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CHAPTER 3
CLOSURE PROPERTIES OF THE SPATTAL NUMERICAL RANGE

.1 INTRODUCTION AND PRELIMINARIES

The open unit disk is the spatial numerical range of
the right shift operator on an infinite dimensional Hilbert space,
[Halmos, 1, Solution 168(2)]. This shows that the spatial
numerical range need not contain its boundary. In this chapter
we eXamine some subsets of the boundary of the spatial numerical
range and show that for particular operators on certain classes of
Banach spaces these subsets are in the spatial numerical range.

The first result of this type is due to D. Hilbert
[F. Riesz and B. Sz-Nagy, 1, p. 232] who proved that if T is a compact
hermitiaen operator on g Hilbert space and A ¢ W(T) is such that
IA] = swp{|a]l: & e W(T)}, then A ¢ W(T). This is extended, in
section 3, to a larger class of compact operators on a restricted
femily of Banach spaces. Hilberts result was extended by
B. A. Mirman [1], who proved that for a compact operator T on
Hilbert space the set of exposed points of W, which do not lie
on a line segment of the boundary of W(T) passing through fhe
origin, are contained in W(T). This result also follows from
Iemma 1.6.3. and the well known fact that for a compact operator T

o(T)\ {0} = po(T). In section 2 we improve on this result, cbtaining
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necessary and sufficient conditions for a compact operator on
Hilbert space to have closed spatial numerical range. We also
obtain relagted results for compact operators on fp( 1 < p < =),

Operators which attain their numerical radius are
studied in section 3. In particular, we show that the set of hermitian
operatoré on & Hilbert space, which attain their numerical radius,
is dense among &ll the hermitian operators. From this we give
an alternative proof, for Hilbert spaces, of a'result by
J. Lindenstrauss [1].

In the course of this chapter we raise several general
questions to which we give only partial answers , thus indicating
areas for possible future research.

Another result concerning the closure of the spetial
numerical range is due to S. K. Berberian [1] and 8. K. Orland
[Berberian & Orland, 1]. They show that a given Hilbert gpace H
can be embedded in another Hilbert space K and that there exists
an isometric *-isomorphism T+~ [T] of B(H) to a subalgebra of
B(K) such that W(T) = W([T]). We follow their argument and extend
it to normed linear spaces, however, because the numerical range may

not be convex, the result obtained is weaker.
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1.1. Proposition. For a given normed linear space E there
exists a Banach space X such that
i) E can be embedded in X;
1i) there existe an isometric isomorphism T & [T]
of B(E) onto a subalgebra of B(X);

1ii) W(T) Ew([T])< V(T).

Proof. Let B be the set of sequences of elements of E whose
norms are uniformly bounded, that is s ¢ B if s = {xn}, x €&
and ﬂxnu € M for all n and some M (0 < M < =) depending on s.

B, with addition end scalar multiplication defined point wise, is
a linear space.

Let u be a "Banach-Mazur generalized limit" [Day, 1]

on bounded sequences of real numbers. For s € B, s {xn},

define p(s) = u{nxnﬂ}, then it is readily seen that p is a

pseudonorm on B. Set P = B/N where ¥= {s ¢ B:p(s) = 0} and write
s' for s + ¥ ¢ P. Then P is a normed linear space. Further, if
we denote by [x] the element of P arising from the sequence {x}
where x € E then x v [x] is an isometric ismorphism of E onto a
subspace of P, showing that E may be embedded in P.
Now if o, is a bounded sequence of real numbers ]anl x a % 0

and so u(}an| t an) 3 lim inf(|un| + an) >0 or

or |ula )| <u la|).
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If for a bounded sequence of complex numbers An = o + iBn,
@ » B real, we define u(An) = u(an) + 1u(6n), then
u(An) =r e*® for some real r and 6 and

Iu(An)I = e—leu(xn) = u(e_lek ) is real and so by definition
n

~18

u(e u(Re e_iekn)
u(le'ie%nl)
(1),

Therefore lu(xn)l < u(lAn]).

An)

A

A

Hence if k = {fn} is a sequence of elements of E' such that
"fnﬂ ¢ M for all n and some M > 0, then for any s = {xn} € B
k(s') = u(fn(xn)) defines & linear functionsl on P and

1
[k(s')| Iu(fn(xn))l
u(lfn(xn)l)

M u(anU)

]

A

[/

Mop(s')
So k ¢ P', with Ukl ¢ M.
Further if the fn's are chosen so that
£ D(xn), ix ) = 1, then k = {f } has Ukl < 1 and
k(s') = 1 where s = {xn}, so k e D(s').
Now for T ¢ B(E) define [T] vy {T]: B - B: {xn}9+ {Txn}, then for
any s = {x } e B p([T]s) = u(UTxg ) g uTl u(ann)
= Il p(s)

and so [T]: P+ P: g' > ([T]s)! is a continuous linear operator on
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P with[T]l ¢ Tl However for any e > O there exists x ¢ E,
Uxit = 1, such thatlTxil > T1] - & and since H[T]{x]U = Tx{] we seec
thath[T]ll = UTU. The mapping Te [T] is therefore an embedding of

B(E) in B(P).
If X ¢ W(T) then there exists {xn}, Hxnu = 1, and
foe D(xh) such that f (Tx ) + X. Letting s = {x } and k = {f }
we have k([T]s!') = u(fn(Txn)) = X and k € D(s'), therefore
A e w([Tl).
The result now follﬁWs by teking X = 5} the
completion of P, and extending [T] to an element of B(X) by continuity.
That W([T]) € V(T) follows since, by Corollary .2.5.2. and the fact
that T+ [T] is an isometric isomorphism, V(T) = V([T]). //
We now recover the result of Berberian & Orland from

the above theoren.

'1.1.1. Corollary. For a given Hilbert space H, there exist
another Hilbert space K such that
i) H can be embedded in X;

1i) there exists an isometrie isomovphism T+ [T] of
B(H) onto a subalgebra of B(K)

iii) W(T = w([T]).
Proof. Identify H with E in Proposition 1.1. Then the ncrmed linear
space P, constructed in the proof of Theorem 1.1, is clearly an

inner-product space with inner-product (s',t') = u((xn,yn)) where
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s = {xn}, t = {yn}, and K = X is the Hilbert space completion of P.

Hence for T ¢ B(H) we have W(T) Zw([T]) € V(T). But W(T) is convex
and so, by'éorollary 1.3.1.3, W(T) = W(T). !/

For a finite dimensional normed iinear space the spatial
numerical range of every operator is closéd. Whether this property
characterizes finite dimensional spaces is an open question.
Certainly for Hilbert spaces it does, for at the beginning of this
chepter we saw that in en infinite dimensional Hilbert space the
right shift operator has open numerical range. In fact for Hilbert
spaces it is sufficient to require every compact operator to have
closed numerical range as Halmos [1, solution 168(1)] shows how to

construct a compact hermitian operator T, on an infinite dimensional

Hilbert space, with W(T) \W(T) non empty. A similar construction

can also be carried out for fp-spaces (1 < p < =),

1.2. Proposition. Let X = %p for some p, 1 < p < ®, then if the
spatial numerical range of every compact operator on X is closed,

X is finite dimensiomal.

Proof. Take any sequence {Xi} where 0 < Ai < 27%, then we may
construct K € B(X) by K(xl, Xpaeens xn,....) = (Alxl, ApXnseses
Anxn,....). Let X be defined by

Kn(xl,...,xn,....) = (Alxl,.,., A X 0,....) then K is a finite

rank operator, and so compact.
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Further WK - Knﬂ -0 as n =+« so K is a compact operator.
Now for sny x =(Xl”"’xn"'°') e X, lx{) = 1, the
f e D(x) is represented by

f = (sgn xllxl]p-l,..., sgn xnlxnlp"l,....) where, for ) ¢ C

]

sgn X = A/|A| for A ¥ 0

it

0 for X = 0.

Hence f(Kx)

IA x| > 0 s0 0 ¢ W(K), but W(K) is closed by

n

assumption so by Theorem 1.4.2. 0 ¢ o(K) and hence K is reguler.
Therefore I = KKml is compact and so the unit sphere of X is compact

and therefore X is finite dimensional. //

The above argument is easily extended to any normed

linear space E with e Schauder basis {bi}, ﬂbiﬂ = 1, if for each

b'4 inbi and £ ¢ D(x), there exists scalars fi such that

f

i

ZfiBi and fixi 2 0 where {Bi} is the biorthogonal sequence to

{b, 3.

Proposition 1.2. ensbles us to construct examples of
compact operators, on Lp-space {1 < p < ®), with spatial numerical
ranges that arec not closed. A later example will show that for
y (the space of all sequences converging to 0, with supremum norm)
even finite rank operators may fail to have closed numerical ranges.
It is tempting therefore to conjecture that finite dimensional spaces

may be characterized by the property that every compact operator

has closed spatial numerical rangc.
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In the next section we make a more detailed study of
the spatial numerical range of a compact operator over certain

types of Banach spaces.

2. THE SPATIAL NUMERICAL RANGE OF A COMPACT OPERATOR

In this section we examine the closure properties of the
spatial numerical range of a compact operator on various Bznach spaces,
v?%gh unless otherwise stated are infinite dimensional. As already
mentioned Halmos [1, solution 168(1)] has given the example of the
operator T on Hilbert space, 12, defined by \

T(xl,xe,...,xn,....) = (x , %xg,...,l/nxn,....),

with W(T) = (0,1] to show that the spatial numerical range of a compact
operator may fail to be closed.

The following subset of the closure of the spatial numerical

range of an operator will be of importance in our arguments.

2.1. DEFINITION. For a normed linear space E and T B(E) the

extreme edge of W(T) is defined by

extreme edge W(T) = {x ¢ W(T): A ¢ W(T) for any r > 1}
Thus A # O belen's to the extreme edge W(T) if and only if
A is the point in W(T) farthest from the origin in the direction of A.

Note that O ¢ extreme edge W(T) even if 0 e W(T).
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2.2. LEMMA. For a normed linear space E and compact T e B(E)

if A # 0 is an extreme point of W(T) then \ e extreme edge of W(T).

Proof. Since T is compact 0 € o(T)C W(T), by Theorem 1.4.2. Assume
A ¢ extreme edge of W(T) then there exists r > 1 such that

X e V—ITT_)—, but then A lies in the interior of thé straight line
segment from 0 to rA which contradicts A being an extreme point.

Hence A e extreme edge W(T). //

.2.2.1. Corollary. For a normed linear space E and compact

T & B(E) we have co W(T) = co(extreme edge W(T) L} (0})

Proof. Since W(T) is closed and bounded we have by Fggleston
{1, Theorem 10], that
co W(T) = co W(T). Now the set of extreme points of W(T)
is contained in extreme edge W(T) {J {0} by lemms 2.2, and so
co (extreme edge W(T){j {0}) = co W(T). //
We will say that a normed linear space E has the
weak upper semi-continuity property (wusc-property) s ir {gn},tixnﬂ= 1,
is a sequence o(E,E') -convergent to x € E and {fn}, £ e D(xn),
is a sequence oE',E)-convergent to £ € D', then f(x) = Ufil xii.
The importance of such spaces is indicated in the next

lemma, .
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:2.3. LEMMA. Let X be a reflexive Banach space with the wusc-property.

Then for compact T € B(X) extreme edge W(T) CW(T).

Proof. Take A ¢ extreme edge W(T), then O # XA e W(T) and there
exists A_ =f (Tx ), ix u=1and £ e D{x ), such that A - A.
n n'n n n n n

Since X is reflexive we can choose a subsequence of the {xn},
{x_}, converging in o(E,E') to x ¢ X, Ixl{l £ 1, similarly we can

choose a subsequence of the {f_ 1}, {fn }, converging in o(E',E)

k)

to £, Ufll ¢ 1. Relabelling the {xn } as {xm} we have:

K

— f] \ - m -—

£ (Tx ) ~ £(T )] < Ifm(Txm) £ (mx)| + |£ (Tx) £(Tx) |
¢ dlex - Txit + |(£ - f) (Tx) |
+ 0, since T ig compact and

{f } is o(E*,E)-convergent to f.
m

Therefore A = £(Tx)

or A= ettt (£(Tx)) where £ = £/ufl

end x = x/0xll, But £ € D(x) end so

A= kAl where k = UfHl fxig¢ 1 and

A, = £2(Tx) e W(T).
Hence k™A ¢ W(T) and so since A e extreme edge W(T) we have

k'l g1,

therefore k 1 and

A=A, e W(T). //



2.3.1. Corollary. If X is a reflexive Banach space with the

wusc-property and compact T ¢ B(X) has 0 ¢ W(T) then coW(T) = coW(T).

Procf. By Corollary 2.2.1. and the above lemms

co W(T) = co(extreme edge W(T) t) {0}) & coW(T) ¢ coW(T).

We now give some examples of reflexive Banach

spaces which have the wusc-property.

2.4, LEMMA. If {xn}, hx it = 1, is a sequence of elements in
Rp, L < p < o, gnd {xn} 8 o(%p,4p')~convergent to x, then for
fn £ D(xn) the sequ@nce'{fn} 18 a(%p',0 )~convergent to f where
£x) = H£l pxl

Proof. For y e #&p write y = (y(l), y<2), cees y(i), ceee)e

Then since {xn} converges to x in o(%p,2p') and anH £ 1we

have by [Taylor, 1, p. 210]

xn(i) > x(i) for all i.
Now £ (1) < sgn x (1) |x (i)|oal/ﬂx i P2
n n n n
= sgn xn(l) ]xn(l)lp_l, since x Il =1, and so
e ) 5 oW o D) Pt por ann g

n

Again by [Taylor, 1, p. 210] {fn} is o(%p',%p )~conversent to
£ = (f(l),..., f(n), cee.), and £(x) = zlx(l)[p. While

uel fixdl

(%(x(l) ‘p—l)p/p-l o /\(glx(l) lp)l/Fl

(i)|93.

32|x
i

Therefore f£(x) = el xil, //

108.
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Combining this lemma with Corollary .2.3.1. we have

proved the following theorem:

.2.5. THEOREM. For compact T ¢ B(%0), 1 < p < », we have
extreme edge W(T)C W(T),
further if 0 e W(T) then coW(T) = co W(T).

We now restrict our attention to Hilbert spaces. As might
be expected, the convexity of the spatial numerical ranges leads

to more precise results than those of the last Theoren.
2.6. LEMMA. A pgilbert space H has the wusc-property.

Proof. If {xn} converges in o(H,H') to x then (xn,y) + (x,y)
for all y € H. Therefore (y, xn) + (y,x) for all y ¢ H and so
the functionals fn = (-, xn) > D(xn) converge in o(H',H) to

£ = (¢,x), further f(x) = (x, x) = t)x(lz. //

The next theorem is a joint result of J. R. Giles eand the

author [de Barra, Giles and Sims, 1].

.2.7. THEOREM. For a Hilbert space H and compact ¥ e B(H) we have
i) If 0 & W(T) then W(T) is closed.
ii) If 0 ¢ W(T) then 0 ie¢ an ewtreme point of W(T), and
W(T) \W(T) consists at most of two line segments in 8W(T), the

boundary of W(T), which contain O but no other extreme points of W(T).-
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Proof. By lemmes 2.2., 2.3. and 2.6., W(T) contains all the non-
zero extreme points of W(T). The result now follows from the

convexity of W(T). //

2.7.1. Corollary. If T is a finite rank operator on a Hilbert

space H, then W(T) is closed.

Proof. KerT # Y0¥ otherwise H would be in one to one correspondence
with a finite dimensional space R(T). Hence 0 e p of(T) CW(T)

and the result follows from Theorem 2.7.1i). //

2.7.2. Corollary. If T is a compact operator on a non-separabile

Hilbert space H, W(T) is alosed.

Proof. Since R(T) is separable, it follows that Ker(T) # {0}

and so 0 € W(T), Theorem 2.7.1) now completes the proof. //

The author used the operator T on l2 defined by
T(x,, XpaeeosX 5eenn) = (ix, ¥x,,...51/0x_,....), which has w(T) \ w(T)
equal to the line segment joining O and i, to illustrate the
exceptional behaviour of W(T) when 0 ¢ W(T) for a corpact operator T.
A similar example was noted by A. M. Sinclair, who observed that
examples illustrating the exceptional behaviour of W(T) could easily
be constructed using the properties of compact normal operators.
Such constructions follow readily from the next lemma due to G. de

Barra [de Barra, Giles and Sims, 1].
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2.9. LEMMA. For a compact normal operator T on a Hilbert space

W(T) = colpa(T)), the convex hull of the point spectrum of T.

Proof. Clearly co(po(T))C W(T) so it is sufficient to show that
W(T) & co(po(T)). Suppose there exists a A e W(T) \ co(po(T)) then
0 ¢ co(po(T)) - A = A, say. Then for any z € A, 8 < arg z € 6 +
for some 6, so for any z ¢ emleA, Im z > 0. Now there exists

an x, Uxtf = 1 such that A = (Tx,x). By [Helmos, 1, p. 861 we may

choose an orthonormal basis for the space such that if

=¥ Tx = T here {u_} (T). 8
X = z @ e, Tx= L a e vhere {u C po . ‘o)
" -
A=t fa |2 where § |a_|” = 1, and Te le(u -2 o *2 = 0.
1 n n 1 n 1 n - n

If we write e‘le(u - A) = y_+ i8_ then %Y Ia I2 +i% 6 | |2 =0
n n n B0 L B»n
where 6v 2 0 for all n. We may assume that o, # 0 for each n so

4

= N o
Gn ¢ for ail n. We may choose nl and n2 where ynl and Yne

have opposite signs to get A ¢ [unl, une]. But this contradicts

the convexity of co(po(T)). Therefore, W(T) Cco(po(T)). !/

2.9.1. Corollary. For a compact normal operator on a Hilbert

space W(T) \W(T) = 0o (T)\ copo(T)

Proof. The poof is immediate from Iemma 1.6.5. and the

above theorem. //



2.10. Examples. pefine operators T,> T,, T, on %, by

2 73

%ﬁﬁ,xg,“.Jn“”.)z(%&,Xyim3y3ihk2%““.J

'I‘g(xl, X, ...,xn,....) = (xl, ix,, 1+i/2 x_,..., 14i/n-1 xn,....)

3
«o 1/3m-2 Xy i/2n-1 x

]

T3(xl, Xy ...,xn,....) (xl, ix,, Pn-1 eed)

From Iemma 1.6.5. for n

triangle with verticies 0, 1 and i. Using Theorem 2.9. it is easily

[0, ¥)

seen that W(Tl)\ W(Tl)

W(T,) \ W(T,)

L}

[0, 1) y o, 1)

and W(T3) \ W(T3) {0}

where we have used an obvious notation for stréight line segments
in the complex plane.

These examples were first given by J. R. Giles end
illustrate clearly the type of exceptional behaviour of W(T) for a
compact operator T when 0 ¢ W(T). //

The next example, obtained by G. de Barra and
independently by the author, illustrates the same type of exceptional
behaviour of W(T) for a non-nomal compact operator, and shows
that Corollary 2.9.1. is not true for an arbitrary compact operator

on a Hilbert space.

1, 2, 3 ve heve that W(T ) = To(T ) is the

112.
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2.11. Example. Define T on L, by

T(xl, X, ..,xn,....) = (x, + x

s 5o Xps Xgseens 1/n-2 xn,....)

This can be regarded as the direct sum of operators T1 on fz and

T2 on 22 defined by

Ty (x)s %) = (g + x5, x,)
and T2 (x3,..., xn,....) = (x3, %xh,..,l/n~2 xn,....).

Now G(Tl) = {1} and W(Tl) is the closed disk with centre 1 and

radius ¥, while a(T2) ={0,1,%,...,1/n,....} and W(Tg) = (0,1).

By [Halmos, 1, p. 113] we can write W(T) as W(T) = co [W(Tl)L)W(T2)],
from which we see that W(T) \W(T) consists of the two helf-open line

segments containing 0 and tengent to the disk W(Tl)' However

a(T) = G(Tl) by c(Tg) is real and coo(T) \ copo(T) = {0}. //

Returning to the genersal case of compact operators
on & Banach space, one may well ask whether the extreme edge of>W(T)
is alwsys contained in W(T) for a compact operator T. The following
example, suggested by Giles, shows this need not be the case even

for finite rank operators.

2.12. Example. Define T on c, by

x n

T(xl, x2,..,xn,....) = (% xn/2 » 0y 0y0uns).
n=1l

Then

UTl = sup{]z xn/2n| : ]xnl <1 for all n} £ £%° = 1.
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(n)

Now chooge the seguence x such that
x.(n) =1 ign
i
=0 i>n

then the function f ¢ co', represented by £ = (1, 0, 0,....) is
(n) (n)

such that £ ¢ D(x'"’), for ell n, and so £{Tx'" ') e W(T), for

ell n, but f(Tx(n)) +>1 801 e WT) and since TN ¢ 1,

1 ¢ extreme edge of W(T). However 1 ¢ W(T). /!
It would be of some interest to characterize those

Banach spaces which have the wusc-property. We have already seen

that Hilbert spaces and Lp-spaces, for 1 < p < ®, do have this

property. The space &, also has the wusc-property, since if

1
{xn}, ”xn“ = 1, is a sequence converging in 0(21,21') to x and
{fn}, fn € D(xn), converges in o(ii,Li to £, then by [Taylor, 1,

p. 210] an ~ xi} > 0 and so lxil = 1 and

|1 - £(x)] Ifn(xn) - £(x)]

/2

e (x) - £ (0] + |20 - 2(x)]

FZ2a)

Ux - xil + (e~ 1) (x)| +o0.
However C[0,l], the space of continuous functions on the compact
interval [0,1] with the supremum norm, has not got the wusc-

property.



115.

2.13. Example. X=C[O,l] does not have the wusc-property.

Proof. Define the sequence {xn} of elements of X by

xn(t) = (1 - 1/n)(1 - L4t) for Og tg 1/k
= 0 for /U< t< 1 - 1/2n
= hn(t - 1) + 2 for 1-1/2n¢ t< 1 - 1/hn
= (1l - 1) for 1 -~ 1/ln< t< 1

Then for any fixed t ¢ [0,1] we see that

xn(t) + 1-Ut foro0sgs tg 1/4
> 0 for 1/h ¢t ¢ 1
= 0, for all n, for t = 1.

So by [Taylor, 1, p. 210] x is o(X,X')-convergent to x  where

1]

x (t) =1 -kt for0 <t g 1/4
= 0 for 1/k < ¢t ¢ 1.
Also since xn(l - 1/kn) = 1 and xb(o) = 1 we see that
Hxnﬂ = lixll = 1.
Now from the known representation of X', [Taylor, 1, Theorem 4,32-C]
we may teke f e D(xh) to be represented by the step function
[fn](t) =0for0 gt <1~1/kn
=1 forl-1/kn ¢t ¢ 1.

The o(X’,X) limit of fn is f_ where

[z, 1(+)

0 for O

A

t <1

lfort =1,
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since for any x € X

1
£ (x) = j’ x(t) alz_1(t) = x(1 - 1/n)
0 + x(1) since x is continuous
=}’1 x(t)alr_1(t).
Jo ©

Also Hfou= 1, but

1
fo(xo) =j xo(t) d[fo](t) = xo(l) =0
0

t
50 fo(xo) LU x U | //

In this section we have examined the closure properties
of the spatial numerical range of a compact operator. We introduced
& weak upper semi-continuity property for Banach spaces and proved
that for a compact operator T, over a reflexive Banach space with
the wusc-property, co(W(T)) = To(W(T)) whenever 0 ¢ W(T). 1In
particular we showed this to be true for Lp-space (1 <P < ») and
a Hilbert space. In the latter case we showed that W(T) is closed
if 0 ¢ W(T), clearly this is also a necessary condition. We then
gave several examples to illustrate the different types of exceptional
behaviour possible for W(T) \W(T). The section was concluded with

an example of @ Banach space not heaving the wusc-property.



-3. OPERATORS WHICH ATTAIN THEIR NUMERICAL RADIUS

We have scen that any compact operator T, on a Hilbert
space, with 0 ¢ W(T) has W(T) closcd, while, for several classes of
Banach spaées, any compact operator T has the extreme edge of
W(T) in W(T). A weaker condition than, either W(T) being elosed, or

containing the extreme edge of W(T) is that v(T) be attained.

3.1. Definition. For‘a normed linear space E, we say the
numerical raodius of T € B(E) is attained if there exists x e E yxtt = 1
end £ € D{x) such that’
[£(Tx) | = v(t).
Similarly we say an operator T attains its norm if there exists
x ¢ E, lixll = 1, such that UTxtl =il
In this section we examine and partially solve, the problem of
determing those operators which attain their numerical radius.
In our investigation it is often sufficient to consider operators T
with v(T) = 1 ¢ ﬁ?&@, for if T e B(E) there exists A ¢ W(T) with
IA] = v(T) and then T, = A™T has v(T

1 l)
A Benach space X is seaid to be HL [M. M. Day, 1] if whenever {xn}

=1 s'W(Tl).

is o{X,X")~convergent to x and Hxnﬂ converges to tixil, then {xn} is
norm convergent to x,

The next proposition extends a result of Hilbert [Riesz and

Sz.-Negy, 1 p. 232]
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3.2. Proposition. If X is a smooth, reflexive, HL Banach Space
and T e B(X) is compact with 1 = v(T) = Onll ¢ W(T), then v(T) Zs

attained.

Proof. There exists a sequence {xn}, Hxnﬂ = 1, and fn € D(xn) such
thet fn(Txn) converges to 1. Since X is reflexive there is a subsequence
of the {xn},{xm} such that {xm} is §(X,X')-convergent to x € X with
lix{l £ 1. Therefore since T is compact UTxn - Tx{l - 0 and so
o 0 - x| > 0 or WTx (1 > UTx(l

but 1 = UTl 3 []Txm“ > Ifm(Txm)' + 1 8o

UTxll = 1 and therefore lixil = 1, otherwise if hxil < 1,

WTH 3 UTxq / gxil = Hxl™ >

[

Xft > 0 and so by the smoothness of X

Since X is HL’ we have me
£ (Txm) > fx(Tx) e W(T)

therefore 1 = f}éTx) e W(T) or v(T) is attained. //

That this proposition is not true for an arbitrary
Banach space, even when T is teken to be of finite raenk, is shown
by Example 2.12.

The next lemms is due to Lumer [1].
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3.3. LEMMA. If X is a wwiformly convex Banach space and

T € B(H) has v(T) = OTH, then o(T) = UTIL.

Proof. We may =ssume v(T) = NTU = 1 € W(T), so there exists {xn},
WX (=1, and f e D(xh) such that fn(Txn) + 1. Then

2 5 ity + nxnu z!iTan + uxnu

W

Urx.  + x {}
n n

W

Ifn(Txn +x )|

H

+ .
lfn(Txn) 1] » 2
therefore UTxn + xni!+ 2 and so by the uniform convexity of X,

OTx - x B >0orle o) and 1l < p(T) <TH = 1, //

The next example shows that Lemma 3.3. is not true
for general Banach spaces. However, as we will show, it can be
extended for certain classes of operators, in particular operators

which attain their numerical radius.

g8

3.4, Example. Let X = ¢~ , the space of ordered pairs of complex

nurbers with the supremum norm, then the operator T on X, represented
]
0 o

by the matrix » where o,B # 0, has p(T) # v(T) = YTu

T

sup{ll(oA; + BA,, O) U ¢ max {}All, Ile} =1

]

sup IaAl + BAZ, where max {Ikll, Ikgl} =1

i

lal + |8].
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Now choose x € X as x = (sgn o, sgn B), then nxil = 1

and for f = (sgn 3,0), £ € D(x), as o B # O,

£(Tx)

sgn a(|a| + [8]) e W(T)
or v(T) > lal + |8]

therefore TU = v(T) = |a| + |8g].
However o(T) = {0, a}

so p(T) = |a| < v(T), since 8 # 0. ' //

The next lemme extends Lemma 3.3. to rotund Banach spaces
for operators which attain their numerical radius. It is also

proved by Bonsall and Duncan [1].

3.5. LEMMA. If X s a rotund Banach space and T ¢ B(X)

has v(T) = Ut and v(T) attained,.then p(T) = ul),

Proof. We may assume 1 = v(T) = liTll ¢ W(T), so there exists x ¢ X,
Uxil = 1, and f_e D(x) with 1 = £ (Tx) ¢ Ixll £ 1, so £ e D(Tx)
end hence by the rotundity of X, x = Tx and 1 € po(T) therefore

1 <po(T) ¢ v(T) = 1. //

Combining this lemma with Proposition 3.2. we could obtain
a slight extension of Lemma 3.3. for compact operators.

We now obtain equivalent conditions for v(T) to be
attained, where T is an operator over a rotund Banach space which
permits an hermitian decomposition. I am indebted to A. M. Sinclair,

who suggested the following result to me.



3.6. LEMMA. For a rotund Banach Space X, x ¢ X (ixt = 1),
feDx), and T e B(X) with v(T) = 1 and T = P + 1iQ where
P, Q are hermitian, the following are equivalent:
i) £(Tx) = 1
ii) £(Px) = v(P) = 1

iii) Px = x

Proof. 1 = £(Tx) = Re £(Tx) = £(Px) g v(P) = sup Re W(T) ¢ v(T) = 1,
so 1) implies ii). That ii) implies iii) follows from Lemme 3.5.,
since P is hermitian and so by Sinclair [1], v(P) = lipll,

If Px = x then

1

£(Px) = Re £(Tx) < |£(Tx)| < v(T) = 1, so iii) implies i). //

.6.1. Corollary. For X, x, £, T as in Lemﬁa 3.6., i1f
£(Tx) = 1, then [£(Qy )1° + [2(y)12 < v(P)® for all y ¢ X,

Hylt = 1, and £ € D(y). In particular £(Qx) = 0.

Proof. Since £(Ty) e W(T) we have by Lemma 3.6 ii) that

v(P)?

v(m)? 3 |2(Ty) |?

it

le(py) + is(qy)|?
[£(Py) ]2 + [£(ay) 2.

Hence when y = x we have by Lemma 3.6. ii) that

)2

v(P)° = v(P)® + [£(ax)]° or £(qx) = 0. //
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Bishop and Phelps [1] have shown that the set of
functionals on a Banach space which attain their nom is denge in
the dual space while J. Lindenstrauss [1] nes proved that the set
of cperators which attain their norm, ig dense in all the
operators on e reflexive Benach space. It is natural, therefore,
to enquire whether the set of operators which attain their
numerical radius is dense among all the operators on & Hilbert
space. While this remains sn open question, we now proceed to
prove that the hermitien operators which attain thelr numerical
radius, are dense emong ell the hermitisn operators on a Hilbert
space. This is readily seen to be a necessary condition for the
set of operators, which attain their numerical redius, to be
dense among all the operators. We use the result on hermitian
operators to obtain an alternative proof of Lindenstrauss' result
for the particular cagse of operators on a Hilbert space.

We will in fact, give two alternative proofs that for
hermitisn Q, on a Hilbert space, znd ¢ > O there exists hermitien
Ql which attains its numerical radius and g - Qlﬂ< €. Kach proof
leads to slightly differeﬁt conclusions. The first identifies the
element x, Uxll = 1, at which [(Ql x, x)| = v(Ql), while the second
allows the form of Ql - Q to be explicitly determined.

Lemme 3.6. shows that for an hermitian operator Q, with
v(Q) =1 ¢ W(Q), the numericel radius is attained if and only if 1 is

an eigenvelue of Q. An arbitrary hermitian operator may have no
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eigenvalues (for exemple, a Toeplitz operator), one way in which

this difficulty may be overcome is given by the next lemma.

3.8. LEMA. If H is q Hilbert space, ¢ > 0, and Q ¢ B(H) is
heymitian with NQW = 1 ¢ W(Q), then for any x ¢ H, ixil = 1,
such that 1 » (Qx,x) > 1 - 82/16, there existean hermitian Ql e B(H)

such that Q - QU < € and x is an eigenvector of Y corresponding

to the eigenvalue A where HQlH - X< e,

Proof. Let § = e/L, choose x ¢ H, tix{l = 1 such that
13 (Qx,x) 3 1 - 6° then

bex + x> [(Qx + x,x)| = |(Qx,x) + 1] 22 - 52.

S0 by the parallelogram rule

x - axi® = 20@ei® + 200 - tax + %P € b - (2 - 62)2 = 1462 _ % ¢ 162

A

thet isi)x - Qx(l g 26.

Let x_ = x - Qx, Nx 0l € 26 and construct Ki ¢ B(H) by
Kl(y) = (y,x)xO fo} ell y € H, then HKill= bx_ti < 26.
Let K = K, + K,* then K is hermitian and iKH g 4§ = e.
Now define Ql = Q + K then

UQ, ~ Qi = K0 < e,

Further

Q (x) = Q(x) + K(x)

Qlx) + x + (X,xo)x

Qx) + x - Qx + (x,xO)x

(L + (x,xo))x.
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That is 1 + (x,xo) is an eizenvalue of Q, with eigenvector x.
Now (x,xo) = (x,x - Qx) = 1 - (x,Qx)

therefore, since 1 > (Qx,x) = (x,Qx) > 1 - 52,

we have 0 ¢ (x,xo) < 5% and sol <X gl +6° and

t,)Qlf!-As1+e-1=a. //

3.9. THEOREM. For a Hilbert space H, % > € > 0, and hermitian

@ e B(H), 2f x € H, px!t = 1, 2¢ such that
nawe j{ax,x)] 2 (1 - ¢ 2/256)&Qg then there exist hermitian K e B(H)

such thatiQ - Kiig e and |(Xx,x)| = v(K).

Proof. We may assume without loss of generality that yqil= 1 ¢ WZQ}.
Then by Lemma 3.8. we can find Q, with UQl - Qll g e/4, and with x

as an eigenvector corresponding to the eigenvalue Al where

anll - X, s e/h

1
Let Q2 = QlﬂlQlH then

hQ, - Qlt ¢ €/2 while A, = Al/ HQlH is an eigenvalue of Q,, with
eigenvector x, and 1 - Ag < /2.

Now there exists a continuous real valued function f on O(QQ) such
that f(kz) =1=Max {|2(a)] : ae U(Qg)}

and |a ~ f(a)| < ]Ae —f(AE)I for ell o e o(Q,).

So by the functional calculus, (see¢ Section 1.6.) we can define

K = f(Qg) vhere:

i) X will be hermitien, by Lemna 1.6.7.



i1) 1R, - Kiv= (I - £)gy !l

= (T - £)4

i

Max {|o - f(a)|: a € O(QZ)}

Ih, - £00)

l-kg

e/2

A

iii) UK

il

Hed

Max {[£(a)] : a € G(Qg)}

= 1
iv) Since x is en eigenvector of Q2 with eigenvalue k2, x is an
eigenvector of K with eigenvalue f(ke) =1,

Combining iii) and iv) with Lemma 3.6., we have that (Kx,x) = v(K)

A

and by ii) UQ - Kll ¢ nq - Qeii + HQE - KU

/A

e/2 + /2
= €. //
3.9.1. Corollary. For a Hilbert space, the set of hermitian

operators, which attain their numerical radius, ts dense in the set

of all hermitian operators.
Proof. The proof is immediste from Theorem 3.9, //

The possibility of using the functional calculus as in

Theoren 3.9., to prove Corollary 3.9.1., was first suggested to

me by A. M. Sinclair.

125.
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Since the functional calculus can be developed for a normal
operator on a Hilbert space, if we had a counterpart to Lemma 3.8.
for normal operators, the result of Theorem 3.9. would then extend
in a straight forward way to normal operators. This may well be
worth further investigation.

The second proof of Corollary 39.1. uses the following

theorem due to Weyl [Halmos, 1, problem 1k3.].

3.10. THEOREM. If X s a Banach Space and T, T, € B(X) with T - T, |

a compact operator, then o(T) Vo(T,) Cpo(T).

Proof. If X e o(T)\ c(Tl) then V = T ~ AT is singular while

Vl = - AL is regular.

Now V=V, + (V ~ Vi) = Vl(I +V

-1
1 (

. (V=-v))

so, since V is singular, we see that (I + Vl—l(V - Vl))
must also be singular, or - 1 ¢ o(Vl-l(V - Vl)).
But V-V, =7T- T, is compact, znd so therefore is Vl"l(V - Vl)'

Hemce -1 is an eigenvalue of Vlwl(V - Vl) and so there exists
x € X, Ux# = 1 such that V, >(V - Vl)x = -x or Vx = 0.

1

Therefore (T ~ AI)x = 0 or A ¢ po(T). .
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3.10.1. Corollary. For a Banach space X, the set of T ¢ B(X),

such that there exist ) e po(T) with |A] = p(T), s dense in B(X).

Procf. For any T e B(X) and ¢ > O there exists A ¢ 7 o(T) such
that |A| = p(T), since 8o(T) < no(T) and o(T) is closed. Hence
there exists {x } #x 1l = 1, such that UTx - Ax 1l > 0. Choose
X, ix 11 =1, to be such that HTXO - AxO(lS €/2 and let

v, = (1+ 2/2|Al)kxo ~ Tx_ then

Dy i € BAxy = Tx il + e/2 < €.

Now define T, € B(X) by

Tl(x) = f(x)yo + T(x) where f ¢ D(xo), then T - T, is compact and
T - Tlu = Uyoﬂ < e, further Tl(xo) =Tx_+y, = (1 + e/2|A|)AxO,

so (1 + e/2|A[)A is an eigenvalue of T and
p(T) 3 [(1 + e/2An] > [A] = o(1). -
Bence if o e o(T;) is such that |af =/p(Tl)
then o ¢ o(T) and so by Theorem 3.10.
o e o)\ G(T)g;;po(Tl). //
Less preciscly, Corcllary 3.10.1. states that the
set of operators, which attain their spectral radius at eigenvalues,

is dense emcng all the operators over a Banach space.



Restricting our attention to Hilbert spaces we have

tho following theorem:

3.i11. THEOREM. PFor q Hilbert space H, ¢ > 0, and hermitian
Q € B(H), there exists h-mmitian Q € B(H) with v(Ql) attained,

WG -~ Q,_LU <e and Q, - Q ic a hermitian rank one operator.

Proof. Assume, without loss of generality, that v(Q) = 1 ¢ W(Q).

Then there exists x e H, {lx\l = 1, such that (@x,x) > 1 - €. Iet
Gy = Qy + e(y,x)x for all v e H, then Q, -Qis & p051t1ve

hermitian rank one operator and HQ - Qll < e. Further

(le,X) >l -e+¢e=1s0 p(Ql) V(Ql) > 1 and o(Q)) ¢ G(Ql)

but 0(Q;) ¢ o(Q), as p(Q) = v(Q) = 1, so

D(Ql) € O’(Ql) \ o(Q) gpc(Ql) s by Theorem 3.10., and hence by

remma 6. v(Q,l) is attained. //
Berore proceeding to the preof of Lindenstrauss'

result, for operators on Hilbert spaces, we need the following

lemma:

3.12. LEMMA. The cperator Q, of Theorem 3.11 can be chosen such
that R(Q,) ©(Ker Q)7

128.

Proof. Tt is sufficient to show that the x in the proof of Theorem 3.11

1
could have been chosen so that x € (Ker Q) .

Hence let x be as in Theorem 3. 11, then x = X =X for some x, € Ker Q

1

and X, € Ke,r(Q)l

1
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So 1= uxtla = (x,x)

+ +
(XQ X.L ’Xo xl)

- \
(xo,xo) + (xo,xl) + (xl,xox + (x

il

1°%7)

_ 2 2 -
= x 017 + i]xlﬂ , Since (xl,xo) = 0,

N

Therefore uxlu Now

1~ e < (Qx,x) (Q(xO tx), (x + x,))

(Qxps xg + )
4
= (Qx,, x;), as R(Q) C(Ker Q)
80 X, # 0 and letting X = x]_/”xl“ we have
1~ €% (Qggl ,gl) « So in the proof of Theorem 3.11. x mey be

replaced by X, 8s required, //

3.13. THEOREM. For a Hilpert space H, T e B(H) and ¢ > 0,

1
and (’Tlx(l = UTl“.

there exists T. e B(H) and x e H, Uxll = 1, such that UT - Tlﬂ < e

Proof. Any T e B(H) acmits the polar decomposition T = UP where P
is a positive hermitien operator, U is a partial isometry, that is
WOxIl = xll for a1l x ¢ (Ker U)Y, ond Ker P = Ker U [Halmos, 1,
problem 105]. So for any ¢ » 0, Theorem 3.11. and Lemma 3.12.

show there exists an hermitisa (in fach positive hermitien) operator
Py end x e H, x0 = 1 sguch that UP - Pl“ < e , (Ker P)"TQR(PJ_) and
”P]_“ > ‘;lPle > (Plx,x) = v‘(Pl) = “Plll , or llPlxﬂ = HPlﬂ.

Let Tl = UPl’ then
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o - Tlﬂ < Hull e - PlU € € and

HTle = HUPlxu = UPlxti= HPlH hut

HTlH € UPl“ S0 Tl attains its norm at x. //
From his proof Lindenstrauss observed that the T1

of the sbove theorem could be chosen so that T - Tl is compact.

For operators on a Hilbert space our proof yields an even stronger

result.

3.13.1. Corollary. The T, of the above theorem may be chosen so

that T, - T is a rank one operator.

Proof. 1In the same notation as used in the proof of Theorem 3,13.

we see that T, - T = U(Pl - P) where, by Theorem 3.11,P

1 F

4 -

is a rank one operator, and so therefore is Tl - T, //

We have seen that for a class of Banach spaces, compact
operators attain their numerical radius. For ean operator, which
permits an hermitian decorposition on a rotund space, we obtained
necessary end sufficient conditions for the numericel radius to be
attained. We then geave two proofs that the hermitien operators which
attain their numerical redius are dense emong &all the hermitian operators
on a Hilbert space. The first proof enabled us to determine the

element, at which the numerical radius is attained, while the second



revealed the exact nature of the perturbation necessary to produce
an operator which attained its numerical radius. Using this latter
result, we gave a new proof of Lindenstrauss' raesult, that the

set of operators which sttain their norm is dense among all the
operators, for the particular case of operators on a Hilbert space.
The general question, of whether the set of operators on a Hilbert
space, which attain their numerical radius, is dense among all the
operators, is still an open question and may well be worth further

investigation.
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