

(Gadd153) was involved at late stages of receptor upregulation (36hrs) but other factor(s) 

were involved at earlier periods [53].  Tunicamycin is considered too toxic for clinical 

use but several other agents that are in clinical use, such as Cox 2 inhibitors[58] or 
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Dipyrimadole, may be useful for this purpose [30].  They and curcumin from curry 

powder appear to act on CHOP to upregulate receptors [56]. 

 One of the peculiarities of the TRAIL system is the concurrent delivery of 

opposing death and survival signals from its receptors [Yin (negative) and Yang 

(Positive)].  It has been known for some time that TRAIL receptors may associate with 

other adaptor proteins rather than or in addition to FADD (Fas associated death domain) 

and result in different outcomes rather than cell death.  Principal among these is 

activation of NF-κB and JNK most likely through the RIP (receptor interacting protein) 

and TRAF2 (TNF receptor associating factor 2) [19].  We and others have shown that 

activation of NF-κB in melanoma by TRAIL is strongly anti-apoptotic [25].  One of the 

consequences of activation of NF-κB and of Akt [81] is upregulation of cFLIP (Flice 

inhibitory protein), which can bind to death effector domains (DED) of FADD and 

caspase-8 and inhibit apoptosis.  cFLIP may also bind to TRAF1,2 and RIP, resulting in 

activation of NF-κB and ERK1/2 [108, 120].  Inhibitors of apoptosis proteins 1 & 2 

(IAP1,2) were also shown to be important in the activation of NF-κB (via ubiquitin 

domains) [35] by TNF-α and when IAPs were inhibited, activation of NF-κB did not 

occur [106].  Smac mimetics were shown to result in TNF induced apoptosis by 

activation of caspase 8 either by inhibition of c-FLIP production or formation of a 

RIP/FADD/caspase-8 complex [113].  These observations have led to the development of 

a number of new agents which target IAP1,2 and XIAP, as shown in Table 1 [16, 67, 113, 

130].   

 In addition, the MEK pathway may be strongly activated by TRAIL.  This is rapid 

but relatively transient, peaking at 1 hour after exposure to TRAIL [123].  Activation of 

MEK is dependent on activation of protein kinase C (PKC), particularly PKC epsilon (ε), 
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and the sensitivity of melanoma cells to TRAIL is inversely related to the activation of 

PKC-ε [29].  Activation of PKC is upstream of RAF but whether it is activated directly 

by TRAIL or by phospholipase C, as described for TNF-α [7], is not clear.  The 

activation of MEK by TRAIL occurs irrespective of whether BRAF is mutated or not 

[123]. 

 These results therefore imply that within a polyclonal population of melanoma 

cells there is a range of activation signals in response to TRAIL.  Sensitive cells have 

predominant activation of the FADD/caspase 8 pathway whereas resistant cells have 

dominant activation of NF-κB and MEK pathways.  These results clearly have 

implications in selecting treatment combinations. 

 Table 2 summarizes some of the experimental studies on combinations with 

TRAIL that may increase apoptosis.  In general they can be viewed as agents which 

upregulate TRAIL-R1-R2 receptors or which down-regulate anti-apoptotic proteins.  

Bortezomib appears to mediate its effect by down-regulation (directly or indirectly) of 

anti-apoptotic proteins such as cFLIP, Mcl-1 and NF-κB and upregulation of Noxa [79].  

Clinical experience with the drug is mainly limited to hematologic malignancies such as 

multiple myeloma and mantle cell lymphoma, for which it has received FDA approval.  

Histone Deacetylase inhibitors have had relatively little effects when used as single 

agents but may be most effective when used as sensitizing agents to induce apoptosis [70, 

125].   
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Signal pathway inhibitors as partners for immunotherapy 

 

Two survival pathways – the MEK/ERK and PI3-K Akt pathways are frequently 

upregulated in cancer cells [72, 94], as reported in melanoma [123, 127] and are potent 

inhibitors of apoptosis.  We and others have shown that inhibition of the MEK/ERK 

pathway sensitizes cancer cells to TRAIL induced apoptosis [123].  Similar results were 

obtained with inhibitors of Akt and when both inhibitors were used the results were 

additive [97].  In short term assays inhibitors of the MEK pathway did not induce apoptosis 

when used alone but studies over longer periods resulted in killing of approximately 50% 

of melanoma lines due to upregulation of PUMA and Bim, and downregulation of Mcl-1 

[115].  The multiple sites of action of the MEK pathway that inhibit apoptosis are shown in 

Table 3 and reviewed elsewhere [5].  The Akt pathway also has multiple sites of action that 

inhibit apoptosis, as shown in Table 4 from the review by Manning & Cantley [72]. 

 MEK inhibitors or inhibitors of Ras and RAF upstream of MEK may therefore 

help in sensitizing melanoma cells to immunotherapy [112].  They may have other 

unexpected benefits in that MEK inhibitors were shown to upregulate melanoma 

differentiation antigens [61] and inhibit release of immunosuppressive factors IL-10, 

VEGF and IL-6 from melanoma.[100]  RAF knockdown was shown to reduce ICAM-1 

expression and IL-8 production from melanoma and to inhibit extravasation through 

blood vessels [63]. 

 Table 5 shows the many RAS/BRAF/MEK signal pathway inhibitors are now 

available.  They are reviewed in detail elsewhere [112] and as combinations with other 

therapies [99].  It is unknown whether they may have deleterious effects on immune 

function due to direct effects on lymphocytes.  Relatively few studies have been 
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conducted on their effects on the immune system but in this regard the RAF inhibitor 

PLX4032 (that is specific for mutated BRAF) should not have targets in lymphocytes.  

Holmstrom et al [46] speculated the MEK pathway may prevent T cells from undergoing 

activation induced death.  Consistent with this, NRAS activating mutations were reported 

to be associated with autoimmune disease [81].  Sorafenib was found to inhibit the 

generation of vaccine specific CD8 T cells in mice.  Sunitinib did not have these 

suppressive effects [44]. 

Development of inhibitors of Akt signaling is at an early stage (Table 6) and is 

discussed elsewhere [21, 49, 70].  The PI3K pathway was identified as critical for 

induction of a proliferative response to IL-2 in lymphocytes [11].  Treatment with an 

mTOR inhibitor, Rapamycin, was reported to sensitize cancer to adoptive 

immunotherapy in vivo [36], which is somewhat surprising given the role of Rapamycin 

as an immunosuppressive agent.  It is highly likely that the effects of these drugs on 

immune responses will need to be evaluated in each system. 

 

Adaptation to ER stress as the driver of resistance to immunotherapy 

 

Under stress conditions such as hypoglycemia or hypoxia, proteins in the ER may not 

undergo folding or glycosylation and accumulate as unfolded proteins.  These bind to a 

chaperone protein called glucose regulated protein 78 (GRP78) which is normally bound 

to the intraluminal domains of three sensor proteins called inositol-requiring 

transmembrane kinase and endonuclease 1α (IRE1α), activation of transcription factor 6 

(ATF6), and protein kinase-like ER kinase (PERK).  Release of these proteins results in 

their activation and initiation of three signal pathways called the UPR.  As an adaptive 
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response, the UPR is activated to alleviate the stress condition imposed on the ER and is 

orchestrated by transcriptional activation of multiple genes mediated by IRE1α and 

ATF6, a general decrease in initiation of translation and selective translation of specific 

mRNAs mediated by PERK.  However, if the stress on ER remains unresolved, 

prolonged activation of the UPR can lead to apoptosis [59].   

 This is the outcome in normal cells but even under extreme ER stress cancer cells 

survive due to adaptive processes that are as yet not fully understood.  Activation of the 

MEK/ERK and Akt pathways are involved [47, 53].  Induction of the chaperone protein 

GRP78 may sequester one of the BH3 proteins in the ER called Bik [27].  GRP78 also 

sequesters caspase 4 [53].  HDM2 becomes activated during ER stress either via Akt 

activation or direct phosphorylation by PERK [6].  It is possible but not yet proven that 

this may account for low p53 levels in some cancers such as melanoma.  In addition to 

these direct effects on apoptosis, ER is also associated with metabolic changes resulting 

in glycolysis and lactic acid production [32, 80].  This results in an acidic environment 

which may inhibit the function or entry of immune cells into the tumor micro-

environment.  Table 7 summarizes some of the known antiapoptotic effects of ER stress. 

 

 

 

Agents that may reduce the effects of ER stress on resistance to apoptosis 

 

Given the importance of ER stress in resistance to immunotherapy, agents that overcome 

the adaptive pathways may be important to combine with immunotherapy.  We know 

from studies in-vitro that MEK inhibitors may overcome resistance to ER stress induced 
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apoptosis most probably by downregulation of GRP78, which is a target for this pathway.  

One of the consequences of GRP78 downregulation is release of caspase 4 (that is 

normally bound by GRP78) so resulting in apoptosis of some melanoma [53].  Another 

approach is development of drugs that inhibit the activity of IRE1α so interfering with 

some of the downstream effects of the UPR.  One such drug is referred to as Irestatin 

9389 [22].   

 Novel agents that target GRP78, such as epigallocatechin, are reviewed elsewhere 

[62, 87].  Other approaches involve targeting more downstream effects of the UPR such 

as upregulation of p53 by agents which interfere with binding of p53 with HDM2, such 

as Nutlin 3a [107].  Inhibitors of GSK3β, such as the organometallic protein kinase 

inhibitor DW1/2, were also shown to upregulate p53 perhaps due to effects on HDM2 

[98] or by inhibiting the phosphorylation of p53 by GSK3β [88].  GSK3β inhibitors may 

however increase the stability of Mcl-1 as the latter was shown to be a target for 

phosphorylation by GSK3β in IL-3 dependent cells [74].  GSK3β inhibitors were also 

reported to increase TRAIL death receptor expression by activation of c-MYC [91]. 

 Drugs that might exploit the metabolic consequences of ER stress such as excess 

lactate production may have a role in combination with immunotherapy.  These include 

proton pump inhibitors such as Omeprazole, which target H(+)-ATPases [17] and 

monocarboxylate transporters (MCT) 1-4 [10, 73], as well as Na+/H+ exchangers.  MCT 

transporters such as MCT-1 appeared more important in regulation of pH in melanoma 

cell lines [110] than Na+/H+ exchange pumps.  MCT isoforms may however have 

opposing roles as studies on human cervical carcinoma suggested that MCT-4 transported 

lactate out of cells whereas MCT-1 transported lactate into cells where it was a source of 

energy under aerobic conditions  [93].  Omeprazole was shown to increase the sensitivity 
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of xenografts to cisplatin [68] and this combination is the subject of ongoing clinical 

studies in melanoma. 

 

Conclusion 

 

Increased knowledge concerning cell death pathways used by lymphocytes to kill cancer 

cells and the availability of many new agents that can inhibit resistance pathways against 

apoptosis have set the scene for new approaches to immunotherapy based on 

combinations with the new agents.  Several agents appear particularly promising, e.g. 

Small mol. wt. signal pathway inhibitors of the RAF/MEK and P13K/Akt and mTOR 

pathways also show promise in preclinical studies.  Relatively few studies have been 

conducted on their effects on the immune system but in this regard the RAF inhibitor 

PLX4032 (that is specific for mutated BRAF) should not have targets in lymphocytes.  

Evaluation of these drugs in patients undergoing immunotherapy with vaccines, cytokines 

or CTLA4 antibodies in well planned clinical trials is now needed. 
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Table 1  Targeting anti-apoptotic proteins 

 

Agent Target Protein(s) Trial Stage Reference 
 
Oblimersen (G3139) 

 
Bcl-2 (specific) 

 
Stage III 

 
[8] 

 
YM155 
 
LY2181308 (antisense) 

 
Survivin 
 
Survivin 

 
Phase II 
 
Phase II 
 

 
[52] 
 
[48] 

ABT-737 (ABT-263) BH3-mimetic (inhibits Bcl-2 group – 
Bcl-2, Bcl-XL, Bcl-W, not Mcl-1) 

Phase I [14, 103, 104] 

 
Gossypol (AT-101) 

 
BH3-mimetic (inhibits Bcl-2 group) 

 
Phase I 

 
[71] 

 
Obatoclax (GX015-070) 

 
BH3-mimetic (inhibits Bcl-2 group) 

 
Phase I/II 

 
[92] 

 
SAHB 
 
TW37 
 
Smac Mimetics 
 
Smac Mimetic SM-164 
 
Smac Mimetic Smac037 

 
BH3 mimetic 
 
Bim-mimetic (inhibits Bcl-2 group) 
 
Inhibitor of IAP1,2, XIAP 
 
Inhibitor of IAP1,2, XIAP 
 
Inhibitor of IAP1,2, XIAP 

 
Preclinical 
 
Preclinical 
 
Preclinical 
 
Preclinical 
 
Preclinical 

 
[84] 
 
[116] 
 
[130] 
 
[67] 
 
[16] 
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Table 2  Treatment combinations with TRAIL or agonistic antibodies to TRAIL 

 

Agent TRAIL/ 
A.MAbs 

Cancer Mechanisms of action Reference 

 

Cox-2 Inhibitors 

 

TRAIL 

 

Hepatocellular Ca 

 

↑TRAIL R1,R2 ↓Mcl-1 

 

[58] 

 

Dipyrimadole 

 

TRAIL 

 

Colon and prostate Ca

 

CHOP mediated ↑TRAIL R1,R2 

 

[30] 

 

Curcumin 

 

TRAIL 

 

Renal Ca 

 

↑DR5 

 

[56] 

 

Bortezomib 

 

A.Mabs 

 

NSCLC 

 

↓Mcl-1, ↓FLIP 

 

[69]  

 

Quercetin 

 

TRAIL 

 

Colon Ca 

 

TRAIL R1,R2 in lipid rafts 

 

[85] 

 

Sodium Arsenite 

 

TRAIL 

 

Melanoma 

 

TRAIL R1,R2↑, cFLIP↓ 

 

[50]  

 

Resveratol 

 

TRAIL 

 

Melanoma 

 

NF-κB↓, Stat3↓,cFLIP, Bcl-XL 

 

[51]  

 

Vorinostat 

 (HDACi) 

 

MAb MD5 

(murine) 

 

Mouse breast Ca 

 

cFLIP↓ 

 

[26] 

 

 

Quercetin 

 

TRAIL 

 

Human hepatoma 

 

DR5↑,cFLIP↓ 

 

[60]  

 

Triterpenoid 
 CDOO-Me 

 

TRAIL 

 

Human lung Cancer 

 

cFLIP↓ degradation 

 

[131]  

 



 17

 

 

 

 

Table 3   The ERK1/2 pathway blocks apoptosis at multiple sites 

             

• Inhibits Bim EL by phosphorylation Ser 69 and other sites [5, 11] 

• Phosphorylates Bad indirectly via RSK [5] 

• Repression of Bmf translocation [105] 

• Induces Mcl-1 [5, 115] 

• Induces GRP78-(GRP78 binds Bik, caspase-4) [53, 54] 

• Induces IL-8 and upregulation of ICAM  [63] 

• Increases HIF-1A expression [65] 
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Table 4  Inhibition of apoptosis by activated Akt [72] 

        

• Phosphorylates FOXO transcription factors resulting in decreased Bim 

• Phosphorylates and inhibits BAD 

• Phosphorylates and inhibits GSK3b 

• Activates NF-kB 

• Activates HDM2 and thereby decreases p53 
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Table 5   RAS/RAF/MEK signal pathway inhibitors 

Agent Class of Inhibitor Target Protein(s) Reference 
 
Sorafenib 
 

 
Multikinase inhibitor 

 
C-Raf; B-Raf; 
VEGF-2, -3; PDGF;
Flt-3; c-Kit 

 
[2, 23, 38, 75] 

 
Tanespimycin 
(KOS-953, 17-AGG) 

 
Hsp90 inhibitor 

 
Hsp90 (client 
proteins B-Raf, 
Akt, others) 

 
[57] 

 
RAF265 
 

 
Multikinase inhibitor 

 
Mutant B-Raf, 
VEGFR-2 

 
[21] 

 
PLX4032 

 
Selective B-Raf 
kinase inhibitor 

 
Mutant B-Raf 

 
[102] 

 
PD0325901 

 
Non-ATP-competitive 
specific MEK inhibitor

 
MEK1, 2 

 
[21] 

 
AZD6244 

 
Non-ATP-competitive 
specific MEK inhibitor

 
MEK1, 2 

 
[18] 

 
Tipifarnib 
(R115777) 

 
Farnesyl transferase 
inhibitor 

 
Prenylated proteins

 
[24, 37] 
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Table 6  Akt, receptor tyrosine kinase (RTK), and Stat signal pathway inhibitors 

Agent(s) Target Protein Reference 
   
SF1126 (LY294002-prodrug) PI3K [28] 
 
Perifosine, PX-866 

 
Akt 

 
[66] 

 
CMEP 
 
GSK 690693 
 

 
Akt 
 
Akt 

 
[122] 

Temsirolimus (CCI-779) mTOR [1] 
 
Everolimus (RAD001) 

 
mTOR 

 
[1] 

 
Deforolimus (AP23573) 

 
mTOR 

 
[77] 

 
XL765 

 
P13K/mTOR 

 
[82] 

 
PI 103 

 
PI3K/mTOR 

 
[89] 

 
SB216763, DW1/2 

 
GSK3β 

 
[98] 

 
Imatinib, dasatinib, sunitinib, erlotinib 

 
RTKs 

 
[45] 

 
Dasatinib 

 
Src 

 
[34] 

 
S31-M2001 

 
Stat3 

 
[96] 

 
SUI1274 

 
c-Met/HGF 

 
[78] 
[86] 
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Table 7   ER stress induces antiapoptotic effects [42] 

              

• Upregulation of Bcl-XL, Mcl-1.  Downregulation of Bcl-2. 

• Activation of Akt, MEK/ERK 

• Upregulation of GRP78 

• Downregulation of p53 (via ?HDM2) 

• Glycolysis and acidification of the microenvironment 
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Table 8  Additional agents to target ER stress induced resistance to apoptosis [42] 

              

• Agents that target HDM2 & increase p53, eg Nutlin 3a 

• Inhibitors of GSK3β that target S 315,376 on p53, DW 1/2 

• Inhibitors of GRP78, IRE1α (epigallocatechin, Irestatin) 

• VEGF-R2 inhibitors (AZD 2171), Proton pump inhibitors (Omeprazole) 

• Monocarboxylate transporter (MCT) inhibitors  
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BIDP53.-NOXA, 
PUMA,BAD,BID

Mitochondria

Bcl-2,Bcl-xL.Mcl-1
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ER Stress, 
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