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ABSTRACT 
It is important to consider the performance of load bearing biomedical implants as a 
stochastic problem. This provides scope to optimise their whole life performance in terms of 
design and lifetime performance management measures with the aim of minimisation of the 
need for replacement, or the number of replacement, during the expected life of the patient. 
An important parallel is developed with the field of structural reliability analysis (i.e. 
probabilistic assessment) which has developed in recent years with great success in 
optimisation of whole life performance of load bearing infrastructure systems. The 
methodology considers the stochastic nature of loading on and resistance of an individual 
structure/structural network, within a probabilistic framework, to optimise performance over 
the whole life and at the same time to minimise the number of interventions required during 
the structures life. This paper demonstrates how this same methodology can be employed in 
the field of biomedical engineering to optimise the design and whole life performance of 
implants considering factors such as (i) deterioration with age, (ii) stochastic variation in load 
– e.g. as a function of the age of the patient, level of physical activity, weight etc. The paper 
also demonstrates the importance of Bayesian updating and correlation modelling in 
considering the design and whole life performance optimisation of biomedical implants.
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1. INTRODUCTION 

 

The twentieth century has brought enormous advances in the field of orthopaedic surgery. 

Total hip and knee joint replacements are effective interventions for people to repair gross 

physical joint damage or relieve pain due to severe arthritis and demand for these operations 

is increasing as our population ages. By their very nature prosthetic joint components wear as 

they shift against each other during use. Biomedical devices are not as robust and hard 

wearing as the organic joint. The extent and rate of deterioration depends on a number of 

random variables, e.g. the precision of placement of the surgical implant, the patient’s 

physical condition and age, level of activity, and body mass etc., with the result that the life 

span of prosthetics and biomedical devices is stochastic, varying from patient to patient. It is 

frequently found necessary to replace or repair the biomedical device which increases the 

burden on the health service and the risk and pain of the patient.  

 

The performance of load bearing systems such as bridges, building, dams and other large 

structural and mechanical systems is variable due to uncertainties and variabilities in material 

properties, dimensions, loads, environment, etc. For this reason, probabilistic methods are 

highly suited to assessing the safety and service life prediction of these engineering systems 

(e.g., Stewart and Melchers 1997, Nowak and Collins 2000). Many orthopaedic implants, 

such as hip and knee replacement implants and knee tribial trays are load-bearing with similar 

sources of variabilities, as well as those unique to implants - typical uncertainties relate to 

material properties, dimensions, loads, and alignment. Probabilistic analyses for orthopaedic 

applications has become an important area of research in the past decade or so (e.g., Browne 

et al. 1999, Dar et al. 2002, Nicolella et al. 2002, Grasa et al. 2005, Easley et al. 2007, 

Dopico-Gonzalez et al 2010a,b, Laz 2007, Laz and Browne, 2010, etc.). Most of the research 

to date has focused on either (i) point-in-time reliability analysis – i.e. the probability of 

failure given a single worst-case post-operative loading (Nicolella et al. 2002) or (ii) a time-

dependent reliability analysis based on number of cycles to cause fatigue failure (Grasa et al. 

2010). Most existing reliability analyses of load-bearing biomedical implants use probabilistic 

methods to refine the design of implants based on sensitivity analyses assuming ‘failure’ to be 

localised material failure that may or may not progress to clinical failure.  

 

These issues and limitations of probabilistic and reliability analysis are not restricted to 

biomedical implants, as similar challenges have been faced with the safety and service life 
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prediction of structural and mechanical components. The authors and other structural 

reliability specialists have extensive experience in addressing these challenges with respect to 

bridge design and safety assessment (e.g., Stewart 1998, 2001, O’Connor and Enevoldsen 

2007, 2008, O’Connor et al. 2009). Systems reliability techniques are used to model the 

progression of localised failure (such as exceeding yield strength, excessive deflection, etc.) 

to overall structural collapse. Bayesian updating is used to update reliabilities based on 

inspection or condition data. For example, the observation that a structure has survived 

several years of service loading means that the structure has essentially passed a proof load 

test, so there is more confidence in the structure’s resistance leading to less uncertainty and 

increased reliability (e.g., Stewart 1997).  

 

Another key motivation for probabilistic and reliability analysis is its utility for risk-based 

decision-making (e.g., Stewart 1998, Stewart and Val 1999, Stewart 2001, Val and Stewart 

2005, O’Connor et al. 2009). The decision of interest is whether the reliability exceeds an 

acceptable level of reliability, and if so, the length of time that the reliability is acceptable. 

Thus, risk-based predictions of service life are possible (O’Connor et al. 2004). In the context 

of biomedical implants, their design and placement can be optimised to ensure an acceptable 

level of reliability for the design life of the implant, or the remaining safe service life can be 

predicted for existing implants. Another criteria for decision-making is risk-based life cost 

analysis that minimises the sum of design, fabrication, installation, and maintenance costs, 

and the expected costs of failure (e.g., Val and Stewart 2003).  

 

The aim of the present paper is to aid researchers and clinicians in better understanding 

probabilistic and reliability analyses and the benefits which can be expected to accrue from 

their application as a risk-based decision support tool for design and whole life management 

of load-bearing biomedical implants. As such, the present paper will explore the capabilities 

of time-dependent and systems reliability analysis to the relatively new application of service 

life performance of load-bearing biomedical implants. The reliability analysis of cemented 

hip implants developed by Nicolella et al. (2002, 2007) will provide the probabilistic 

characterisation of key parameters reflecting uncertainty and variability of material properties 

(e.g., bone cement and bone cement-implant interface), joint and muscle loads, and finite 

element model response. In their study, Nicolella et al. (2002, 2007) used six limit states and 

a body mass of 75 kg considered separately, all random variables were considered statistically 

independent (i.e. no correlations between variables), and defined ‘failure’ as exceedance of a 
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single limit state which denotes localised failure. These are all conservative assumptions 

likely to reduce computed reliabilities. In the approach outlined in this paper these 

probabilistic characterisations are employed to calculate time-dependent reliabilities and to 

illustrate the following:  (i) the effect of knowledge of prior service loads on updated time-

dependent reliability, (ii) the effect of series and parallel system definitions of failure on time-

dependent reliability, (iii) the effect of progressive failure leading to clinical failure, (iv) the 

effect of body mass on time-dependent reliability, (v) the effect of correlated material 

properties (e.g., if shear strength is low then higher likelihood that compressive strength is 

also low), and (vi) the effect of time-dependent deterioration of material properties due to 

corrosion, wear-particles and other degradation mechanisms.  

 

 

2. TIME-DEPENDENT STRUCTURAL RELIABILITY THEORY 

 

If the limit state of interest is related to load bearing capacity, then failure is deemed to occur 

when a load effect (S) exceeds the structural resistance (R). The probability of failure (pf) is 

defined as: 

 

 (1) 

 

where G() is termed the "limit state function", in the present case this is equal to R-S. Thus 

the probability of failure is the probability of exceeding the limit state function. For the 

simplest case with one random variable for load (S) and another for resistance (R), the 

probability of failure is given by the well known ‘convolution’ integral: 

 

                 (2) 

 

where fS(x) is the probability density function of the load S and FR(x) is the cumulative 

probability density function of the resistance [FR(x) is the probability that R≤x]. 

  

For many realistic problems the simplified formulation given by Eqn. (2) is not sufficient as 

the limit state function often contains more than two variables. If the limit state function is 

expressed as G(X), the generalized form of Eqn. (2) becomes: 
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(3) 

 

where the vector X represents the basic variables involved in the problem and fx(x) is the joint 

probability density function for the n-dimensional vector X={X1,....,Xn} of random variables 

each representing a resistance random variable or a loading random variable acting on the 

system. For a more details of reliability analyses see Stewart and Melchers (1997).  

 

2.1 Updating Based on Service Proven Performance 

 

Most probabilistic and reliability analyses of load-bearing biomedical implants treat load and 

resistance as statistically independent and do not consider the effect of prior service load and 

other updating on reliability predictions. For example, the ‘worst-case’ loads for hip implants 

often occurs at the early post-operative period (e.g., Nicolella et al 2002), and these loads are 

generally not exceeded by common activities such as rising from a chair or level walking 

(Keaveny and Bartel 1993). A ‘worst-case’ loading may be interpreted as a ‘proof load’, and 

if the implant survives the ‘worst-case’ load then its reliability will be enhanced conditional 

on survival of the proof load. This means that if an implant is subjected to a known proof load 

then the distribution of structural resistance is truncated at this known load effect, thus 

reducing the probability of failure. Moreover, walking or other daily activities constitute 

‘service loads’ which may be treated as a proof load with uncertainty. In this case, the revised 

distribution of structural resistance at time t is 

 

 (4) 

 

where FS
T (r) is the cumulative distribution function of the maximum actual load effect 

experienced up to time T and fR
' (r)  is the distribution of resistance prior to loading. For more 

details see Stewart (1997) and O’Connor and Eichinger (2007). 

 

It follows that the probability of failure in t subsequent years given survival of T years of 

service is 
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 (5) 

 

where FR
" (r)  is the revised cumulative distribution function of structural resistance obtained 

from Eqn. (4) and fS
T (r) is the distribution function of the T-year maximum actual load effect. 

This conditional probability may also be referred to as a ‘hazard function’ (Stewart and 

Melchers 1997). Equations (4) and (5) assume that there is no time-dependent reduction in 

resistance due to ageing or deterioration. 

 

Clearly, the probability of failure is time-dependent and also dependent on performance and 

condition data collected during its service life. Bayesian  methods are a powerful tool to use 

this new information to update knowledge about the performance and reliability of load-

bearing systems (e.g., Jordaan 2005). In many case, new information reduces the uncertainty 

of variables leading to increased estimates of reliability. 

 

2.2 Ageing and Deterioration Modelling 

 

Corrosion of biomedical implants, unless made from inert materials, will probably occur 

(Batchelor and Chandrasekaran 2004). Moreover, many orthopaedic implants will release 

wear-particles from moving surfaces. The body provides a relatively hostile environment to 

many materials as body fluids are largely composed of salt water. There are other corrosion 

and degradation mechanisms specific to the location and materials used in the implant (e.g., 

Batchelor and Chandrasekaran 2004). For the purposes of this study it is assumed that (i) 

material properties are not affected by ageing up to an initiation time Ti, and (ii) after this 

initiation period, material strengths reduces linearly with time, i.e. a classical two phase 

deterioration process. 

 

 (6) 

 

A linear reduction in material strengths with time is idealistic as for many materials the 

deterioration function is non-linear. However, for the purposes of illustration, and in the 
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absence of specific data on time-dependent deterioration, a linear deterioration function is 

sufficient to illustrate the utility of the approach. 

 

For deteriorating systems, Eqns. (4) and (5) can be recast to give the cumulative probability of 

failure up to time t, expressed as: 

 

 
(7) 

 

where  represents the initial distribution of resistance and , ,..., Ri
"(t n )  

represent the structural resistances at time tj updated on survival of the previous load events. It 

is evident that the updated structural resistances are influenced by the load history S1, S2,...,Sn 

as well as time-dependent changes in material strengths. Thus, the cumulative probability of 

failure is dependent upon the prior and updated load and resistance histories. The probability 

of failure in t subsequent years given survival of T years of service is 

 

 (8) 

 

where pfi(0,T+t) and pfi(0,T) are defined by Eqn. (7). 

 

 

3. ILLUSTRATIVE EXAMPLE: CEMENTED HIP IMPLANT 

 

3.1 Review of Nicolella et al (2002, 2006) Study 

 

An important type of implant, certainly the one with the highest load capacity, is the hip 

implant (Batchelor and Chandrasekaran 2004) - this is a suitable implant for detailed analysis 

herein. Nicolella et al. (2002, 2006) describe a point-in-time reliability analysis of a cemented 

hip implant. Model parameters such as the applied loads, material properties, and material 

strengths were modelled as statistically independent random variables to account for their 

uncertainty and variability. The individual limit states considered related to failure of the bone 

cement and interface failure of the proximal femur. The limit states considered were: 

1. Bone Cement Compressive Failure 

2. Bone Cement Shear Failure 
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3. Bone Cement Fatigue Failure 

4. Bone Cement Strain Energy Density (SED) Fracture 

5. Interface Tensile Failure 

6. Interface Shear Failure 

 

The limit state function was represented as: 

 

 (9) 

 

with Ri the resistance or material strength for limit state i, and Si the load effect or model 

response for limit state i. Peak load effects were obtained from a three dimensional finite 

element model (FEM) of a femur-implant system (Nicolella et al. 2002). All materials in the 

analysis were modelled as linear elastic isotropic materials. A stochastic analysis was 

conducted where bone and bone cement elastic moduli, and joint and muscle loads were taken 

as input random variables. For a more detail explanation  of the stochastic FEM analysis see 

Nicolella et al. (2002). The statistical parameters for these variables are reproduced here in 

Tables 1 and 2. Note that the probability distributions for resistance are inferred from plots 

provided by Nicolella et al. (2002). While the probabilistic analysis by Nicolella et al. (2002) 

included many random variables, it did not consider model error or accuracy. For structural 

and mechanical systems model error, defined as observed (test) response divided by predicted 

(or theoretical) response, is often an important source of uncertainty and must be included in a 

reliability analysis. 

 

Load effects given in Table 2 assume a body weight of 750 N (75 kg) and are equivalent to a 

resultant joint reaction force of 4.54 times body weight - and are representative of strenuous 

loading of the hip in the early post-operative period, and represents a ‘worst case’ loading 

scenario (Keaveny and Bartel 1993). These loads are similar to what has been measured 

during stair ascent (Davy et al. 1988). For level walking, a review of direct measurements 

reveal forces of 1.6 to 3.3 of body weight (Brand et al. 1994). Other common activities such 

as rising from a chair or using a cane resulted in lower loads than level walking. In this study 

it is assumed that over many cycles level walking results in 50% mean lower loads than the 

worst-case loading given in Table 2. It is considered reasonable to assume less uncertainty 

about loads from walking, to say a third of the uncertainty of the worst-case loading. As a 
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result the COV (Coefficient of Variation is standard deviation divided by mean) for walking 

loads is 33% of the COV of worst-case loading. 

 

Failure Mode Ri - Resistance (Failure Level) Mean σ COV Distribution 
Bulk Cement Failure: 1. Bone cement compressive stress (MPa) 81.40 2.14 0.026 Normal 
 2. Bone cement shear stress (MPa) 30.00 2.70 0.090 Normal 
 3. Bone cement fatigue limit (MPa)1 7.98 4.32 0.541 Lognormal 
 4. Critical level of Seder (kJ/m3) 75.70 7.57 0.100 Normal 
Interface Failure: 5. Interface tensile strength (MPa)2 7.90 1.60 0.203 Lognormal 
 6. Interface shear failure (MPa) 33.30 17.60 0.529 Lognormal 
Note: 1 - Conservative fatigue limit based on lowest of Simplex, Zimmer LVC and Zimmer Regular fatigue 
limits. 2 - conservative strength based on three minute formation time. 

 
Table 1. Probabilistic Models of Resistance (Nicolella et al. 2002) 

 
 
Failure Mode Si - Load Effect (Model Response) Mean σ COV Distribution 
Bulk Cement Failure: 1. Minimum principal stress (MPa) 8.70 2.63 0.302 Lognormal 
 2. Tresca stress (MPa) 7.48 2.23 0.298 Lognormal 
 3. Von Mises stress (MPa) 6.88 2.07 0.301 Lognormal 
 4. Strain energy density (kJ/m3) 16.63 10.60 0.637 Lognormal 
Interface Failure: 5. Maximum principal stress (MPa) 5.07 2.03 0.400 Lognormal 
 6. Von Mises stress (MPa) 27.04 8.20 0.303 Lognormal 

 
Table 2. Probabilistic Models of Model Response (Nicolella et al. 2002) 

 

 

Schmalzried et al. (1998) found that patients aged over 60 years who had hip joint 

replacement averaged 4,400 steps per day which is approximately 800,000 cycles per year. 

However, the number of steps causing peak resultant stress in a single hip implant will be half 

this number - resulting in N = 400,000 cycles per year for a single implant. In this case, the 

time-variant cumulative distribution function of the maximum actual load effect experienced 

up to time t is 

 

 (10) 

 

where t is time in years, N is the number of annual load cycles, and FS is the cumulative 

distribution function of a single step. Annual maximum loads are assumed statistically 

independent. 
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Many hip implants last 15 years (Hargreaves 2000), but a more desirable service life would 

be approximately 30 years (Batchelor and Chandrasekaran 2004). The reliability analyses will 

thus be conduced for up to 30 years design life. 

 

3.2 Time-Dependent and System Reliability Analyses 

 

3.2.1 Cumulative Probabilities of Failure 

 
The point-in-time reliabilities at time t pfi(t) for each limit state i are calculated using Eqn. (2) 

and the limit states in Eqn. (9). At time t = 0 the statistics of this load effect (Si) are given in 

Table 2. Subsequent service loading when T≥1 year assumes level walking with mean and 

COV of load effects of 50% and 33% of the statistics given in Table 2, respectively, with 

400,000 cycles per year. The cumulative probability of failure pfi(0,t) is then calculated from 

Eqn. (7). Figure 1 illustrates the computed cumulative probabilities of failure. Clearly, the 

probabilities are very high, and if the definition of ‘clinical failure’ is taken conservatively as 

local failure (exceedance of a single limit state) then the probabilities of failure of this 

particular hip implant are too high to be acceptable to most clinicians and patients. 

Probabilities of failure for limit states 3 and 6 are close to 0.5 after first loading. These are 

exceptionally high failure rates, and would suggest that limit state characterisation may be too 

conservative. Further attention paid to these limit states may result in improved or more 

accurate probabilistic modelling; hopefully leading to reductions in failure probabilities. 

 

Such an analysis is very useful at the design stage to assess how reliabilities may reduce with 

time, and whether the reliability after a certain period of time is higher than that accepted by 

clinicians as ‘acceptable’. What constitutes an ‘acceptable’ definition of risk is the topic of 

much debate in the structural, nuclear, offshore, chemical, and other large-scale industries 

where worker and public safety is paramount. However, a broad consensus has been reached 

(e.g. Stewart and Melchers, 1997); for example, an annual fatality risk of less than one in a 

million per year is acceptable (or tolerable) to society. Risks higher than this may be accepted, 

but only if the benefits outweigh the costs. What constitutes an acceptable level of risk (or 

failure probability) for biomedical implants is challenging, and beyond the scope of the 

present paper, however, the issue needs to be addressed as this definition is crucial to service 

life prediction and design optimisation. 
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Figure 1.  Cumulative Probabilities of Failure for Six Limit States and Two System Models. 

 

3.2.2 Service Proven Reliability 

 
While the previous section is highly useful at the design stage, to assess the reliability after 

the implant has been in-place for some time requires a different approach as now the analyst 

has new information to update time-dependent reliabilities. This ‘new information’ is that the 

implant has been functioning perfectly well with no signs of distress for T years. Loads 

immediately following early post-operative are the ‘worst case’ loading. Subsequent service 

loadings such as walking constitute a series of proof loads. The updated annual probability of 

failure conditional on the implant surviving T years of service is denoted as pfi(1|T). The 

updated annual probability of failure is calculated for each limit state i assuming: (i) proof 

load at T=0 is taken as strenuous loading of the hip in the early post-operative period (‘worst 

case’ loading scenario) with statistics of this load effect (Si) given in Table 2, (ii) annual 

service loading when T≥1 year assumes level walking with mean and COV of load effects of 

50% and 33% of the statistics given in Table 2, respectively, with 400,000 cycles per year. 

Figure 2 shows the influence of prior load history on revised probability distribution of 

structural resistance fR
" (r)  for bone cement fatigue limit (limit state 3) calculated from Eqns 

(4) and (10) for (a) no updating fR
' (r) , (b) survival of post-operative (proof) loading (T=0), and 

(c) survival after T=10 years. It is evident as the load history increases the lower tail of the 

probability distribution of structural resistance reduces and is truncated at increasingly higher 

resistances. It is the truncation effect that reduces the updated annual service-proven 

probabilities of failure as will become evident in the reliability analysis to follow. 



  11   

(b) Survival of post-operative (proof) loading 
     T=0 years

Pr
ob

ab
ili

ty
 D

en
si

ty

 
 

Figure 2. Effect of Prior Loading on Updated Distributions of Bone Cement Fatigue Strength.  
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The time-dependent reliability for service proven loads is calculated from Eqns. (4), (5) and 

(8) using revised probability distributions of structural resistance  similar to those shown 

in Figure 2. Figure 3 shows the service proven reliabilities pf(1|T) as a function of survival 

age for the six limit states. It is observed that if the implant survives initial loading then the 

probability of failure decreases as survival age increases. This is expected, as the longer the 

implant is in service the greater the likelihood that it has experienced a higher loading, which 

gives more confidence (and less uncertainty) about its resistance. If fatigue is the criteria for 

failure, or of there is material degradation or increases in load effects, then service proven 

reliabilities may increase with time. The key concept here is that reliability is time-dependent 

and influenced by prior load history and as such must be considered as such in any reasonable 

probabilistic analysis. 
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Figure 3. Annual Probabilities of Failure Conditional on Surviving T Years of Service. 

 

 

For example, take the case of a patient who presents for a check-up at 5 years and the hip 

implant is giving no signs of distress, then the probability that the implant will fail anytime in 

the next year due to bone cement fatigue (Limit State 3) is 0.011 or approximately one in a 

hundred. If the implant survives to 10 years, then the probability of failure anytime in the next 

year reduces to 0.005 or less than 1 in 200. 
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3.2.3 Clinical Failure and System Reliability 

 
As there are six limit states (or modes of failure), a more accurate definition of ‘failure’ may 

be when one or more limit states are exceeded. In this way the system is represented in terms 

of a series system where:  

 

pf (1 | T) =1− 1− pfi(1 | T)( )
i=1

6

∏  (11) 

  

Figure 3 illustrates the updated annual probability of failure assuming a series system 

definition of failure. Since only one limit state is needed to be exceeded to constitute failure 

then this will produce high probabilities of failure which are clearly evident in Figure 3.  

 

The limit states considered here define local failure and not ‘clinical failure’ (e.g., Nicolella et 

al. 2002, 2006). As a result the series system given by Eqn. (11), with results shown in 

Figures 1 and 3, is conservative and will most likely over-estimate the probability of failure 

where exceedence of multiple limit states is required to constitute ‘clinical failure’. In these 

cases a system reliability analysis is needed to consider the effect of multiple failure modes. 

System and reliability modelling may be used to model the progression of failure, where for 

example, shear failure may increase compressive stress, and compressive failure may increase 

interface stresses, and so on until clinical failure is evident. Event-based Monte-Carlo 

simulation methods are well suited to modelling progressive failure where localised failure 

results in load or stress redistribution which ultimately can lead to cascading limit state 

exceedence (e.g., Stewart 2009). 

 

For sake of illustration, assume that ‘clinical failure’ is defined as exceedance of (i) any bulk 

cement failure limit state (1 - 4) and (ii) failure of any interface failure limit state (5 – 6). In 

this case, the system can be presented as shown in Figure 4. Clinical failure in this case refers 

to ‘failure’ requiring replacement of the hip implant. Figure 4 shows that the system is a 

combination of series and parallel systems. In this case, the probability of failure is 

conveniently computed using event-based Monte-Carlo simulation methods where at each 

time step the limit state functions are checked for limit state exceedence. If one or more bulk 

cement limit states are exceeded at any time up to time t, and one or more interface limit 

states are exceeded at any time up to time t, then this is counted as failure and a new 
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simulation run is started. After many simulation runs the number of failures is summed at 

each time interval, and the probability of failure at time t is the number of failures divided by 

the total number of simulation runs. The results of the analysis are also shown in Figures 1 

and 3. The updated annual probabilities of failure for this system definition of failure are 

considerably less than assuming a series system since more than one limit state needs to be 

exceeded to constitute failure. It is argued that this is likely to be more realistic than a series 

system definition of failure. 

 

 
 
 

Figure 4. Illustrative Reliability Block Diagram of ‘Clinical Failure’. 
 

 

3.2.4 Effect of Body Weight 

 
While there is no clear link between body weight, length of femoral stem and resultant 

stresses, there is some evidence to suggest that peak stresses and strains increase linearly with 

body weight (Harrington et al. 2002). Hence, and for sake of illustration, it is assumed here 

that load effect stresses given in Table 2 are directly proportional to body weight since model 

response was obtained from a linear elastic FEM. Since Table 2 is based on a body weight of 

approximately 75 kg which is approximately a population average (Schmalzried et al. 1998), 

then stresses for body weights of 60 kg and 90 kg are 0.8 and 1.2 times the mean values given 

in Table 2. It is assumed that the COV of stresses remains constant for all body weights. 

Figure 5 shows the annual updated probabilities of clinical failure (Figure 4) for body weights 

of 60 kg, 75 kg and 90 kg. The effect of body weight can be considerable, with up to three-

fold differences in probabilities. Body weight therefore appears to be an important variable in 

a reliability analysis of load-bearing biomedical implants. 
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Figure 5. Updated Annual Probabilities of Failure Conditional as Function of Body Weight. 
 

 

3.2.5 Correlated Load Effects and Material Strengths  

 
Many reliability analyses assume that random variables are statistically independent. 

However, while this makes solutions more tractable, this assumption lacks realism. For 

instance, for concrete there is a clear correlation between compressive strength, tensile 

strength and Young’s Modulus (Mirza et al. 1979). This means that if a batch of concrete has 

weaker compressive strength, then tensile strength and Young’s Modulus will also be weaker. 

Similarly, a higher applied load will increase compressive, shear, interface and other stresses. 

These types of correlation can be represented by a correlation coefficient (ρ) where ρ=0.0 and 

ρ=1.0 denote no correlation (statistical independence) and full correlation, respectively (e.g., 

Ang and Tang, 2007). The preceding reliability analyses have assumed statistical 

independence between load effects and material strengths. 

 

To demonstrate the importance of consideration of correlation, the time-dependent 

reliabilities described in Sections 3.2.2 and 3.2.3 are now calculated assuming that material 

strengths are strongly correlated based on (i) bone cement shear, fatigue and SED strengths 

are strongly correlated (ρ=0.8) with bone cement compressive strength, and (ii) interface 
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shear strength is strongly correlated (ρ=0.8) with interface tensile strength. These correlations 

can be conducted relatively easily through analytical or Monte-Carlo methods.  

 

Figure 6 demonstrates the significance of inclusion of correlated material strengths in 

computing probabilities of failure for the considered system. For the cases considered the 

results are 15% to 35% lower when compared to statistically independent random variables. 

Note that the probabilities of failure for each limit state remain unchanged as correlated 

performance will only affect system reliabilities. For example, the reliability of a series 

system is higher for correlated performance because in this case the most likely outcome is 

many limit states are exceeded, or none are exceeded. So what is evident here is that 

assuming statistical independence between material strengths or loads is conservative, and in 

the examples presented herein, conservative by up to 35%. This suggests that a better 

understanding of the correlations between material properties or loads for different limit states 

is essential if realistic reliabilities are to be calculated. 
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Figure 6. Updated Annual Probabilities of Failure Considering Correlation of Material 

Strengths. 
 

 

3.2.6 Material Ageing and Deterioration 

 
While bone cement has high strength, there are some service problems that may degrade their 

strength over time. This includes, inter alia, (i) progressive decline in mechanical strength 



  17   

with possible fracture, (ii) release of debris into tissues, or (iii) loss of bonding between bone 

and cement due to necrosis (death) of bone cells after prolonged contact with PMMA (Poly-

Methyl-Meth-Acrylate Resin) (Batchelor and Chandrasekaran 2004). Acrylic bone cements 

are also prone to ageing which would also affect mechanical strength. After an extensive 

literature review, Lewis et al. (2007) remarked that there is “lack of consensus on the 

influence of either real-time in vitro or in vivo aging on the properties of acrylic bone 

cement.”  

 

A linear rate of material strength deterioration with time is assumed in Eqn. (6). For the 

purpose of illustration, it is assumed here that degradation of bone cement material strengths 

occurs after Ti=5 years and then decreases linearly by either (i) α=1% each year (minor 

deterioration), or (ii) α=2% each year (severe deterioration). Hence, after 30 years there will 

be a 25% or 50% reduction in material strengths, respectively. The updated probabilities of 

clinical failure defined in Figure 4 are shown in Figure 7. Figure 7 shows how the updated 

annual probabilities of clinical failure gradually increase as soon as deterioration is initiated in 

the hip implant.   
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Figure 7. Updated Annual Probabilities of Failure Considering Effects of Deterioration. 
 

 

If it is assumed that an acceptable level of implant risk is a probability of clinical failure no 

higher than 0.01 in any one year, then if the implant has survived for 10 years, Figure 7 

demonstrates that the probability that it will clinically fail in the next year is 0.009 assuming 
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no deterioration. However, if the rate of deterioration is expected to exceed 1% then the 

probability of clinical failure after 10 years is 0.0235 and 0.0501 for α=1% and α=2%, 

respectively. These risks exceed the acceptable level, and so a clinician may recommend 

replacing the hip plant. 

 

An alternate metric for decision support is to calculate the cumulative probability of failure 

conditional on survival at time T, and to compare this with an appropriate lifetime acceptable 

risk criteria. In this case, the cumulative probabilities of clinical failure conditional on the 

implant surviving satisfactorily after 5 years are shown in Figure 8. For the purpose of 

illustration, it is assumed that the lifetime risk acceptance criteria is a cumulative (total) risk 

not exceeding 0.1 (10%) during the lifetime of the implant. If there is no implant 

deterioration, then Figure 8 shows that the probability of clinical failure exceeds 0.1 after 17 

years; this suggests that the remaining service life is 12 years. However, if the rate of 

deterioration is 1% or 2% then the remaining service life reduces to 5 and 3 years, 

respectively. 
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Figure 8. Cumulative Probabilities of Failure Conditional on Implant Surviving T=5 Years of 

Service.  
 

 

This and other types of time-dependent reliability analyses will provide utility to risk-based 

decision making for load-bearing biomedical implants. Service life prediction is a challenging 

task where risks, costs and benefits need to be carefully assessed and weighed. For example, 

the timing and type of hip replacement will be conditional on the age, weight, level of 
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physical activity, cost of implant, clinical observations, and so on. This requires a multi-

faceted decision criteria, where knowledge of reliability and risks will help designers and 

clinicians to determine optimal design and placement parameters, and effective treatments 

/strategies which provide for acceptable service lives for new and existing load-bearing 

biomedical implants.  

 

 

4. CONCLUSIONS 

 

This paper demonstrates the scope for application of the principles of structural reliability 

theory in the design and whole life performance optimisation of biomedical implants. Time 

dependent reliability computation is demonstrated to be a statistically appropriate and robust 

computation methodology for relative performance rating of implants. The paper 

demonstrates the ability of the methodology to incorporate (i) information on condition 

assessment (i.e. clinical information) and loading history (i.e. proof loading) through 

Bayesian updating and (ii) to facilitate stochastic modelling of time dependent deterioration 

of the implant. The example of a cemented hip implanted is presented to demonstrate how 

consideration of these factors as well as important statistical effects such as system modelling 

and correlation can influence the computed probability of failure of the implant and as a result 

its expected life and the required cycles of replacement during the recipients expected 

remaining life. Combining these effects with factors such as the patients age, weight, level of 

physical activity etc. in an overall stochastic computation framework are seen as significant. 

Future work should focus on refining the simplifying assumptions which were made 

regarding deterioration laws and rates, degree of correlation between load effects and material 

strengths, acceptable probabilities of failure and consequently thresholds for 

repair/replacement etc. However the work presented represents an important first step towards 

optimisation of the design and whole life performance of biomedical implants.  
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