Department of Chemical Engineering University of Newcastle, Australia.

MATHEMATICAL MODELLING OF ENTRAINED FLOW COAL GASIFICATION

A thesis submitted in partial fulfilment of the requirements for the Doctor of Philosophy

by

Andrew Charles Beath B.Eng. (Chem.) Hons.

March, 1996.

I hereby certify that the work embodied in this thesis is the results of original research and has not been submitted for a higher degree to any other University or Institution.

(Signed)

A. C. Beath

NOTE FOR THIS ELECTRONIC VERSION:

This electronic version is not identical to the original published work. Due to software version changes and incompatibility issues, it was not possible to reconstruct the document as originally published and some pages have been scanned for insertion. Paging of the document has changed significantly and the figures are typically inserted at the end of the relevant section, rather than through the text as originally arranged. The Errata section addressing reviewers concerns has been included (note that the original page numbers are used in this section). For comparison purposes, the original table of contents is included.

NEW TABLE OF CONTENTS

ERRATAd
CLARIFICATIONS f
ORIGINAL TABLE OF CONTENTS i
ORIGINAL TABLE OF TABLES vii
ORIGINAL TABLE OF FIGURES ix
ABSTRACTxvi
ABSTRACTxvi
ACKNOWLEDGMENTS xvii
SUMMARY
GLOSSARY OF SPECIALISED TERMINOLOGY AND ABBREVIATIONS xxiv
NOMENCLATURExxv
1. INTRODUCTION
2. LITERATURE REVIEW
3. EVALUATION OF LITERATURE
4. DESCRIPTION OF MATHEMATICAL MODEL
5. SENSITIVITY ANALYSIS105
6. COMPARISON OF MODEL PREDICTIONS WITH AVAILABLE EXPERIMENTAL
MEASUREMENTS
7. USE OF MODEL PREDICTIONS TO DETERMINE REACTION MECHANICS AND
OPTIMUM GASIFIER FEED MIXTURES
8. CONCLUSIONS
9. RECOMMENDATIONS FOR FURTHER WORK
10. REFERENCES

ERRATA

Page	Location	Statement	Replacement
xxi	Paragraph 2, Line 6	accuracy	accurate
1	Paragraph 2, Line 4	theoretical	theoretically
4	Paragraph 2, Line 10	initial	initially
22	Paragraph 3, Line 10	of	-
66	Paragraph 2, Line 7	gasifierss	gasifiers
93	Table 4.2	Eq 39	Equation 2.8
181	Paragraph 2, Line 7/8	The range of experimental results considered	-
		allows for	

a) Typographical Errors.

b) The following text and equations should be included directly following page 102.

algorithm was developed for the model and is described below. The expressions were obtained by 'inverting' the model and calculating the length of time per step of conversion, rather than the conversion per length of time. Due to the difficulties in calculations for this model a number of simplifications had to be made, namely to the kinetics and heat transfer models employed and in that only one particle size can be used. From results predicted with this model an adaptable algorithm for estimating the trend in conversion with time was construction, a version of which is given in equations 4.25 to 4.27 in terms of step time predictions and illustrated in figure 4.6. Two adjustable parameters are used in the algorithm with the first, $\Delta X_{i,specified}$, giving a suggested value for the size of the slice in terms of change in conversion and the second, *f*(Coal), is given in table 4.3 and allows for variation in size of slice dependent on the degree of conversion in the previous slice and the coal used. This requires input of a factor dependant on the coal used, g(Coal), which accounts for variations due to coal properties in the early stages of gasification, mostly affected by the quantity of volatile released from the coal, and generally ranges from 0.5 for a low volatile coal to 2.5 for a very high volatile coal.

$$\Delta t_{i} = \frac{\Delta t_{i-1}}{\Delta X_{i-1}} \cdot \Delta X_{i,specified} \cdot \frac{\alpha}{f(X,Coal)} \cdot \log_{10}(\beta X) \qquad \text{Equation (4.25)}$$
$$\alpha = 0.5208 \cdot \log_{10}(6.232 \Delta X_{i,specified}) \cdot \frac{P_{total}}{30} \qquad \text{Equation (4.26)}$$

$$\beta = 10^{\left(\frac{8.671}{\Delta X_{i,specified}^{0.8277} - \frac{7.641}{\Delta X_{i,specified}^{0.5078}}\right)}$$
Equation (4.27)

c) The following references should be included in section 10. REFERENCES. Bautista, J. R., Russel, W. B., Saville, D. A., 1986, "Time-Resolved Pyrolysis Product Distributions Softening Coals", Ind. Eng. Chem. Fund., V25, pp536-544.

Gibbins, J. R., Kandiyoti, R., 1989, "The Effect Of Variations In Time-Temperature History On Product Distribution From Coal Pyrolysis", FUEL, V68, pp895-903.

Hastaoglu, M. A., Karmann, M., 1987, "Modelling Of Catalytic Carbon Gasification", Chem. Eng. Sci., V42, pp1121-1130

Reid, R. C., Prausnitz, J. M., Poling, B. E., 1987, "The Properties of Gases and Liquids", McGraw-Hill, New York.

Schoen, P., 1992, "Mathematical Model Of A Slagging Pulverised Coal Gasifier", Int. Power Eng. Conf., Hangzhou, China, May 17-21.

Sharma, D. K., Sulimma, A., van Heek, K. H., 1986, "Comparative Studies Of Pyrolysis Of Coal In Inert Gas, Steam And Hydrogen Under Pressure", Erdol Und Kohle - Erdgas – Petrochemie Vereinigt Mit Brennstoff-Chemie, V39, pp173-176.

Strimbeck, G. R., Cordiner, J. B. Jr., Taylor, H. G., Plants, K. D., Schmidt, L. D., 1953, See USBM (1953).

Suuberg, E. M., 1977, See Howard, J. B. in Chemistry of Coal Utilization, 2nd Suppl. Vol. (1981).

Wagner, R., Wanzl, W., van Heek, K. H., 1985, "Influence Of Transport Effects On Pyrolysis Reaction Of Coal At High Heating Rates", Fuel, V64, pp571-573.

CLARIFICATIONS

Page	Additional Comments	
3	The higher efficiency referred to as occurring in gasifiers relative to pulverised	
	coal boilers refers to the use of gasifiers in integrated gasification combined	
	cycle (IGCC) power generation compared to conventional pulverised coal-fired	
	boiler power plant. This is due to the higher thermodynamic efficiency	
	achieved in IGCC plant.	
21	In relation to the use of equations (2.1) and (2.2) to prediction of devolatilisation	
	rates at high pressures, it is necessary to input some measure of the expected	
	ultimate volatile yields at the desired pressure, V^* in equation (2.1) or a_1 and a_2	
	in equation (2.2). These yields must either be experimentally obtained or	
	estimated by another model, as equations (2.1) and (2.2) do not compensate for	
	variations in pressure. If the yields are input to either expression a	
	devolatilisation rate can be estimated, although the accuracy of the estimate at	
	pressures differing from atmospheric is unknown.	
29	The identification of reaction steps in sequence from Step 1 to Step 17 should	
	not suggest that the steps should progress in this order. Therefore it is not	
	necessary for oxygen gasification to precede carbon dioxide gasification, or	
	carbon dioxide gasification to precede steam gasification, etcetera, during	
	gasification.	
37	The reaction order 'n' defined by equation (2.8) is for the oxygen gasification	
	reaction and is used in the estimation of reaction rate according to equation	
	(2.7).	
53	In assuming that all nitrogen in the product gases from a gasifier is in the form	
	of molecular nitrogen reference is made to Strimbeck et al. (1953). (This	
	reference is listed in the references as USBM (1953).) The gasifier used in that	
	study was a pilot scale entrained flow, high pressure and oxygen blown unit.	
	The dominance of production of molecular nitrogen compared to other nitrogen	
	containing gases in gasifiers was also reported in Watkinson et al. (1991) for a	
	range of gasifiers, including entrained flow, fluidised bed and fixed bed designs,	
	using either oxygen or air and variously operating at high and atmospheric	
	pressures. This does not mean that other nitrogen containing species will not	
	exist in gasifiers but suggests that they will be in only minor concentrations. By	

	neglecting these other nitrogen containing species it becomes possible to		
	analytically solve some of the equations concerning gas phase equilibria and		
	therefore this approximation is seen as justifiable for use in the model.		
86	In the work of Neoh and Gannon (1984) a set of 13 coals of North American		
00	origin with rank ranging from lignite to anthracite was studied. The majority of		
	these, nine of the 13, were in the range sub-bituminous to low volatile		
	bituminous that would typically be considered applicable for use in entrained		
	flow gasification.		
02			
92	The magnitudes of the reactivity correlation coefficients listed in Table 4.1 do		
	not indicate the relative magnitudes of the different reactions but are solely used		
	to represent the influence of coal rank (based on carbon content) on reaction rate		
	for the individual gasification reactions. For example, from the figures in the		
	table it is possible to state that rank appears to have greatest influence on the		
	reaction rate of steam with carbon and the least influence on the reaction rate of		
	hydrogen with carbon. The magnitude of the rates is estimated from the value		
	of the pre-exponential rate constant calculated from the reactivity coefficient		
	and other terms using Equation (4.8), as well as the activation energy for the		
	reaction and other diffusional interferences that are independent of the		
	calculated reactivity coefficient.		
96	In the chemical reaction rate limited regime mass loss will occur both from the		
	external particle surface and the internal pore surface, however as internal pore		
	area is typically much greater than external particle area, reaction will		
	effectively lead to increasing particle porosity with negligible particle shrinkage.		
	For the pore diffusion hindered regime the rates of change in porosity and		
	particle size will vary depending on the particle effectiveness factors for the		
	heterogeneous reactions. At low effectiveness factor the particle will mostly		
	shrink with reaction with little change in porosity, and at high effectiveness		
	factor the particle porosity will increase with little reduction in particle size.		
101	The gas properties of significance to modelling in an entrained flow coal		
	gasifier are density, emissivity, diffusivity, specific heat and thermal		
	conductivity. In general only the gases present in significant concentrations in		
	the gasifier, carbon monoxide, carbon dioxide, steam, hydrogen, oxygen and		
	nitrogen, are considered in the sub-models for gas properties. Density is		
	calculated using the Ideal Gas Law, which involves the assumptions of non-		

interaction between gas molecules and therefore is subject to minor error at high pressures. The gas emissivity is assumed to be uniform for the entire spectrum of relevance to heat transfer, termed 'grey' gas modelling, and the calculation of emissivity is considered in section 2.6.2 (pp61-63), with inclusion of pressure dependent terms. Calculation of diffusivity for use in determination of boundary layer and pore diffusion effects is discussed in section 2.3.7.2 (pp48-52), with the expressions defined incorporating the effects of pressure on the calculated variables. Calculation of the specific heats and thermal conductivities of gas mixtures at high temperatures and pressures are not discussed in the thesis as relatively common methods were used. Specific heats were calculated from the average values for the individual gases (averaged on a molar basis), which in turn were estimated using quadratic polynomials of best fit to available experimental data with respect to changing temperature. The thermal conductivities of gas mixtures were estimated using the Brokaw Method (Reid, Prausnitz and Poling (1987)), with individual values estimated from linear regression of the available experimental data with respect to changing temperature. This method compensates for the anomalous influence of significant quantities of hydrogen on the overall thermal conductivity of the gas mixture. For both the estimation of specific heat and thermal conductivity of the gas mixtures no correction for high pressures was deemed necessary as the available experimental data indicated insignificant variation in property with pressure when compared to the uncertainties involved in the estimation of the property at atmospheric pressure.

ORIGINAL TABLE OF CONTENTS

	Page
TABLE OF CONTENTS	i
TABLE OF TABLES	vii
TABLE OF FIGURES	ix
ABSTRACT	xvi
ACKNOWLEDGMENTS	xvii
SUMMARY	xviii
GLOSSARY OF SPECIALISED TERMINOLOGY AND ABBREVIATIONS	xxiv
NOMENCLATURE	XXV
1. INTRODUCTION	1
1.1 Definition of Entrained Flow Coal Gasification	1
1.2 Reactions in Gasification	1
1.3 Historical Use of Gasification	3
1.4 Gasification Technologies	3
1.5 Current Interest in Gasification	5
1.6 Process Description of Entrained Flow IGCC	5
1.7 Current and Future Gasification Plant	7
1.8 Mathematical Modelling of Gasification	10
1.9 Requirements of Model	11
1.10 Simplified Model Description	11
2. LITERATURE REVIEW	13
2.1 The Components of a Coal Gasification Model	13
2.2 Devolatilisation	17
2.2.1 Description of Devolatilisation	18
2.2.2 Devolatilisation Kinetics	19
2.2.3 Volatile Yield	21
2.2.4 Volatile Composition	25
2.2.5 Structural Changes during Devolatilisation	26
2.3 Heterogeneous Reactions	28
2.3.1 General Characteristics	28

2.3.2 Fundamental Reaction Mechanisms	29
2.3.3 Oxygen Gasification	32
2.3.4 Gasification by Other Gases	38
2.3.5 Chemical Rate Forms	41
2.3.6 Variability of Char Reactivities	42
2.3.7 Interaction with Diffusion Processes	48
2.3.7.1 Boundary Layer Diffusion	48
2.3.7.2 Pore Diffusion	48
2.4 Homogeneous Reactions	52
2.5 Particle Structure	54
2.5.1 Pore Structure Modelling	54
2.5.2 Coal Particle Properties	59
2.6 Heat Transfer	60
2.6.1 Convective Transfer	60
2.6.2 Radiative Transfer	61
2.7 Gasification Modelling	64
2.7.1 Model Types	64
2.7.2 Published Models	66
2.7.2.1 Reaction Modelling	67
2.7.2.2 Particle Structure and Reaction Regimes	70
2.7.2.3 Heat Transfer	73
2.7.2.4 Summary of Published Models	76
EVALUATION OF LITERATURE	78
3.1 Devolatilisation	78
3.2 Particle Structure	78
3.3 Heterogeneous Reactions	79
3.4 Homogeneous Reactions	80
3.5 Heat Transfer	80
3.6 Previous Models	81
3.7 Conclusions	81
DESCRIPTION OF MATHEMATICAL MODEL	82
4.1 Model Description	82

3.

4.

4.2 Model Components	85
4.2.1 Devolatilisation	86
4.2.2 Heterogeneous Reactions	89
(i) Boundary Layer Diffusion Regime	93
(ii) Chemical Reactivity Regime	94
(iii) Pore Diffusion Hindered Regime	94
4.2.3 Particle Structure	95
4.2.4 Homogeneous Reactions	96
4.2.5 Heat Transfer	97
4.2.6 Physical Properties	100
4.2.7 Modifications for High Pressures	100
4.3 Solution Methods and Algorithms	101
5. SENSITIVITY ANALYSIS	106
5.1 Definition of Sensitivity	106
5.2 Variables Considered	106
5.3 Basic Sensitivity Analysis	108
5.3.1 Sensitivity to Coal Properties	108
5.3.2 Sensitivity to Particle Properties	110
5.3.3 Sensitivity to Gas and Coal Feeds	111
5.3.4 Significance of Reaction Kinetics	112
5.3.5 Sensitivity to Gasifier Conditions	114
5.3.6 Conclusions from Basic Sensitivity Analysis	117
5.4 Determination of Model Reliability	118
5.4.1 Coal Physical Property Data	119
(a) Coal Analysis Data	119
(b) Estimated Coal Properties	120
5.4.2 Coal Reactivity Parameters	123
5.4.3 Gasification Conditions	125
(a) Gasifier Wall Temperatures	125
(b) Gas and Coal Temperatures	126
(c) Gasifier Dimensions	127
(d) Gas and Coal Feeds	127

(e) Gasifier Pressure	128
5.4.4 Conclusions of Model Reliability Study	128
5.5 Conclusions of Sensitivity Analysis	132
6. COMPARISON OF MODEL PREDICTIONS WITH AVAILABLE	133
EXPERIMENTAL MEASUREMENTS	
6.1 Introduction	133
6.2 Atmospheric Pressure Experimental Gasifiers	133
6.2.1 CSIRO Experimental Gasifier	134
6.2.1.1 Description of Gasifier	134
6.2.1.2 Prediction Methods	136
6.2.1.3 Individual Coal Predictions	141
(i) Coal A	143
(ii) Coal B	148
(iii) Coal C	152
(iv) Coal D	156
(v) Coal E	160
(vi) Coal F	165
(vii) Coal G	169
(viii) Coal H	173
6.2.1.3 Trend Analysis for CSIRO gasifier	177
(i) Effect of Stoichiometry	177
(ii) Relative Performance of Different Coals	177
(iii) Differences Between Standard and	186
Equimolar Runs	
6.2.2 USBM Experimental Gasifier	191
6.2.2.1 Description of Gasifier	191
6.2.3.2 Prediction Methods	193
6.2.3 BYU Experimental Gasifier	193
6.2.3.1 Description of Gasifier	193
6.2.3.2 Prediction Methods	195
6.2.4 Summary of Atmospheric Pressure Comparisons	195
6.3 High Pressure Experimental Gasifiers	199

6.3.1 IGT Experimental Gasifier	199
6.3.1.1 Gasifier Description	199
6.3.1.2 Prediction Methods	199
6.3.2 USBM Experimental Gasifier	201
6.3.2.1 Gasifier Description	201
6.3.2.2 Prediction Methods	201
6.3.3 Summary of High Pressure Comparisons	201
6.4 Testing of Individual Model Components	205
6.4.1 Volatile Yield Sub-Model	205
6.4.2 Factors Related to Heterogeneous Reaction Rates	206
6.4.3 Conclusions of Model Component Validation	209
6.5 Conclusions from Comparison Study	209
7. USE OF MODEL PREDICTIONS TO DETERMINE REACTION	211
MECHANICS AND OPTIMUM GASIFIER FEED MIXTURES	
7.1 Introduction	211
7.2 Reaction Rate Study	212
7.2.1 Influence of Reaction Modelling on Predictions	212
7.2.2 Influence of Pressure on Reaction Rate Modelling	217
7.3 Gas Feed Mixture	219
7.3.1 Pressure Effects	222
7.3.2 Gasifier Size	225
7.3.3 Coal Effects	228
7.4 Conclusions from Model Predictions	234
8. CONCLUSIONS	236
8.1 Errors Sources Associated with Modelling Methods	236
8.2 Accuracy of Model Predictions Compared to Experimental Results	238
8.3 Prediction of Reaction Mechanics and Optimum Feed Mixture	239
9. RECOMMENDATIONS FOR FURTHER WORK	241
(a) High Temperature and Pressure Heterogeneous Reaction Kinetics.	241
(b) High Pressure Devolatilisation Yields.	241

ORIGINAL TABLE OF TABLES

1. INTRODUCTION

1.1 Existing and proposed IGCC plant	9
--------------------------------------	---

2. LITERATURE REVIEW

2.1	Gasification modelling components	16
2.2	Experimental correlations for pore structure	59
2.3	Values of coefficients in equations 2.27 and 2.28	64
2.4	Comparison of reactions considered in various models	69
2.5	Particle structures and reaction regimes considered in various models	72
2.6	Aspects of heat transfer between solids considered in various models	75

3. EVALUATION OF LITERATURE

4. DESCRIPTION OF MATHEMATICAL MODEL

4.1	Reactivity correlation coefficients for gasification reactions	92
4.2	Intrinsic reactivity data for coal E and other literature values	93
4.3	Values of adjustment factor for sep time calculation	105

5. SENSITIVITY ANALYSIS

5.1	Coal properties and gasifier conditions used for base values	107
5.2	Effect of coal property inputs on carbon conversion predictions	119
5.3	Effect of coal reactivity parameters on carbon conversion predictions	123
5.4	Effect of gasification conditions on carbon conversion predictions	125
5.5	Summary of variables capable of producing significant variations in	129
	predictions	

6. COMPARISON OF MODEL PREDICTIONS WITH AVAILABLE EXPERIMENTAL MEASUREMENTS

6.1	Analysis of coals used in the CSIRO gasifier (Harris et al. (1995))	134

6.2 Analysis of coals used in the USBM atmospheric gasifier (USBM 191

(1954))

6.3	Analysis of coals used in the BYU gasifier (Brown et al. (1988))	195
6.4	Analysis of coals used in the IGT pressurised gasifier (IGT (1957))	199

7. USE OF MODEL PREDICTIONS TO DETERMINE REACTION MECHANICS AND OPTIMUM GASIFIER FEED MIXTURES

7.1 Summary of optimum gas feed ratios for CSIRO study coals 233

8. CONCLUSIONS

9. RECOMMENDATIONS FOR FURTHER WORK

10. REFERENCES

APPENDIX A: DETERMINATION OF INTRINSIC REACTIVITIES

A.1	Terms for intrinsic rate expressions for CSIRO gasifier Coal E chars	257
-----	--	-----

APPENDIX B: SLAG LAYER MODEL

B .1	Base values used in sensitivity analysis of slag layer model	263
-------------	--	-----

ORIGINAL TABLE OF FIGURES

1. INTRODUCTION

2. LITERATURE REVIEW

2.1	Schematic of processes in entrained flow coal gasification	14
2.2	Errors in predicted volatile yield from the correlation of Neoh and	23
	Gannon (1984) when compared to experimental results	
2.3	Comparison of published results for volatile yield varying with	24
	pressure in different atmospheres	
2.4	Comparison of measured swell from analysis with that under	27
	combustion and gasification conditions	
2.5	Graphite structure showing reaction sites	31
2.6	Proposed reaction schemes for carbon removal by oxygen	31
2.7	Proposed reaction scheme for carbon removal by hydrogen	31
2.8	Comparison of a selection of intrinsic and external reactivities of	36
	Australian coal chars to 1 atmosphere of oxygen	
2.9	Comparison of published activation energies for terms in complex	40
	Langmuir-Hinshelwood expression	
2.10	Comparison of a selection of published intrinsic reactivities of chars	43
	to 1 atmosphere of carbon dioxide	
2.11	Comparison of a selection of published intrinsic reactivities of chars	44
	to 1 atmosphere of steam	
2.12	Comparison of a selection of published intrinsic reactivities of chars	45
	to 1 atmosphere of hydrogen	
2.13	Correlations of reactivity with respect to coal carbon content for	47
	gasification reactions as per Fung and Kim (1984)	
2.14	Schematic representation of diffusion of reactant gas into a pore	49
2.15	Diagrammatic representation of literature pore models	55

Page

2.16 Variation in coal porosity (total and in various pore size ranges) with 59a coal carbon content (Gan *et al.* (1972))

3. EVALUATION OF LITERATURE

4. DESCRIPTION OF MATHEMATICAL MODEL

4.1	Modelled gasifier showing radiative heat transfer model for a typical	83
	slice of the gasifier	
4.2	Volatile release for a single coal at various pressures with derived	88
	correlation (Lee et al. (1991)	
4.3	Influence of temperature on combined gasification rates of all	90
	heterogeneous reactions at 20 atmospheres total pressure (40%	
	carbon dioxide, 27% carbon monoxide, 13% hydrogen, 20% steam)	
4.4	Influence of pressure on combined gasification rates of all	90
	heterogeneous reactions at 1000K particle temperature (40% carbon	
	dioxide, 27% carbon monoxide, 13% hydrogen, 20% steam)	
4.5	Flowchart illustrating model structure	103
4.6	Calculated step sizes from solution algorithm for total pressure of 30	104
	atmospheres and coal factor of 1	

5. SENSITIVITY ANALYSIS

5.1	Effect of coal property inputs on predicted carbon conversion	109
5.2	Effect of calculated particle properties on predicted carbon	109
	conversion	
5.3	Effect of ratio of feeds to base coal input on predicted carbon	109
	conversion	
5.4	Effect of reaction rate pre-exponential constants on predicted carbon	113
	conversion	
5.5	Effect of reaction rate activation energies on predicted carbon	113
	conversion	
5.6	Effect of reaction rate pressure orders on predicted carbon conversion	113
5.7	Effect of temperature inputs on predicted carbon conversion	115
5.8	Effect of variations in input wall temperatures at different distances	115

(c) Gas Physical Properties.	241
(d) Slag Layer Modelling.	242
(e) Fluid Dynamics Modelling.	242
10. REFERENCES	243
APPENDIX A: DETERMINATION OF INTRINSIC REACTIVITIES	256
A.1 Introduction	256
A.2 Experimental Procedure	256
A.3 Experimental Reactivities	257
A.4 Discussion and Conclusions	258
APPENDIX B: SLAG LAYER MODEL	260
B.1 Introduction	260
B.2 Model Description	260
B.3 Sensitivity Analysis	262
B.4 Estimation of Slag Layer Properties	263
B.5 Discussion and Conclusions	266

along the gasifier on predicted overall carbon conversion

- 5.9 Effect of total pressure on predicted carbon conversion 116
- 5.10 Effect of gasifier diameter and length on predicted carbon conversion 116
- 5.11 Effect of number of particle sizes modelled on carbon conversion 121 predictions

6. COMPARISON OF MODEL PREDICTIONS WITH AVAILABLE EXPERIMENTAL MEASUREMENTS

6.1	CSIRO experimental atmospheric pressure gasifier (CSIRO (1995))	135
6.2	Modelled size distribution used in CSIRO gasifier (CSIRO (1995))	138
6.3a	Average gasifier wall temperatures for Standard runs	139
6.3b	Average gasifier wall temperatures for Equimolar runs	139
6.4a	Gasifier feed gas flowrates for Standard runs	140
6.4b	Gasifier feed gas flowrates for Equimolar runs	140
6.5a	Carbon conversion results and predictions for Coal A Standard runs	145
6.5b	Carbon conversion results and predictions for Coal A Equimolar runs	145
6.5c	Cold gas efficiency results and predictions for Coal A Standard runs	146
6.5d	Gas composition results and predictions for Coal A Standard runs	146
6.5e	Cold gas efficiency results and predictions for Coal A Equimolar runs	147
6.5f	Gas composition results and predictions for Coal A Equimolar runs	147
6.6a	Carbon conversion results and predictions for Coal B Standard runs	149
6.6b	Carbon conversion results and predictions for Coal B Equimolar runs	149
6.6c	Cold gas efficiency results and predictions for Coal B Standard runs	150
6.6d	Gas composition results and predictions for Coal B Standard runs	150
6.6e	Cold gas efficiency results and predictions for Coal B Equimolar runs	151
6.6f	Gas composition results and predictions for Coal B Equimolar runs	151
6.7a	Carbon conversion results and predictions for Coal C Standard runs	153
6.7b	Carbon conversion results and predictions for Coal C Equimolar runs	153
6.7c	Cold gas efficiency results and predictions for Coal C Standard runs	154
6.7d	Gas composition results and predictions for Coal C Standard runs	154
6.7e	Cold gas efficiency results and predictions for Coal C Equimolar runs	155
6.7f	Gas composition results and predictions for Coal C Equimolar runs	155
6.8a	Carbon conversion results and predictions for Coal D Standard runs	157

6.8b	Carbon conversion results and predictions for Coal D Equimolar runs	157
6.8c	Cold gas efficiency results and predictions for Coal D Standard runs	158
6.8d	Gas composition results and predictions for Coal D Standard runs	158
6.8e	Cold gas efficiency results and predictions for Coal D Equimolar runs	159
6.8f	Gas composition results and predictions for Coal D Equimolar runs	159
6.9a	Carbon conversion results and predictions for Coal E Standard runs	162
6.9b	Carbon conversion results and predictions for Coal E Equimolar runs	162
6.9c	Cold gas efficiency results and predictions for Coal E Standard runs	163
6.9d	Gas composition results and predictions for Coal E Standard runs	163
6.9e	Cold gas efficiency results and predictions for Coal E Equimolar runs	164
6.9f	Gas composition results and predictions for Coal E Equimolar runs	164
6.10a	Carbon conversion results and predictions for Coal F Standard runs	166
6.10b	Carbon conversion results and predictions for Coal F Equimolar runs	166
6.10c	Cold gas efficiency results and predictions for Coal F Standard runs	167
6.10d	Gas composition results and predictions for Coal F Standard runs	167
6.10e	Cold gas efficiency results and predictions for Coal F Equimolar runs	168
6.10f	Gas composition results and predictions for Coal F Equimolar runs	168
6.11a	Carbon conversion results and predictions for Coal G Standard runs	170
6.11b	Carbon conversion results and predictions for Coal G Equimolar runs	170
6.11c	Cold gas efficiency results and predictions for Coal G Standard runs	171
6.11d	Gas composition results and predictions for Coal G Standard runs	171
6.11e	Cold gas efficiency results and predictions for Coal G Equimolar runs	172
6.11f	Gas composition results and predictions for Coal G Equimolar runs	172
6.12a	Carbon conversion results and predictions for Coal H Standard runs	174
6.12b	Carbon conversion results and predictions for Coal H Equimolar runs	174
6.12c	Cold gas efficiency results and predictions for Coal H Standard runs	175
6.12d	Gas composition results and predictions for Coal H Standard runs	175
6.12e	Cold gas efficiency results and predictions for Coal H Equimolar runs	176
6.12f	Gas composition results and predictions for Coal H Equimolar runs	176
6.13а-с	Predicted carbon conversion by individual processes with varying	178
	stoichiometry (Coal E Standard runs) a. Total, b. Volatiles, c. Oxygen	
	gasification	
6.14a-c	Predicted carbon conversion by individual processes with varying	179

6.14a-c Predicted carbon conversion by individual processes with varying 179

stoichiometry (Coal E Standard runs) a. Carbon Dioxide, b. Steam, c. Hydrogen gasification

6.15a	Predicted reaction modes for 100% stoichiometry Standard runs	180
6.15b	Predicted reaction modes for 100% stoichiometry Equimolar runs	180
6.16a-c	Experimental and predicted carbon conversion for Standard runs	182
	plotted against some proximate analysis results a. Volatile Matter, b.	
	Ash Content, c. Moisture Content of coal	
6.17a-c	Experimental and predicted carbon conversion for Equimolar runs	183
	plotted against some proximate analysis results a. Volatile Matter, b.	
	Ash Content, c. Moisture Content of coal	
6.18a-c	Experimental and predicted carbon conversion for Standard runs	184
	plotted against some ultimate analysis results a. Carbon Content, b.	
	Oxygen Content, c. Hydrogen Content of coal	
6.19a-c	Experimental and predicted carbon conversion for Equimolar runs	185
	plotted against some ultimate analysis results a. Carbon Content, b.	
	Oxygen Content, c. Hydrogen Content of coal	
6.20a-c	Experimental and predicted carbon conversion for Standard runs	187
	plotted against some miscallaneous analysis results a. Fuel Ratio, b.	
	Calorific Value, c. Vitrinite Reflectance of coal	
6.21a-c	Experimental and predicted carbon conversion for Equimolar runs	188
	plotted against some miscallaneous analysis results a. Fuel Ratio, b.	
	Calorific Value, c. Vitrinite Reflectance of coal	
6.22a	Gas temperatures for Standard runs with different stoichiometries	189
6.22b	Gas temperatures for Equimolar runs with different stoichiometries	189
6.23	USBM atmospheric pressure gasifier (USBM (1954))	192
6.24	BYU laboratory scale gasifier (Brown et al. (1988))	194
6.25	Comparison of model predictions with CSIRO (1995) experimental	196
	results	
6.26	Comparison of model predictions with USBM (1954) experimental	196
	results	
6.27	Comparison of model predictions with Brown et al. (1988)	196
	experimental results and model predictions	
6.28	IGT pressurised experimental gasifier (IGT (1957))	200

6.29	USBM pressurised gasifier (USBM (1953))	202
6.30	Comparison of model predictions with intermediate pressure IGT	
	(1957) experimental results	
6.31	Comparison of model predictions with high pressure USBM (1953)	203
	experimental results	
6.32	Comparison of volatile yield sub-model predictions with overall	207
	carbon conversion experimental results at low stoichiometry	
7. US	E OF MODEL PREDICTIONS TO DETERMINE REACTION	
	MECHANICS AND OPTIMUM GASIFIER FEED MIXTURES	
7.1	Carbon conversion rates for individual reactions in gasifier	213
7.2	Carbon conversion due to individual reactions in gasifier	213
7.3	Various temperature with distance along gasifier (Coal E 106%	215
	Stoich.)	
7.4	Gas composition with distance gasifier (Coal E 106% Stoich.)	215
7.5	Reaction rates for $97\mu m$ particle with distance along gasifier	215
7.6	Comparison of predicted particle effectiveness factors for different	218
	reactant gases and conditions	
7.7	Effect of modelling techniques for reaction regimes on predictions at	220
	different total pressures, a. 1 atmosphere, b. 10 atmospheres, c. 30	
	atmospheres.	
7.8	Selection of optimum feed mixture for gasifier at 1 atmosphere	223
	pressure	
7.9	Selection of optimum feed mixture for gasifier at 10 atmospheres	223
	pressure	
7.10	Selection of optimum feed mixture for gasifier at 20 atmospheres	224
	pressure	
7.11	Selection of optimum feed mixture for gasifier at 30 atmospheres	224
	pressure	
7.12	Selection of optimum feed mixture for 0.1m diameter gasifier	226
	(20atm)	
7.13	Selection of optimum feed mixture for 0.5m diameter gasifier	226
	(20atm)	

7.14	Selection of optimum feed mixture for 1.0m diameter gasifier	227
	(20atm)	
7.15	Selection of optimum feed mixture for 2.0m diameter gasifier	227
	(20atm)	
7.16	Cold gas efficiency predictions for Coal A	229
7.17	Cold gas efficiency predictions for Coal B	229
7.18	Cold gas efficiency predictions for Coal C	230
7.19	Cold gas efficiency predictions for Coal D	230
7.20	Cold gas efficiency predictions for Coal E	231
7.21	Cold gas efficiency predictions for Coal F	231
7.22	Cold gas efficiency predictions for Coal G	232
7.23	Cold gas efficiency predictions for Coal H	232

8. CONCLUSIONS

9. RECOMMENDATIONS FOR FURTHER WORK

10. REFERENCES

APPENDIX A: DETERMINATION OF INTRINSIC REACTIVITIES

A.1	Raw experimental reactivities for gasification reactions	259
A.2	Calculated intrinsic reactivities for gasification reactions	259

APPENDIX B: SLAG LAYER MODEL

B.1	Schematic of slag layer indicating dimensions, temperatures and mass	261
	flow	
B.2	Sensitivity of predicted slag fluid layer thickness to inputs	264
B.3	Sensitivity of predicted slag fluid layer surface temperature to inputs	264
B.4	Influence of gas temperature on predicted slag surface temperature	265
	and fluid layer thickness	

ABSTRACT

A mathematical model for entrained flow coal gasification was developed with the objective of predicting the influence of coal properties and gasification conditions on the performance of entrained flow gasifiers operating at pressures up to 21 atmospheres (2.1MPa). The model represents gasifiers as plug flow reactors and therefore neglects any mixing or turbulence effects. Coal properties were predicted through use of correlations from a variety of literature sources and others that were developed from experimental data in the literature. A sensitivity analysis of the model indicated that errors in the calculated values of coal volatile yield, carbon dioxide gasification reactivity and steam gasification may significantly affect the model predictions. Similarly errors in the input values for gasifier wall temperatures and gasifier diameter, when affected by slagging, can cause model prediction errors. Model predictions were compared with experimental gasification results for a range of atmospheric and high pressure gasifiers, the majority of the results being obtained by CSIRO at atmospheric pressure for a range of coals. Predictions were accurate for the majority of atmospheric pressure results over a large range of gas feed mixtures. Due to the limited range of experimental data available for high pressure gasification the capability of the model is somewhat uncertain, although the model provided accurate predictions for the majority of the available results. The model was also used to predict the trends in particle reactions with gasification and the influence of pressure, gasifier diameter and feed coal on gasifier performance. Further research on coal volatile yields, gasification reactivities and gas properties at high temperatures and pressures was recommended to improve the accuracy of model inputs. Additional predictions and model accuracy improvements could be made by extending the model to include fluid dynamics and slag layer modelling.

ACKNOWLEDGMENTS

A significant proportion of the work performed in this study was associated with a project performed under an ACARP/NERDDP grant.

My thanks go to Prof. Terry Wall for his assistance and valuable insights, Dr. David Harris and colleagues at CSIRO for extensive data from their experiments, Dr. Allen Lowe and Dr. Rod Boyd of Pacific Power for their support, and my wife Helen for keeping me going.

SUMMARY 1. INTRODUCTION

The aim of this study is to develop a mathematical model of entrained flow coal gasification. Emphasis in the model will be on the ability to distinguish differences in gasification performance caused by changes in coal and gasification conditions, and for this reason accurate modelling of the coal gasification reactions is required rather than the fluid flow aspects. In order to allow general use of the model it is also desirable that coal related inputs can be estimated from basic coal analysis results, such as proximate and ultimate analyses.

Gasification of coal or other forms of carbon has been used for generation of combustible gases since the late 1700s. Important reactions identified in the gasification of coal are given in reactions 1 to 14. Reactions 1 to 5 are actually involved in gasifying the coal while reactions 6 to 14 are responsible for determining the gas composition.

Devolatilisation

Reaction (1)
ł

Heterogeneous Gasification

$C + \frac{1}{Z}O_2 \rightarrow (2 - \frac{2}{Z})CO + (\frac{2}{Z} - 1)CO_2$	Reaction (2)
$C + CO_2 \rightarrow 2CO$	Reaction (3)
$C + H_2 O \to H_2 + CO$	Reaction (4)

$$C + 2H_2 \rightarrow CH_4$$
 Reaction (5)

Homogeneous Combustion

$CO + \frac{1}{2}O_2 \longrightarrow CO_2$	Reaction (6)
$H_2 + \frac{1}{2}O_2 \longrightarrow H_2O$	Reaction (7)
$CH_4 + 2O_2 \longrightarrow CO_2 + 2H_2O$	Reaction (8)
$H_2S + \frac{3}{2}O_2 \longrightarrow SO_2 + H_2O$	Reaction (9)
$COS + \frac{3}{2}O_2 \longrightarrow CO_2 + SO_2$	Reaction (10)

Homogeneous Equilibrium

$H_2O + CO \longleftrightarrow H_2 + CO_2$	Reaction (11)
$CO + 3H_2 \longleftrightarrow CH_4 + H_2O$	Reaction (12)
$SO_2 + 3H_2 \longleftrightarrow 2H_2O + H_2S$	Reaction (13)
$COS + H_2O \longleftrightarrow CO_2 + H_2S$	Reaction (14)

More recently the concept of coupling a gasifier with a gas turbine and steam generation plant to produce electricity has led to further development of gasification, these plants are termed integrated gasification combined cycle (IGCC). The form of gasifier used in IGCC can vary with the most common types being fixed bed, fluidised bed and entrained flow. In this study entrained flow gasification is considered and this involves the addition of pulverised coal with oxygen, or air, and steam into the gasifier. For IGCC use the gasifier will commonly be operated in the range of 20 to 30 atmospheres pressure.

2. LITERATURE REVIEW

The quantity of literature available for gasification is vast due to the large number of reactions involved, however only a small proportion of the literature is relevant to the high pressure and high temperatures experienced in large entrained flow gasifiers. Key areas of interest are the yield of volatiles from coal heated rapidly at both atmospheric and high pressures, rates of heterogeneous gasification reactions at high temperatures and pressures and the modelling of coal particle structure. Other topics of lesser significance are methods for modelling the homogeneous reactions and heat transfer during gasification.

3. EVALUATION OF LITERATURE

From detailed analysis of the available literature it was determined that sufficient information is available to produce a mathematical model of entrained flow gasification. The major limitation of the literature is the scant experimental experience with high pressure and high temperature heterogeneous gasification rates. This leads to difficulty in determining the best modelling method for these reactions and two alternate methods where identified, Langmuir-Hinshelwood and pressure order expressions.

4. DESCRIPTION OF MATHEMATICAL MODEL

A plug flow model for entrained flow coal gasification was developed from a combination of literature correlations, correlations developed from literature data and some experimental data. The model considers a number of discrete size fractions of coal particles flowing along the gasifier in parallel to the longitudinal axis of the gasifier. All reactions previously mentioned are considered to occur in the gasifier. The devolatilisation yield for a given coal is estimated from a published correlation that bases the yield on the

coal ultimate analysis, with another correlation changing this estimate depending on the pressure. This corresponds to literature results that indicate that volatile yield decreases with increasing pressure. Reactivities and coal particle structures are determined from general correlations obtained from the literature, although experimentally determined reactivities for a char that was formed under similar conditions are required. Heterogeneous reaction rates are calculated using a complex particle effectiveness factor dependent on particle pore structure, reactant gas diffusivity and coal reactivity. A comparison of model predictions using either Langmuir-Hinshelwood or pressure order expressions led to adopting the pressure order expressions as being more representative of gasification performance. The homogeneous combustion reactions listed previously are considered to occur instantaneously if oxygen is present and if it is not the homogeneous equilibrium reactions are assumed to be at equilibrium in the gasifier. Heat transfer in the gasifier is considered to occur by both convection and radiation, with convective transfer being approximated using established literature correlations and radiative transfer being modelled using the Long Furnace Model. This model assumes that no radiative transfer occurs along the gasifier and transfer is only within hypothetical thin slices of the gasifier. Coupled to this model is the assumption that the gas in the gasifier has significant emissivity and can be considered as a grey gas. The grey gas emissivity is calculated using a published algorithm. The model is not capable of calculating the temperature of the gasifier wall as generally insufficient data is available on the thermal properties of materials in the gasifier, so the temperature of the wall at different distances along the gasifier must be input from experimental data or estimated by other means. An empirical solution algorithm was produced to assist in the selection of step times in the model.

5. SENSITIVITY ANALYSIS

A study of the sensitivity of the developed mathematical model to changes in the values of inputs indicated significant sensitivity to a wide range of variables. Further analysis indicated that expected error ranges in the input values for coal volatile yield, carbon dioxide and steam reactivities, total coal surface area, gasifier wall temperatures and the internal diameter of the gasifier, if coated with slag, are sufficiently large to produce significant errors in the model predictions. These errors can be minimised by performing more accurate experimental measurements or developing more accurate correlations than are presently available.

6. COMPARISON OF MODEL PREDICTIONS WITH AVAILABLE EXPERIMENTAL MEASUREMENTS

Predictions were made using the mathematical model for comparison with experimental results from a selection of experimental gasifiers. The majority of the results considered were for the atmospheric pressure CSIRO gasifier, in which eight different coals were gasified using a wide range of conditions. Other atmospheric pressure results were for an United States Bureau of Mines gasifier with five different coals and a Brigham Young University gasifier with four different coals. At high pressures some results were available from an Institute of Gas Technology gasifier with four coals at pressures between 1.7 and 6.1 atmospheres and a different United States Bureau of Mines gasifier with one coal at pressures between 7.8 and 21.4 atmospheres.

In general, predictions made for the atmospheric pressure gasifiers were accurate, although less accuracy was evident for some particular coals. A general trend of increasing gasification performance with decreasing coal rank, as indicated by coal carbon content, was identified in experimental results and model predictions for all three atmospheric pressure gasifiers. The limited number of results available at high pressures led to inconclusive findings, with the majority of predictions being accuracy but those for some coals being extremely unreliable. More detailed analysis of the performance of some individual model components suggested that the volatile yield and reactivity estimates were more accurate than predicted in the sensitivity analysis.

7. USE OF MODEL PREDICTIONS TO DETERMINE REACTION MECHANICS AND OPTIMUM GASIFIER FEED MIXTURES

Additional model predictions were performed to predict trends in reaction behaviour and the variations in optimum feed mixtures with changing pressure, gasifier size and coal.

Detailed analysis of the progress of reactions at a single particle in the gasifier suggested a sequence of reactions commencing with devolatilisation then oxygen gasification, and continuing with simultaneous carbon dioxide and steam gasification. Some overlap between these reactions occurs but while the volatiles are being released it is predicted that it is not possible for reactant gases to diffuse to the particle. When devolatilisation has ceased the rate of oxygen gasification is much higher than the other reactions and dominates carbon conversion until the oxygen is depleted. Carbon dioxide and steam gasification continue until the endothermic nature of the reactions lowers temperatures and the rates become insignificant.

In the study of optimum gas mixtures fed to the gasifier when pressure, gasifier diameter and coal are varied it was indicated that the optimum mixture can be affected by the changes. Predictions suggest that lower oxygen input is required at low gasification pressures than at high pressures. It is expected that this is due to the lower volatile yield at high pressures leaving more char to be consumed by heterogeneous reactions. Increasing gasifier diameter did not indicate changes in the optimum feed mixture but better gasifier performance was indicated at large gasifier diameters, excepting the largest diameter tested for which the predictions may have been affected by the use of some model components outside the limits of the correlations. The increase in gasifier performance with diameter is expected because of lower heat losses to the gasifier walls at higher diameters. The variations in gasification performance and optimum feed mixtures for different coals suggests that performance is linked to the reactivity and volatile yield of the coal and the optimum mixture is dependant on the moisture content and reactivity of the coal.

8. CONCLUSIONS

The mathematical model described and used in this study is the result of a combination of literature methods, correlations developed from literature data and experimental results. Errors associated with the methods used in the model were defined through a detailed sensitivity analysis. Key areas of possible inaccuracy are in the estimation of coal volatile yield, heterogeneous reactivities, particle structural properties, gasifier temperatures and gasifier diameter. Regardless of these possible inaccuracies the model predictions compared well with experimental results from atmospheric pressure gasifiers. Less conclusive comparison was possible for high pressure gasification, mostly due to the limited availability of high pressure experimental results. Predictions from the model suggested a sequencing of reactions occurring at a given particle commencing with devolatilisation then oxygen gasification followed by simultaneous carbon dioxide and steam gasification, with some overlap between the reactions. Optimum feed conditions and maximum gasifier performance were predicted to vary with changing gasifier pressure, gasifier diameter and feed coal. Various of the predictions suggested that errors in the model could arise at high pressures and large gasifier diameters due to extrapolation of gas physical property correlations outside the range of experimental data.

9. RECOMMENDATIONS FOR FURTHER WORK

It is suggested that further work be performed on the following topics to improve the accuracy of model predictions in future models.

- (a) High Temperature and Pressure Heterogeneous Reaction Kinetics
- (b) High Pressure Devolatilisation Yields
- (c) Gas Physical Properties
- (d) Slag Layer Modelling
- (e) Fluid Dynamics Modelling

GLOSSARY OF SPECIALISED TERMINOLOGY AND ABBREVIATIONS

Term	Definition
ad	Coal analysis figures on an 'air dried' basis.
ar	Coal analysis figures on an 'as recieved' basis.
Atmosphere	Pressure measurement taken as equal to 101.325kPa in this
	study.
Boundary layer	Gas close to a particle which has composition or other
	properties that are significantly different from those of the bulk
	gas.
Carbon conversion	Gasified carbon relative to initial total coal carbon, usually
	expressed as a percentage.
Cold gas efficiency	Calcorific value of product gas at 25°C relative to calorific
	value of coal feed, usually expressed as a percentage.
daf	Coal analysis figures on a 'dry, ash free' basis.
Effectiveness factor	Ratio of actual heterogeneous reaction rate to that possible
	without diffusion resistances, usually approximated by an
	estimated proportion of total particle surface area available for
	reaction.
External reactivity	Reactivity calculated from experimental results on the basis
	that all reaction occurs on the external surface of the particle.
Fuel ratio	Ratio of volatile matter to fixed carbon in a coal used as an
	indicator of coal performance.
IGCC	Integrated gasification combined cycle electricity generation
	plant.
Intrinsic reactivity	Reactivity calculated from experimental results on the basis
	that reaction occurs at a proportion of the total particle surface
	area that is given by the particle effectiveness factor.
Vitrinite reflectance	Measure of coal rank based upon the degree of structure in
	vitrinite macerals of the coal.

NOMENCLATURE

Symbol	Units	Definition
α	-	Proportion of volatile type.
α	-	Ratio of Knudsen to bulk diffusivities of reactant
α	-	Absorptivity of gas to radiation from source
σ	-	Standard deviation in distribution.
σ _a	kg/m ³	Particle density
ϕ	-	Thiele Modulus
η	-	Effectiveness factor
8	-	Particle porosity
E _{substance}	-	Emissivity of substance
ρ_{gas}	kg/m ³	Gas density
μ_{gas}	Pa.s	Gas viscosity
ζ	-	Ratio of steam to steam and carbon dioxide
a	-	Stoichiometry of reactant gas to carbon
A _{external}	m ²	External area of particle
Ag	m²/kg	Internal area of particle
A _{p,j}	m ²	Transfer area of particle j
A _{total}	m ²	Total particle area
b	-	Stoichiometry of combined product gases to reactant
C _{base}	% daf basis	Carbon content of base coal
C _{p,gas}	J/kg/K	Specific heat of gas
d	m	Particle size
D	m	Gasifier internal diameter
D _{eff,A}	m ² /s	Effective diffusivity of compound A
D _{A,K}	m ² /s	Knudsen diffusivity of compound A
D _{A,B}	m ² /s	Binary diffusivity of compound A through compound B
D _{A,mixture}	m ² /s	Diffusivity of compound A through gas mixture
d _{pore}	m	Pore diameter
Е	MJ/kmol	Activation energy of reaction.

h	J/s/m ²	Convective heat transfer between substances
k	s-1	Frequency factor of reaction.
k	kg/m ² /s/atm ⁿ	Reaction rate
k ₀	kg/m ² /s/atm ⁿ	Pre-exponential term of reaction rate
k _{0,base}	kg/m ² /s/atm ⁿ	k ₀ for base coal
K _{chemical}	kg/m²/s	Chemical rate
K _{diff}	kg/m ² /s/atm	Diffusion rate
kg	J/K/m	Convective heat transfer coefficient
k _{gas}	J/m	Thermal conductivity of gas
l _{pore}	m	Pore length
m _c	kg	Mass of coal
M _c	kg/kmol	Atomic mass of carbon
n	-	Pressure or Reaction order
n _{pores}	-	Number of pores
Nu	-	Nusselt number
P _{Compound}	atm	Partial pressure of Compound
Q	-	Ratio of volatile yield to Proximate Volatile Matter
q	J/s/m ²	Radiative transfer between substances
R	MJ/kmol.K	Gas constant
R _g	m ³ .atm/kmol/K	Gas constant
r	-	Reactivity coefficient
RF	-	Roughness factor
Т	K	Temperature
T _{gas or g}	К	Gas temperature
Tparticle or p	K	Particle temperature
T _{wall or w}	К	Gasifier wall temperature
V	kg	Mass of volatiles released
V	% daf basis	Volatile yield at any time
V [*]	kg or %daf	Ultimate volatile yield
V _{gas}	m/s	Gas Velocity
VM	kg	Proximate volatile yield
VM _c	kg	Adjustment for volatile condensation

v _{nr} *	kg	Non-reactive volatiles (Yield at high pressure)
V _P *	% daf basis	Ultimate volatile yield at pressure P
v _r *	kg	Reactive volatiles (Yield at low pressure- V_{nr}^{*})
X _{Compound}	-	Mole fraction of Compound
Z	-	Unadjusted ratio of combustion products
Ζ	-	Size corrected ratio of combustion products