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1. Summary

[1] Uncertainty in the rainfall inputs, which constitute a
primary forcing of hydrological systems, considerably
affects the calibration and predictive use of hydrological
models. In a recent paper, Ajami et al. [2007] proposed the
Integrated Bayesian Uncertainty Estimator (IBUNE) to
quantify input, parameter and model uncertainties. This
comment analyzes two interpretations of the IBUNE method
and compares them to the Bayesian Total Error Analysis
(BATEA) method [Kavetski et al., 2002, 2006a]. It is shown
that BATEA and IBUNE are based on the same hierarchical
conceptualization of the input uncertainty. However, in inter-
pretation A of IBUNE, the likelihood function, and hence the
posterior distribution, are random functions of the inferred
variables, which violates a standard requirement for proba-
bility density functions (pdf). A synthetic study shows that
IBUNE-A inferences are inconsistent with the correct pa-
rameter values and model predictions. In the second interpre-
tation, IBUNE-B, it is shown that a specific implementation
of IBUNE is equivalent to a special Metropolis-Hastings
sampler for the full Bayesian posterior, directly including the
rainfall multipliers as latent variables (but not necessarily
storing their samples). Consequently, IBUNE-B does not
reduce the dimensionality of the sampling problem. More-
over, the jump distribution for the latent variables embedded
in IBUNE-B is computationally inefficient and leads to
prohibitively slow convergence. Modifications of these jump
rules can cause convergence to incorrect posterior distribu-
tions. The primary conclusion of this comment is that, unless
the hydrological model and the structure of data uncertainty
allow specialized treatment, Bayesian hierarchical models
invariably lead to high-dimensional computational problems,
whether working with the full posterior (high-dimensional
sampling problem) or with the marginal posterior (high-
dimensional integration problem each time the marginal pos-
terior is evaluated).

2. Introduction

[2] Rigorous quantification of the uncertainties affecting
the calibration of conceptual rainfall-runoff (CRR) models
remains a challenging task in hydrological modeling. Sev-
eral promising approaches have emerged to account for
various sources of errors [Kavetski et al., 2002; Vrugt et al.,
2005; Ajami et al., 2006; Kavetski et al., 2006a, 2006b;
Kuczera et al., 2006; Vrugt and Robinson, 2007]. Of
significance is the recognition that rainfall uncertainty can
be considerable and thus needs to be explicitly accounted
for in the inference scheme. Recently, Ajami et al. [2007]
(hereafter referred to as ADS2007) proposed the Integrated
Bayesian Uncertainty Estimator (IBUNE). This inference
framework characterizes input uncertainty using rainfall
multipliers and addresses model structural uncertainty using
Bayesian model averaging.
[3] This paper comments on the approach used by

ADS2007 to incorporate rainfall uncertainty into the likeli-
hood function, and compares IBUNE with the Bayesian
total error analysis (BATEA) framework proposed by
Kavetski et al. [2002, 2006a]. Although both schemes share
a common conceptual framework, their formulation and
implementation appear to be very different. In view of the
significance of rainfall uncertainty in CRR modeling, it is
important to critically evaluate and, where possible, recon-
cile these differences.
[4] The IBUNE approach represents rainfall errors using

daily rainfall multipliers assumed to follow a Gaussian
distribution with unknown mean and variance. The charac-
terization of input errors using such multipliers (latent
variables) corresponds to a hierarchical model of input
uncertainty. This hierarchical model is the same as used in
BATEA and leads to a high-dimensional full likelihood
function because the number of latent variables is propor-
tional to the length of calibration data. This makes its
analysis computationally challenging compared to methods
that ignore rainfall uncertainty.
[5] To reduce the computational cost of the BATEA

approach, IBUNE was formulated to avoid inference of
the latent variables (or rainfall multipliers). However, Ajami
et al. [2007] do not state the complete IBUNE likelihood
and posterior (and their precise dependence on the multi-
pliers), making it difficult to ascertain IBUNE’s theoretical
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and practical properties and to implement the IBUNE
equations using alternative analysis methods.
[6] This paper critically analyzes two interpretations of

the IBUNE method and compares them to BATEA, which
implements the full treatment of the Bayesian hierarchical
model of input uncertainty and directly infers the latent
variables. Interpretation A, referred to as IBUNE-A, is
based strictly on the description in ADS2007 that the
method does not infer the individual multipliers (only their
mean and variance) and that a single set of rainfall multi-
pliers is sampled from their Gaussian distribution at every
evaluation of the likelihood function. It is shown that the
IBUNE likelihood and posterior become random (nonde-
terministic) functions of their arguments, which violates a
fundamental requirement for probability density functions.
Alternatively, interpretation B (IBUNE-B) relates IBUNE
to a Metropolis-Hastings algorithm for sampling from the
full posterior of the Bayesian hierarchical model. This
method is theoretically convergent, but operates in the full
dimensional space including all the multipliers and does
not resolve the ADS2007 aim of reducing the dimension of
the problem.
[7] This paper is organized as follows. Section 3 details

the Bayesian hierarchical framework for describing rainfall
uncertainty. Section 4 describes the IBUNE-A interpretation
and how it leads to a random likelihood function. Additional
issues are raised related to optimization (section 4.3) and
MCMC sampling (sections 4.4 and 4.5). Section 4.6 sum-
marizes a synthetic case study that compares the inferences
obtained using IBUNE-A and BATEA and assesses them
given the known synthetic parameters and model simula-
tions. (A full description of the case study can be found in
Text S11.) Section 5 describes the IBUNE-B interpretation
and examines its convergence and computational efficiency.
The paper concludes with a discussion of the advantages
and limitations of using Bayesian hierarchical methods to
account for rainfall uncertainty in hydrological modeling.

3. Bayesian Hierarchical Treatment
of Input Uncertainty

[8] In this paper, X = (xt)t = 1. . .T denotes the true model
inputs (e.g., rainfall), Y = (yt)t = 1. . .T are the true outputs
(e.g., runoff), ~X and ~Y are the corresponding observed
values, and T is the total number of time steps. The
hydrological modelM approximates the mapping of the true
inputs into the true outputs,

Y ¼ Mðq;XÞ ð1Þ

Traditional calibration methods such as standard least
squares (SLS), which assume the observed inputs are
error-free (X = ~X ), can be shown to yield biased inferences
of q.
3.1. Hierarchical Model of Rainfall Errors

[9] One approach to describe input uncertainty is to
assume that the observed rainfall depth at time step t is
corrupted by a multiplicative error ft,

rt ¼ ft ~rt ð2Þ

The rainfall multipliers F = (ft)t = 1. . .T are then assumed to
follow some distribution, i.e.,

F � p Fjhð Þ ð3Þ

If every multiplier ft is assumed to arise independently from
an identical Gaussian distribution with parameters h =
(m, s), where m is the mean and s is the standard deviation,
then p(F|h) is an uncorrelated Gaussian distribution,

p Fjhð Þ ¼ N Fjm;s2
� �

¼
YT
t¼1

Nðftjm; s2Þ

[10] This is the input error model adopted by ADS2007
(equation 7 in the ADS2007 paper). Since this conceptual-
ization of rainfall errors corresponds to a hierarchical model,
the rainfall multipliers F are termed ‘‘latent variables’’
(whether or not they are explicitly estimated during the
calibration) and h are the input error hyperparameters
[Kuczera et al., 2006]. Note that applying the multiplier
model over storm event timescales [Kavetski et al., 2002,
2006a, 2006b], rather than over fixed time steps [Ajami et
al., 2007; Renard et al., 2007], does not alter the structure of
the Bayesian inference, but corresponds to a specific
assumption about the timescale of input errors.
[11] Since the catchment responds to the true forcings, the

response at a time step t is computed by forcing the model
with the ‘‘corrected’’ rainfall rt = ft ~rt. Equation (1) is then
applied using ~X and F to estimate the true inputs X:

Y ¼ M q; fF; ~Xg
� �

ð4Þ

We now consider the Bayesian treatment of the hierarchical
model (2)–(4).

3.2. Full Posterior of the Hierarchical Model

[12] Several unknown quantities appear in the hierarchi-
cal model: the CRR model parameters q, the latent variables
(here, the rainfall multipliers) F and the hyperparameters h.
In a Bayesian framework, inference of these quantities is
performed through their posterior distribution, which can be
derived as follows:

p q;h;Fj~X ; ~Y
� �

/ p ~Y jq;h;F; ~X
� �

p q;h;Fj~X
� �

¼ p ~Y jq;h;F; ~X
� �

p Fjq;hð Þp q;hð Þ
¼ p ~Y jq;F; ~X

� �
p Fjhð Þp q;hð Þ ð5Þ

The posterior distribution (5) is typical of error-in-variables
problems treated using the Bayesian approach, in particular,
the BATEA method [Kavetski et al., 2006a]. The last line
in equation (5) relies on three observations: (1) the prior
p(q, h, Fj~X ) does not depend on the observed inputs ~X ; (2)
p(Fjq, h) = p(Fjh) because the distribution of latent
variables (here, multipliers) depends only on the hyperpara-
meters h and not on the CRR parameters; and (3) p (~Y jq, h,
F, ~X ) = p(~Y jq, F, ~X ) because the probability of observed
outputs given the latent variables F is independent of h.
(Equation (4) shows that h is not needed to estimate the true
inputs and hence outputs.)
[13] The likelihood function can be specified after addi-

tional assumptions regarding the structure of residual un-
1Auxiliary materials are available in the HTML. doi:10.1029/
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certainty are made. For example, for a single-output model
M(	) where yt is the runoff at time step t, the residuals e =
(et)t = 1. . .T can be defined as

et q;F; ~X
� �

¼ yt q; fF; ~Xg
� �


 ~yt ¼ Mt q; fF; ~Xg
� �


 ~yt ð6Þ

If the residuals are assumed to be independent realizations
from a Gaussian distribution with zero mean and unknown
variance sy

2 (consistently with ADS2007 assumption, p. 4),
the following likelihood function is obtained

p ~Y jq;F; ~X ;s2
y

� �
¼

YT
t¼1

N et q;F; ~X
� �

j0;s2
y

� �
ð7Þ

The unknown variance sy
2 in equation (7) can be integrated

out

p ~Y jq;F; ~X
� �

¼
Z

p ~Y jq;F; ~X ;s2
y

� �
p s2

y

� �
ds2

y ð8Þ

When Jeffrey’s prior p(sy
2) / 1/sy

2 is used, the likelihood
becomes

p ~Y jq;F; ~X
� �

/
XT
t¼1

et q;F; ~X
� �� �2" #
T

2

ð9Þ

Note that more general distributions of the residuals e can
be used, e.g., to allow for heteroscedasticity in runoff errors,
but this issue is tangential to this paper. A critical
observation in the context of inferring input errors is that
both the full posterior (5) and the likelihood (9) are
functions of the latent variables (rainfall multipliers) F.

3.3. Expected Likelihood Method

[14] If explicit estimates of the latent variables F are not
requested, Bayes theorem can be used to obtain the mar-
ginal posterior distribution of the model parameters q and
input error hyperparameters h as follows:

p q;hj~X ; ~Y
� �

/ p ~Y jq;h; ~X
� �

p q;hð Þ ð10Þ

By definition, the marginal posterior (10) corresponds to
integrating the latent variables out of the full posterior (5)
using the total probability integral

p q;hj~X ; ~Y
� �

¼
Z

p q;h;Fj~X ; ~Y
� �

dF

/ p q;hð Þ
Z

p ~Y jq;F; ~X
� �

p Fjhð ÞdF ð11Þ

It is then possible to define the ‘‘expected’’ likelihood as
follows:

p ~Y jq;h; ~X
� �

¼
Z

p ~Y jq;F; ~X
� �

p Fjhð ÞdF ð12Þ

We stress the distinction between the likelihood p(~Y jq, F,
~X ) in the full posterior (5) and the expected likelihood
p(~Y jq, h, ~X ) in the marginal posterior (10). The latter

requires integration over the T-dimensional distribution of
latent variables. In general the T-dimensional integral (12) is
analytically intractable and has to be approximated
numerically (see Huard and Mailhot [2006] for an example
of analytical treatment for a simple hydrological model).
[15] A simple numerical approximation of the expected

likelihood using Monte Carlo integration is [Kavetski et al.,
2002]

p ~Y jq;h; ~X
� �

� 1

N

XN
j¼1

p ~Y jq;F jð Þ; ~X
� �

;F jð Þ  p Fjhð Þ ð13Þ

where F(j) is a multiplier set sampled from the hyperdis-
tribution p(Fjh). As N ! 1, the approximation converges
to the integral (12).
[16] Although the full posterior (5) has T more dimen-

sions than the marginal posterior (10), numerical analyses of
both (5) and (10) require T-dimensional computation.
Indeed, using the marginal posterior is generally more
computationally expensive than using the full posterior,
because the T-dimensional integration in the expected
likelihood (12) has to be performed every time the marginal
posterior distribution is evaluated.
[17] Furthermore, it is methodologically preferable to

infer the multipliers through the full posterior distribution
(as done in the BATEA approach) because it allows a much
more thorough posterior analysis of the assumed input error
model, including assessing the assumed hyperdistribution
of the multipliers, the independence of multipliers, etc.
[Kuczera et al., 2006]. These checks are impossible if the
multipliers are integrated out before sampling the posterior
distribution.
[18] We now analyze two interpretations of the IBUNE

method, focusing on its treatment of the marginal posterior
(10) and on its relationship to MCMC methods for sampling
from the full posterior (5).

4. IBUNE Interpretation A: Random Likelihood
Function

[19] Interpretation A of the IBUNE method is motivated
by the marginal posterior p(q, hj~X ; ~Y ) stated in equation (9)
of ADS2007 (identical to equation (10) in this paper).
Under this interpretation, IBUNE-A does not infer the
rainfall multipliers and instead samples ‘‘a random multi-
plier to each time step, drawn from the same normal
distribution with unknown mean and variance’’ [ADS2007,
p. 10].
[20] Assuming the residuals e are independent and follow

a Gaussian distribution with zero mean and variance sy
2

(which is integrated out identically to equations (8)–(9)),
the following IBUNE-A likelihood can be constructed on
the basis of the description in ADS2007 (pp. 9–10)

pF ~Y jq;m;s2; ~X
� �

/
XT
t¼1

et q;F; ~X
� �� �2" #
T

2

;F N Fjm;s2
� �

ð14Þ

where the single set of multipliers F = (f1,. . .,fT) is
sampled from the Gaussian hyperdistribution N(Fjm, s2).
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[21] More generally, the relationship between the
IBUNE-A likelihood and the likelihood p(~Y j q, F, ~X ) in
the full posterior (5) is

pF ~Y jq;h; ~X
� �

¼ p ~Y jq;F; ~X
� �

;F p Fjhð Þ ð15Þ

The IBUNE-A posterior is then

pF q;h; j~X ; ~Y
� �

¼ pF ~Y jq;h; ~X
� �

p q;hð Þ ð16Þ

which closely resembles the marginal posterior (10).
[22] Equations (14)–(16) require further comment. Nei-

ther the IBUNE-A likelihood pF(
~~Y jq, h, ~X ), nor the

IBUNE-A posterior pF(q, h j~X ; ~Y ), include the multipliers
F in their list of arguments (this is consistent with equation
(9) in ADS2007 and the ensuing discussion, pp. 9–10).
However, the right-hand side in equation (15) shows that a
multiplier set F is associated with the evaluation of the
likelihood function because it is used to correct the observed
inputs. Consequently, the implicit dependence of the
IBUNE-A likelihood and posterior on the sampled multi-
pliers is recorded using a subscript F.

4.1. IBUNE-A Likelihood and Posterior are Random
Functions

[23] As indicated in equation (15), a new set of multi-
pliers is randomly sampled every time the IBUNE-A
likelihood is evaluated. However, the use of randomly
sampled multipliers makes the IBUNE-A likelihood (15) a
random function. In this paper, a function is termed ‘‘ran-
dom’’ (nondeterministic) if it returns a random variable (i.e.,
the function value is not uniquely determined by its argu-
ments). Conversely, a deterministic function returns a fixed
value for a given set of arguments.
[24] In statistics, the likelihood function returns the value

of a probability density (here, of ~Y given {q, h, ~X}) and
should evaluate to a constant for specific values of its
arguments and the data (here, {q, h, ~X} and ~Y ). However,
in the IBUNE-A formulation (15), the likelihood is a
random function, since, given {q, h, ~X ; ~Y}, its value
depends on the randomly sampled multipliers F. In turn,
the IBUNE-A posterior (16) also becomes a random func-
tion. This violates a fundamental requirement for probabil-
ity density functions.

4.2. Comparison With the Expected Likelihood
Approach

[25] It is stressed that it is not the form of the posterior
distribution (10) that gives rise to a random likelihood
function. Indeed, as stated in section 3.3, posterior (10) is
the marginal distribution of the full posterior (5), with the
term p(~Y jq, h, ~X ) being the expected likelihood (12). It is
the evaluation of this expected likelihood term that is critical
for the marginal posterior to be meaningfully (determinis-
tically) defined.
[26] Consider the Monte Carlo approximation (13) of the

expected likelihood. Comparison with the likelihood (15)
shows that IBUNE-A is equivalent to a Monte Carlo
approximation of the expected likelihood (12) using a single
random sample (N = 1). However, such ‘‘single-sample’’ T-
dimensional integration is unreliable and inaccurate,
especially since T is proportional to the length of calibration

data (e.g., 5 years of calibration data with daily multipliers
yields T � 1800). The approximation error of the Monte
Carlo integration is a random variable (dependent on the
sampled F), which yields an alternative interpretation of the
randomness of the IBUNE-A posterior.

4.3. Optimization of the IBUNE-A Posterior

[27] The nondeterministic nature of the posterior (which
is the objective function in calibration) complicates param-
eter inference using IBUNE-A in several ways and reduces
the range of tools available for analyzing its parameter
distributions.
[28] The most likely model parameters, which are often

used to generate operational model predictions and/or to
initialize MCMC sampling, can be obtained by maximizing
the objective function. However, a random function cannot
be meaningfully maximized: (1) the maximum of a random
function is itself a random variable (thus making irrelevant
the concept of a point-estimate); and (2) numerical optimi-
zation methods will behave poorly if the objective function
is noisy, especially if it returns different values when called
with the same arguments. These problems are exacerbated
as the variance of the multipliers s2 increases (and hence the
sampled multipliers vary significantly from call to call).
Consequently, it is difficult, if not impossible, to mean-
ingfully maximize the IBUNE-A posterior using optimiza-
tion methods, precluding its exploration using a basic
analysis tool.

4.4. MCMC Analysis of the IBUNE-A Posterior

[29] Applying an MCMC sampling algorithm to the
random IBUNE-A posterior (16) is also problematic. In-
deed, the notion of sampling from a ‘‘random’’ pdf is
mathematically undefined and leads to ambiguity when
implemented using standard sampling algorithms.
[30] Consider a Metropolis sampler applied to the mar-

ginal posterior (10). At iteration i, a candidate sample {q*(i),
h*(i)} is generated from a symmetric jump distribution. The
acceptance/rejection step is carried out next: the probability
of accepting the candidate, i.e., setting {q(i), h(i)} = {q*(i),
h*(i)}, is given by the acceptance ratio ri, defined as

ri ¼
p q* ið Þ;h* ið Þj~X ; ~Y
� �

p q i
1ð Þ;h i
1ð Þj~X ; ~Y
� � ð17Þ

If the candidate is rejected, the chain does not move and
{q(i), h(i)} = {q(i
1), h(i
1)}.
[31] If the Metropolis method is applied to the random

posterior (16), the acceptance ratio becomes

ri ¼
p
Fi h* ið Þ
� � q* ið Þ;h* ið Þj~X ; ~Y

� �
pFi h i
1ð Þð Þ q i
1ð Þ;h i
1ð Þj~X ; ~Y

� � ð18Þ

where Fk(h) is the multiplier set sampled during the
evaluation of pF(q, hj~X ; ~Y ) at Metropolis iteration k.
[32] Unlike the standardMetropolis ratio (17), it is not clear

how to evaluate the denominator of the ‘‘random’’ Metropolis
ratio (18). Indeed, the precise meaning of Fi (h(i
1)) in the
subscript of the denominator is not evident. At least two
strategies are possible:

4 of 10
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[33] 1. Freshly reevaluate the random function in the
denominator of (18) at each Metropolis iteration. In this
case, Fi(h(i
1)) 6¼ Fi
1(h(i
1)); that is, the multipliers
are resampled in both the numerator and the denominator
terms of ratio (18) at every Metropolis iteration. Although
perhaps counterintuitively, it could be argued that this
treatment is consistent with the assumption in IBUNE-A
that the multipliers are not part of the inference, and
therefore are not accepted/rejected during iterations, but are
sampled randomly at every occurrence of the likelihood
function.
[34] 2. Save the density of the (i – 1)th sample after the

acceptance/rejection test is carried out and use it in the
denominator of the acceptance ratio at iteration i. This
treatment is consistent with practical MCMC computer
codes, which save the densities between their iterations
because (for a deterministic target distribution) this saves
function calls. Here, it implies thatFi (h(i
1)) = Fi
1 (h(i
1));
that is, the random function in the denominator of (18) is not
reevaluated at every iteration. Conceptually, this corresponds
to the multiplier set F*(i) = Fi(h*(i)) associated with the ith
candidate {q*(i), h*(i)} being accepted/rejected along with
the candidate sample itself.
[35] Since sampling from a random pdf is mathematically

undefined, there are no theoretical grounds for favoring
either of the two strategies outlined above. However,
section 5 will show that strategy (2) is identical to a
particular Metropolis-Hastings method for sampling from
the full posterior p(q, h, Fj~X ; ~Y ). Since this posterior is a
standard (deterministic) pdf and is thus fundamentally
distinct from the random IBUNE-A posterior (16), we defer
analysis of strategy (2) to section 5, where it is treated as
interpretation B of IBUNE. Consequently, empirical assess-
ment of IBUNE-A (Text S1) uses strategy (1) in the MCMC
sampler.

4.5. Convergence of IBUNE-A MCMC Samples

[36] This section compares the acceptance ratio
corresponding to Metropolis sampling from the marginal
posterior p(q, hj~X ; ~Y ) to the acceptance ratio arising in
IBUNE-A. Using the definition of the marginal posterior
stated in equation (11) yields the ratio

ri ¼

R
p ~Y jq* ið Þ;F; ~X
� �

p Fjh* ið Þ
� �

dFR
p ~Y jq i
1ð Þ;F; ~X
� �

p Fjh i
1ð Þð ÞdF

p q* ið Þ;h* ið Þ
� �

p q i
1ð Þ;h i
1ð Þ
� �

¼ l ið Þ
p q* ið Þ;h* ið Þ
� �

p q i
1ð Þ;h i
1ð Þ
� � ð19Þ

Conversely, using the IBUNE-A posterior (16) yields

ri ¼
p
Fi h* ið Þ
� � ~Y jq* ið Þ;h* ið Þ; ~X

� �
pFi h ið Þð Þ ~Y jq i
1ð Þ;h i
1ð Þ; ~X

� � p q* ið Þ;h* ið Þ
� �

p q i
1ð Þ;h i
1ð Þ
� �

¼ l ið Þ
F

p q* ið Þ;h* ið Þ
� �

p q i
1ð Þ;h i
1ð Þ
� � ð20Þ

Comparison of equations (19) and (20) shows that IBUNE-
A leads to the correct acceptance ratio for sampling from the

marginal posterior (10) only if the ratio of (random)
IBUNE-A likelihoods lF

(i) is close to the ratio of the
(deterministic) expected likelihoods l(i), which in general is
not true. It is hence unclear whether MCMC samplers
applied to IBUNE-A converge to a stationary distribution,
and whether this stationary distribution, if it exists, is the
marginal posterior (10). Indeed the case study shows (see
section 4.1 of Text S1) the susceptibility of IBUNE-A to
convergence difficulties.

4.6. Empirical Analysis of IBUNE-A and BATEA

[37] The ability of IBUNE-A to operate under input
uncertainty was empirically examined using a synthetic
problem with no model error and specified ‘‘true’’ inputs
and ‘‘true’’ parameters. By excluding model error, we
focused on the primary issue of this study, namely the
treatment of input uncertainty. True inputs were corrupted
using the multiplier model (2)–(3). True outputs were
generated by propagating the true inputs through the con-
ceptual rainfall-runoff model LogSPM [Kuczera et al.,
2006] and were then corrupted using Gaussian noise.
[38] The IBUNE-A and BATEA methods were then used

to estimate the CRR parameters and the predictive uncer-
tainty in the runoff using the same corrupted input/output
data and the same input/output uncertainty models (the
rainfall multiplier model (2)– (3) and Gaussian output
noise). It is stressed that the same statistical models were
used and the only difference was the treatment of latent
variables in the likelihood function (with BATEA working
directly with the full posterior (5) and explicitly estimating
the latent variables). The same MCMC sampling strategy
(multiblock Metropolis scheme with Gaussian jump distri-
bution) was used for both the IBUNE-A and BATEA
inferences. A full description of the case study and results
can be found in Text S1.
[39] Figure S4 shows the CRR parameters estimated using

BATEA and IBUNE-A from 1000 days of data corrupted by
rainfall multipliers f0, with logf0 � N(m0, s0

2), with mean
m0 = 
0.4 and a range of standard deviations s0 (increasing
from 0.002 up to 0.8). It was found that IBUNE-A produced
CRR parameter estimates with rapidly increasing posterior
variances. Similar results were found for the estimated
hypermean of rainfall log multipliers (Figure S3). Figure S3
also shows that IBUNE-A underestimated the standard
deviation of the rainfall multipliers for s0 � 0.02. In
contrast, BATEA identified the CRR parameters and rainfall
error hyperparameters accurately and precisely regardless of
the magnitude of random corruption s0. Indeed, Figure S3
shows that the BATEA estimates agree well with the true
values and have a low posterior uncertainty.
[40] An important characteristic of an inference scheme is

correct attribution of predictive uncertainty. Figure S4
shows a decomposition of predictive uncertainty in the case
of calibrating 4 CRR parameters to 1000 days of data
corrupted by lognormal rainfall multipliers with m0 =

0.4 and s0 = 0.2. The first row of Figure S4 compares the
full predictive interval with a partial predictive interval that
ignores posterior CRR parameter uncertainty (obtained by
fixing all CRR parameters to their modal values). In the
BATEA results, the two intervals are almost identical,
implying that in this case study CRR parameter uncertainty
contributes very little to predictive uncertainty. This is not
surprising given the long calibration period and demon-
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strates the increased precision of Bayesian posterior pdf’s as
the data length is increased (in this synthetic study, we can
ascertain that the parameter estimates are accurate). A very
different result is observed for IBUNE-A: during low-flow
periods, about half of the uncertainty is attributed to CRR
parameter uncertainty.
[41] In the second row of Figure S4, a more restrictive

partial interval is shown, which also excludes predictive
uncertainty due to the random errors in the observed rain-
falls (it was obtained by fixing the CRR parameters at their
modal values and setting s = 0). In the BATEA case, the
narrowness of this predictive interval during high flows
shows that the predictive uncertainty is dominated by rain-
fall uncertainty. However, in the IBUNE-A case, random
rainfall errors contribute minimally to the overall predictive
uncertainty during both recessions and high flows. This is
because IBUNE-A significantly underestimates the standard
deviation of rainfall errors (Figure S3).
[42] It is noted that despite misidentifying the sources of

errors contributing to the overall predictive uncertainty,
IBUNE-A produced 90% predictive uncertainty bounds that
captured about 90% of the observed runoffs. However, the
previous analysis shows that it compensated for a major
underestimation of random rainfall errors by increasing the
uncertainty in the CRR parameters and in the mean of the
rainfall multipliers m (this was verified because the study
used known synthetic data). This shows that enveloping the
correct fraction of observations in the prediction limits is not
a sufficient condition for these limits to be statistically
meaningful and insightful.

5. IBUNE Interpretation B: Using the
Hyperdistribution as a Jump Distribution

[43] This section analyzes an interpretation of the IBUNE
method that avoids most of the problems of interpretation
A, but operates in the full inference space including the
latent variables (and hence does not offer dimensionality-
reduction benefits). Interpretation B is based on a particular
MCMC scheme for sampling from the full posterior distri-
bution (5).

5.1. IBUNE-B: Markov-Independent MCMC Sampler

[44] Consider an MCMC scheme for sampling from the
full posterior (5) using the composite jump distribution

Q q* ið Þ;h* ið Þ;F* ið Þjq i
1ð Þ;h i
1ð Þ;F i
1ð Þ
� �
¼ q q* ið Þ;h* ið Þjq i
1ð Þ;h i
1ð Þ

� �
p F* ið Þjh* ið Þ
� �

ð21Þ

to propose a candidate sample {q*(i), h*(i), F*(i)} at
iteration i.
[45] Drawing from the jump distribution (21) consists of

two steps: (1) Markov step: draw a candidate sample {q*(i),
h*(i)} of CRR parameters and hyperparameters from the
jump distribution q(q*(i), h*(i)jq(i
1), h(i
1)), which depends
on the previous sample (the SCEM algorithm [Vrugt et al.,
2003] can be used in this step); and (2) Independent step:
draw a set of rainfall multipliers F*(i) from the hyperdis-
tribution p(Fjh*(i)), which does not directly depend on the
previous sample. Note that the acceptance/rejection step is
performed on the entire proposed sample {q*(i), h*(i),F*(i)},
rather than separately for the Markov and Independent steps.

[46] The Metropolis-Hastings acceptance probability of a
candidate sample from the jump distribution (21) is

ri ¼
p q* ið Þ;h* ið Þ;F* ið Þj~X ; ~Y
� �

p q i
1ð Þ;h i
1ð Þ;F i
1ð Þj~X ; ~Y
� �

�
Q q i
1ð Þ;h i
1ð Þ;F i
1ð Þjq* ið Þ;h* ið Þ;F* ið Þ
� �

Q q* ið Þ;h* ið Þ;F* ið Þjq i
1ð Þ;h i
1ð Þ;F i
1ð Þ
� � ð22Þ

Substituting equations (5) and (21) into (22) yields

ri ¼
p ~Y jq* ið Þ;F* ið Þ; ~X
� �

p F* ið Þjh* ið Þ
� �

p q* ið Þ;h* ið Þ
� �

p ~Y jq i
1ð Þ;F i
1ð Þ; ~X
� �

p F i
1ð Þjhði
1Þ
� �

p q i
1ð Þ;h i
1ð Þ
� �

�
q q i
1ð Þ;h i
1ð Þjq* ið Þ;h* ið Þ
� �

p F i
1ð Þjh i
1ð Þ� �
q q* ið Þ;h* ið Þjq i
1ð Þ;h i
1ð Þ
� �

p F* ið Þjh* ið Þ
� �

ð23Þ

Cancelling the terms p(F*(i)jh*(i)) and p(F(i 
 1)jh(i 
 1)),
and assuming the jump distribution in the Markov step is
symmetric yields

ri ¼
p ~Y jq* ið Þ;F* ið Þ; ~X
� �

p q* ið Þ;h* ið Þ
� �

p ~Y jq i
1ð Þ;F i
1ð Þ; ~X
� �

p q i
1ð Þ;h i
1ð Þ
� � ¼ g*ðiÞ

gði
1Þ
ð24Þ

This Markov-Independent (MI) algorithm is a Metropolis-
Hastings method [Gelman et al., 1995] that asymptotically
produces samples from the full posterior (5).
[47] Equation (24) shows that the MI sampler does not

require evaluating the full posterior (5). Indeed, iteration i of
the MI method consists of the following steps:
[48] 1. Draw a candidate sample of CRR parameters and

input error hyperparameters {q*(i), h*(i)} from a symmetric
jump distribution.
[49] 2. Evaluate the quantity g*(i) = p(~Y jq*(i), F*(i), ~X ) p

(q*(i), h*(i)) as follows: (1) Draw a candidate set of
multipliers F*(i) from the hyperdistribution p(Fjh*(i));
(2) Run the CRR model with parameters q*(i), forcing it
with rainfalls corrected using F*(i), and evaluate the resid-
uals e(i); (3) Evaluate the likelihood (9) using residuals e(i)

and calculate g*(i).
[50] 3. Compute the acceptance ratio (24) using g*(i)

and carry out the acceptance/rejection test. The denominator
is evaluated using the quantity g(i
1) corresponding to the
(i–1)th sample.
[51] Step 2 is identical to the evaluation of the IBUNE

posterior described in ADS2007 (indeed, g(q, h) corre-
sponds to pF(q, h j~X ; ~Y )). Therefore, the MI algorithm (1)–
(3) is equivalent to a Metropolis sampler (such as SCEM)
applied directly to the IBUNE posterior (16). This makes
the MI sampler a plausible interpretation of the IBUNE
description in ADS2007.

5.2. Dimensional Complexity of IBUNE-B

[52] Although IBUNE-B does not require evaluating the
full posterior p(q, h, Fj~X ; ~Y ) it is stressed that it operates in
the full dimensional {q, h, F} space including the latent
variables F, rather than in the much lower-dimensional
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{q, h} space of p(q, h j~X ; ~Y ). Consequently, the sampling
process must converge not only in the {q, h} space of the
Markovian jump, but also in the T-dimensional F space of
the Independent step.
[53] It follows that IBUNE-B offers no dimensionality-

reduction benefits compared to BATEA-type methods ap-
plied directly to the full posterior (5). Indeed, IBUNE-B
differs from the MCMC samplers currently used in BATEA
solely in its choice of jump distributions. To date, BATEA
has been applied with single-block Gaussian jump distribu-
tions [Kavetski et al., 2006a, 2006b] and with a multiblock
Gibbs sampler [Kuczera et al., 2007], while IBUNE-B
utilizes the Markov-Independent jump rule.
[54] Also note that not storing the multipliers {F(i), i =

1. . .N} sampled during N Metropolis iterations does not
affect the computational speed/results of the algorithm, but
saves 4NT bytes of computer memory (e.g., 60 MB for
10,000 samples when calibrating to 5 years with daily
multipliers in 4-byte (single) precision). This adjustment
can be implemented for any MCMC sampler, but makes it
difficult to apply posterior diagnostics. Importantly, it can
also undermine MCMC convergence checks (since con-
vergence in F space cannot be ascertained).

5.3. Relationship with IBUNE-A

[55] The IBUNE-B acceptance ratio (24) is similar to the
acceptance ratio (20) derived by applying a Metropolis
algorithm to the IBUNE-A posterior (16). More precisely,
the equality of these ratios depends on the implementation
of the IBUNE-A Metropolis sampler, with IBUNE-B
corresponding to strategy 2 outlined in section 4.4.
[56] Therefore, the computation and samples produced

using IBUNE-B are identical to those obtained with a
Metropolis sampler (implementing strategy 2, which is
standard in MCMC computer codes) applied to the random
posterior (16). This interesting result shows that applying a
Metropolis algorithm to the ‘‘random marginal posterior’’
(16) is equivalent to sampling from the full posterior (5)
using the Markov-Independent method. However, the sam-
pling unavoidably operates in the full space including the
latent variables (multipliers), and therefore using a random
pdf does not reduce the dimensionality of the sampling
space.

5.4. Computational Efficiency of IBUNE-B

[57] In general, the efficiency of MCMC methods
depends on how closely the jump distribution resembles
the target distribution (here, the full posterior (5)) [Gelman
et al., 1995]. This requires either special insight into the
target distribution, or some tuning of the jump distribution
(e.g., using adaptive schemes such as SCEM).
[58] The MI method (i.e., IBUNE-B) uses the hyper-

distribution p(Fjh*(i)) as an importance function to sample
from the target distribution of the Independent step,
p(Fjq*(i), h*(i), ~X ; ~Y ). The hyperdistribution is a poor
choice for sampling candidate multipliers F*(i) for several
reasons:
[59] 1. The hyperdistribution is off-centered relative to,

and is usually wider than, the target distribution. Indeed,
(1) the posterior mean of a multiplier ft can be very different
from its hypermean m (e.g., if the rainfall error at day t is
large); and (2) p(Fjq, h, ~X ; ~Y ) is generally peakier than
p(Fjh) because it is conditioned on the data and the CRR

parameters. Figure S13 illustrates the difference between the
individual multipliers posterior distributions and the
hyperdistribution: some multipliers have a posterior dis-
tribution which is significantly off-centered and much
peakier than the hyperdistribution. This occurs for multi-
pliers that significantly affect the model predictions and can
be accurately identified from the data.
[60] 2. The hyperdistribution does not depend on the

current location of the MCMC chain (in this respect, it is
closely related to standard importance sampling). Therefore,
unlike ‘‘Markovian’’ jump distributions (e.g., Gaussians
centered on the current sample), the hyperdistribution will
not favor the chains to remain and move within high
posterior probability regions in the F space (once these
are reached).
[61] 3. Once the Markov chains reach higher-density

regions of the {q, h, F} space, a random T-dimensional
multiplier set proposed from the exceedingly wide and off-
centered hyperdistribution is likely to significantly degrade
the current posterior density and hence has a very low
acceptance probability. This leads to exceedingly low jump
rates.
[62] 4. The hyperdistribution is fixed for a given h*(i) and

does not contain tunable parameters. Therefore the Indepen-
dent step cannot be tuned to its target distribution.
[63] The MI sampler is therefore likely to be inefficient,

with a continuously declining jump rate. Adaption of the
Markov step, e.g., using SCEM as done in ADS2007,
cannot remedy this inefficiency because the Markov step
operates in the {q, h} space, whereas the inefficiency
occurs in the F space. Moreover, even if the Markov step
is able to identify and sample near-optimal values of h, it
still cannot resolve the inefficiency of the Independent step.
Indeed, even if the true value h0 was known, the hyper-
distribution p(Fjh0) would generally be a poor approxima-
tion of p(Fjq, h0, ~X ; ~Y ).
[64] The case study (section 5.1 in Text S1) shows that

the jump rate of the MI sampler quickly declines to almost
zero. For example, during a 100,000-iteration simulation,
the jump rate declined from 7% during the first 100 samples
down to 0.005% over the last 90,000 iterations. In addition,
the sampled multipliers F are rarely close to their modal
(most likely) values F̂. Indeed, this would require randomly
sampling a specific T-dimensional Gaussian deviate (F̂
within some tolerance), which becomes exceedingly
improbable if T is large. For example, if the multiplier
hypermean m is 1, the probability of randomly sampling a
vector logF(i) with all components having the same signs
as logF̂ is (1/2)T. Consequently, while the MI approach
is asymptotically convergent in theory, its convergence is
exceedingly slow for practical computation, unless, as dis-
cussed in section 6, s is constrained near zero.

5.5. Fixed-Pool MI Method

[65] Consider an implementation of the MI method that
pregenerates a fixed finite pool of standardized multiplier
sets. This corresponds to the practical implementation used
by ADS2007 (Ajami, personal communication, 2007).
More precisely, a fixed pool of M standard Gaussian
deviates (W(k))k = 1. . .M = (wt

(k))k = 1. . .M; t = 1. . . T is generated
prior to MCMC sampling. At MCMC iteration i, the
multipliers are obtained as F*(i) = m*(i) + W(k)s*(i), where
h*(i) = (m*(i), s*(i)) are the hyperparameters proposed in the
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Markov step and k = i mod M (i.e., k is the remainder
of i/M). The number of MCMC samples N exceedsM, so the
algorithm cycles through the same pregenerated standardized
multipliers W every M iterations (in the same sequential
order). If M � N, the fixed-pool MI method reduces to the
standard MI method.
[66] The empirical study (section 5.2 in Text S1) suggests

that using a fixed pool, especially with M � N, improves
the jump rate. While the precise reasons for this are unclear,
it was observed that (1) the fixed-pool algorithm will always
eventually resample the same multiplier sets (but with
potentially improved candidate {q*(i), h*(i)}): indeed, in the
case study, 98% of the jumps were obtained with the same
member W(k0) of the fixed pool; and (2) the posterior density
is never close to its near-optimal values because the
probability that a random M pool of multipliers contains
near-optimal multipliers is very low. Consequently, the
jump probability r increases as M decreases, and the fixed-
pool method is ‘‘jumpier’’ than the standard MI method
(which is equivalent to M ! 1).
[67] However, the fixed-pool strategy loses the asymp-

totic convergence of the standard MI method because a F
pool with finite M < N cannot provide the complete cover-
age of the F space (especially when T is large) required for
asymptotic convergence as N ! 1. It is equivalent to
sampling the multipliers using a random number generator
with a smaller period (M) than the number of Monte Carlo
samples (N).
[68] Note that adequate jump rates and numerical con-

vergence of the fixed-pool MI method to a stationary
distribution do not imply that the samples correspond to
the target full posterior (5) (see Gelman et al. [1995] for the
distinction between the stationary and target distributions of
an MCMC method). Indeed, Figure S12 shows that the
fixed-pool MI method with M < N does not accurately
approximate the correct posterior and the true parameter
values. It shows that the marginal pdf estimated using the
fixed-pool MI method differs significantly from the correct
marginal posterior and does not encompass the known true
value of sK (see also section 5.2 in Text S1).

6. Using IBUNE With the Assumption of Small
Random Errors in the Inputs

[69] The prior distributions used by ADS2007 correspond
to relatively small rainfall uncertainty. Indeed, the priors m
� U [0.9, 1.1] and s2 � U [10
5, 10
3] (ADS2007, p. 9)
correspond to a systematic bias of up to 10%, but almost
negligible random errors (with a standard error not ex-
ceeding smax =

p
(10
3) � 3%). Note the difference be-

tween inputs biased by large systematic errors (m deviates
significantly from 1, but s is small) and unbiased inputs
with large random errors (m � 1, but s is large). A large
standard error implies that the observed rainfalls are
corrupted by large random errors, whereas a large mean
error implies that the observations contain large systematic
errors (i.e., the observations are systematically biased).
[70] Assuming input uncertainty with very small random

errors (i.e., constraining s � 0) improves the computational
behavior of both interpretations of IBUNE. First, the
random likelihood in IBUNE-A becomes near-deterministic
because the sampled multipliers are then near-identical at
each evaluation of the likelihood with a given set of

arguments. Second, IBUNE-B becomes more efficient
because both the hyperdistribution (used in the jump
distribution) and the marginal posterior density of the
multipliers converge to the same Dirac function as smax !
0. More generally, IBUNE behavior improves as s
decreases, but does not depend on m.
[71] However, the assumption that random errors in the

observed inputs are small is very restrictive in hydrological
calibration, especially given the spatial variability of rainfall
fields. For example, Linsley and Kohler [1958] report that
standard errors of storm-depth estimates may exceed 30%,
especially for large sparsely gauged catchments.
[72] If the actual standard deviation s0 of rainfall

multipliers exceeds the upper bound smax assumed a priori
to the inference, the prior becomes incompatible with the
data and excludes regions of the posterior that otherwise
would be highly probable. Any Bayesian method may then
appear to behave well computationally, but will converge to
poor posterior estimates (because input uncertainty is
underestimated). Empirical analysis suggests two problems
when s0 is large but s is constrained near zero: (1)
parameters are estimated with significant biases; and (2) the
uncertainty in the predicted runoffs is underestimated.
[73] In the ADS2007 study, IBUNE inferred the standard

deviation of rainfall multipliers to be in the range [0.003,
0.01] (Figure 10 in ADS2007). This corresponds to a
standard error in the observed daily catchment rainfall of
about 1%, which, as discussed above, appears unduly
optimistic.

7. Discussion

[74] A major motivation for IBUNE was overcoming two
drawbacks of the BATEA approach reported by ADS2007.
This section considers these criticisms in more detail to
clarify the key aspects of Bayesian hierarchical inference.
[75] The first reported drawback was that ‘‘it is impossi-

ble to assess the input error model likelihood L(~X jX)
because the true inputs are unknown in practice.’’ Here,
L(~X jX) refers to the notation used by Kavetski et al. [2002]
to denote the probability of observing rainfall ~X if the true
rainfall is X. Using L(~X jX) in the BATEA inference
equations does not imply that the true inputs must be
known (indeed, they are estimated as part of the BATEA
inference). Rather, L(~X jX) is used as a function of X and
can be constructed given an assumed input error model,
e.g., the Gaussian multipliers (2)–(3). Moreover, the input
error model represented by L(~X jX) can and should be
scrutinized a posteriori, e.g., by examining whether the
calibrated multipliers are consistent with their hyperdistri-
bution [Kavetski et al., 2006b; Kuczera et al., 2006].
Finally, while Kavetski et al. [2002] assumed the hyper-
parameters h (here, mean and variance of the multipliers)
are known, they can be added to the BATEA inference and
themselves estimated from the data [Kavetski et al., 2006a;
Kuczera et al., 2006].
[76] The second reported drawback was the high dimen-

sionality of the BATEA posterior (5) when input errors are
characterized using a large number of latent variables. This
occurs for long calibration time periods, or for high tem-
poral resolution of rainfall uncertainty (e.g., if BATEA is
applied with daily, rather than storm event multipliers). The
high dimensionality of the Bayesian hierarchical model
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(2)–(5) certainly poses a significant computational chal-
lenge. However, it is unavoidable. Although working with
the marginal posterior (10) reduces the apparent dimension
of the objective function, section 3.3 shows that this merely
exchanges a single T-dimensional sampling problem for a
series of T-dimensional integration problems. Yet numerical
exploration of the full posterior is by no means prohibitive.
For example, Kavetski et al. [2006b] sampled the full
posterior using a standard Metropolis scheme in a real-data
calibration involving 3 years of data (�70 storm-based
multipliers), while Kuczera et al. [2006] estimated the
posterior parameter mode using a quasi-Newton method in a
real-data calibration involving 2 years of daily data (�150
storm-based multipliers).
[77] Note that a single evaluation of the full posterior (5)

is relatively cheap, only slightly more expensive than a
single evaluation of the common least squares objective
function. The primary challenges of sampling from high-
dimensional pdf’s are (1) a large number of samples may be
needed to explore a high-dimensional sampling space; and
(2) the difficulties encountered by MCMC sampling of
pdf’s with complicated shapes are exacerbated when the
dimension of the sampling space increases. It is stressed that
the intrinsic T-dimensional structure of the Bayesian
hierarchical model does not rule out the existence of more
efficient (but T-dimensional!) numerical sampling algo-
rithms, nor the use of fast analytical or numerical solution
methods whenever possible.
[78] Finally this study highlights that IBUNE is based on

the same Bayesian hierarchical conceptualization of the
input uncertainty as BATEA and therefore is subject to
the same issues regarding the statistical and computational
complexity of the inference problem, sensitivity to assumed
models of data uncertainty, assumed timescale of input
errors, prior specifications and posterior diagnostics.

8. Conclusions

[79] The IBUNE method proposed by ADS2007 accounts
for input uncertainties in hydrological calibration using a
Bayesian hierarchical model, with input errors represented
using latent variables (rainfall multipliers). Unlike BATEA,
IBUNE does not explicitly infer the multipliers and instead
samples them from their assumed hyperdistribution at each
evaluation of the likelihood function. Though intuitive, this
creates several theoretical and practical difficulties. This
paper considered two different interpretations of the IBUNE
method, analyzed their theoretical and practical properties,
and compared them with BATEA.
[80] Interpretation A is based on the ADS2007 descrip-

tion that the approach does not estimate the rainfall multi-
pliers and uses a single multiplier sample in the evaluation
of the likelihood function. In this case the IBUNE likeli-
hood, and hence the IBUNE posterior and objective func-
tions, become random functions of the inferred variables,
which violates a general requirement for probability density
functions. IBUNE-A can also be viewed as an approxima-
tion to the marginal posterior distribution of the CRR
parameters and input error hyperparameters, which requires
integrating the full likelihood over the hyperdistribution of
latent variables. However, it is shown that IBUNE-A is
equivalent to a single-sample Monte Carlo integration and is
numerically inaccurate. It is empirically shown to cause a

significant underestimation of the rainfall multiplier vari-
ance and a significant misidentification of the sources
contributing to the uncertainty in the predicted runoffs.
[81] In Interpretation B, the IBUNE method is related to a

special two-step Metropolis-Hastings scheme for sampling
from the full posterior including the rainfall multipliers.
IBUNE-B is an asymptotically convergent MCMC method,
but does not reduce the dimensionality of the problem
compared to BATEA-type methods. Indeed, IBUNE-B
differs from MCMC methods currently used in BATEA
solely in its jump distribution: it uses the hyperdistribution
as a jump distribution for the latent variables. Yet this jump
distribution is inefficient because it is a poor approximation
of the target distribution and leads to exceedingly low jump
rates. Modifications based on drawing from a pregenerated
pool of multiplier samples can raise jump rates, but the
method then no longer converges to the correct posterior
distribution.
[82] The behavior of IBUNE (both A and B) improves if

the variance of the multipliers is a priori constrained to be
small, which is appropriate if the input errors are known to
be largely systematic (rather than random). In this case, the
random variability in the IBUNE-A posterior decreases,
while the hyperdistribution becomes more adequate as a
jump distribution in IBUNE-B. However, the evidence
suggests that input errors can be considerable.
[83] A primary conclusion of this study is that, unless the

hydrological model and the structure of data uncertainty
allow specialized treatment, Bayesian hierarchical models
of input uncertainty invariably lead to T-dimensional
computational problems, whether working with the full
posterior (T-dimensional sampling problem) or with the
marginal posterior (T-dimensional integration problem each
time the marginal posterior is evaluated).
[84] Finally retaining the latent variables in the posterior

distribution (rather than integrating them out) provides
valuable posterior diagnostic information about the hypoth-
eses used to construct the hyperdistribution (e.g., indepen-
dence and distribution of input errors). This is not possible
for methods that integrate the multipliers out of the posterior
distribution. In this context, the high dimensionality of
BATEA-type objective functions is not a theoretical defi-
ciency, but rather a computational challenge.
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