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Abstract

This paper deals with networked control systems comprising LTI plants controlled over scalar additive noise channels subject
to signal-to-noise ratio (SNR) constraints. We present a general framework, based upon convex optimization concepts, that
can accommodate several situations of interest. Our results make explicit the fact that feedback around the channel plays a
key role in reducing the minimal SNR that is compatible with stability. The results also provide a characterization of the best
achievable performance subject to an SNR constraint. We apply the results to specific networked control architectures, and
provide a numerical example.
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1 Introduction

Networked control systems (NCSs) are control systems
that operate subject to communication constraints [1].
Such constraints arise from the characteristics of prac-
tical channels. For example, the use of digital networks
usually implies the presence of data-rate limits, random
delays, or data dropouts (see, e.g., papers in [1]). On the
other hand, analog communication systems are usually
subject to power (or variance) constraints, or signal-to-
noise ratio (SNR) constraints [15]. In this paper, we con-
sider a simple setting where the communication systems
are assumed analog and SNR constraints are present.
Our work extends the results in [5], where the study of
SNR constrained NCSs was initiated. An overview of
prior work is given below.

The authors of [5] study an NCS where an LTI SISO
plant is controlled over an additive white Gaussian noise
channel with input power constraint V and channel noise
variance σ2. It is assumed in [5] that signals are sent over
the channel without any pre- or post-processing (i.e.,
no coding is employed), and that the channel noise is
the only exogenous signal in the feedback loop. For the
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discrete time static state feedback case, [5] shows that a
necessary and sufficient condition for the existence of a
controller that guarantees the stability of the feedback
loop, and achieves an SNR less than or equal to the
maximal admissible SNR, namely Γ , V/σ2, is given by

Γ >

(

np
∏

i=1

|pi|2
)

− 1, (1)

where pi is the ith unstable plant pole. When dynamic
LTI output feedback is employed, then the requirements
on Γ are more demanding than those in (1), except when
the plant is minimum-phase (MP) and of relative degree
one [5]. The work [14] extends [5] to the noisy plant case
and shows that, if general (possibly time-varying and
nonlinear) coders and controllers are considered, then
(1) remains necessary for the mean square stability of the
loop when state feedback is used. The results in [14] also
give a lower bound on the mean square norm of the plant
state. This bound shows that, due to the presence of pro-
cess disturbances, the loop performance becomes arbi-
trarily poor if the SNR approaches its minimal admissi-
ble value. This result is intuitive and consistent with re-
lated results in [20]. It is not clear, however, whether or
not the performance bounds given in [14] are tight. For
the case of noiseless MP plant models with relative de-
gree one, [14] also showed that condition (1) is sufficient
for the existence of a stabilizing LTI output feedback
law which satisfies the SNR constraint. Another relevant
work is [10], where the undesirable robustness and per-
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formance related properties of the designs discussed so
far are overcome by incorporating an additional penal-
izing term in the problem formulation. Related results
are presented in [5, 22].

Performance related issues are explored in [23,24], where
the form of the optimal (with respect to stabilization)
sensitivity function is studied, and the gap between the
SNR achieved by a given sensitivity function and the
minimal SNR for stability, is used as a means to measure
the SNR needed to give performance guarantees.

A difficulty associated with the results in [23,24] is that
they do not address the question of what is the best sen-
sitivity function (in some sense) for a given SNR con-
straint. Also, they do not address the problem of optimal
design with SNR constraints. Partial solutions to the
latter problem have been proposed in [16, 21, 30], where
a nominal controller design is embellished with an opti-
mally designed coding system aimed at reducing the sta-
tionary tracking error variance. The more fundamental
question of controller design has been explored in [12].
In that work, one degree of freedom control schemes
for noisy discrete-time LTI plants are studied assuming
an additive white Gaussian noise feedback channel with
pre- and post scaling factors. The results in [12] charac-
terize the best achievable performance (as measured by
the stationary plant output variance), and the associ-
ated optimal LTI controllers and scaling factors, for MP
plants that have relative degree one. A particular feature
of the setup of [12] is that the channel input power con-
straint is, essentially, a constraint on the plant output
variance which, in turn, is the signal used to measure per-
formance [12, p. 3960]. This feature is not always present
in NCS problems subject to SNR constraints (see [32]).

Recent work documented in [11,13] uses a setup similar
to that of [12] and studies minimization of the plant out-
put variance at a given terminal time by means of gen-
eral (possibly time-varying and nonlinear) control archi-
tectures. For MP plants having relative degree one, it is
shown in [11, 13] that the best achievable performance
can be achieved by linear time-varying strategies. These
results are important. However, minimizing the output
variance at a given instant may yield closed loops with
poor transient performance [13].

The present paper makes two contributions. The first is
a general framework for studying the interplay between
SNR constraints and the stability and stationary perfor-
mance of LTI feedback loops that include a scalar addi-
tive noise communication channel. As a second contri-
bution, we show that it is possible to achieve, for arbi-
trary plant models and arbitrary noise sources, MSS at
SNRs arbitrarily close to the bound (1) using LTI output
feedback schemes, provided feedback around the chan-
nel is available. The paper extends our previous work
described in [16,32] to include general LTI control archi-
tectures, and to cover the case of channels with feedback.

The remainder of the paper is organized as follows: Sec-
tion 2 presents notation. Section 3 discusses the channel
model adopted in this paper. Section 4 presents assump-
tions and states the problem of interest. Sections 5 and 6
study stability and performance related questions in a
general feedback architecture. Section 7 discusses spe-
cific architectures, and an example is provided in Sec-
tion 8. Conclusions are given in Section 9.

2 Notation

N0 , {0, 1, · · · }, R+ , {x ∈ R : 0 < x < ∞} ,

R
+
0 , R+ ∪{0}; vec {·} denotes the column stacking op-

erator, vec−1 {·} its inverse, and ⊗ the Kronecker prod-
uct [3]. Given any scalar x, |x| denotes its magnitude and
x̄ its complex conjugate; (·)T denotes transpose and (·)H

conjugate transpose. We use z as both the argument of
the z-transform and as the forward shift operator, where
the meaning is clear from the context.

R is the set of all real rational discrete-time (possibly
multivariate) transfer functions. We define the following
subsets of R: Rp contains all proper transfer functions,
Rsp contains all strictly proper transfer functions, RH∞

(resp. RH∞) contains all the stable (resp. marginally
stable) and proper transfer functions, U∞ (resp. U∞)
contains all square transfer functions in RH∞ with in-
verses in RH∞ (resp. in RH∞), RH2 contains all stable

and strictly proper transfer functions, and RH⊥
2 con-

tains all transfer functions that have no poles in {z ∈ C :
|z| ≤ 1}. Any A(z) ∈ R with no poles on the unit cir-
cle belongs to L2. For such A(z) we define the 2−norm
as usual, and denote it by ||·||2 (see, e.g., [35]). Any
A(z) ∈ R with no poles on the unit circle can be written

as A(z) = [A(z)]H⊥

2
+[A(z)]H2

, where [A(z)]H⊥

2
∈ RH⊥

2

and [A(z)]H2
∈ RH2 [35]. When no confusion arises, we

omit the argument z in A(z). We write {A(z)}|z=0 in-
stead of A(0), and use A(z)∼ as shorthand for A(z−1)T .

A random process {x(k)}k∈N0 is usually referred to as
x. The variance, at time instant k, of a process x is de-
noted via σ2

x(k). Similarly, if x is a random variable,
then σ2

x denotes its variance. We define (if it exists) the

stationary variance of x via σ2
x , limk→∞ σ2

x(k). If x is
a wide sense stationary (wss) (asymptotically wss) pro-
cess, then Sx(ejω) denotes its (stationary) power spec-
tral density (PSD) and Ωx(z) denotes any spectral factor

of Sx(ejω), i.e., Ωx(ejω)Ωx(ejω)H , Sx(ejω). A random
variable (process) is a second order one if and only if it
has finite mean and finite second order moments for all
time for all time instants k ∈ N0, and also when k → ∞.
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Fig. 1. (a) AWN channel with pre- and post-scaling factors,
and (b) equivalent rewriting.

3 Additive White Noise Channels with SNR
Constraints

This section motivates the channel model adopted in
this paper. Consider a standard scalar additive white
noise (AWN) channel with a (stationary) input variance
constraint [5, 8, 15]. In such a channel, the input v̄ and
output w̄ are related via w̄ = v̄ + q̄, q̄ is a zero mean
white noise sequence with variance σ2

q̄ ∈ R+, and there
exists an upper bound on the stationary variance of the
input v̄ (assuming such stationary variance to exist), i.e.,
there exists V ∈ R+ such that

σ2
v̄ ≤ V. (2)

The situation described above assumes that both V and
σ2

q̄ are parameters of a physical situation and, thus, they
are fixed and given. AWN channels are often used to
model wireless links [15, Chapter 4], and stand as cor-
nerstones of communication theory [8].

In practice, the signal v̄ corresponds to a scaled version
of the signal of interest. It is thus both theoretically and
practically sound to use an AWN channel with both pre-
and post-scaling factors, as depicted in Figure 1(a). In
that figure, α ∈ R+ is a parameter to be chosen by
the designer (see also [12]). It is immediate to see that
the signals v and w in Figure 1(a) are related via w =

v + q, where the equivalent noise q , αq̄ is a zero mean
white noise sequence with a variance σ2

q = (ασq̄)
2 (see

Figure 1(b)). Since α is a designer’s choice, σ2
q becomes a

design parameter in R
+. With the previous definitions,

the variance constraint in (2) can be written as

γ ,
σ2

v

σ2
q

≤ V

σ2
q̄

. (3)

Thus, the use of scaling factors around AWN channels
turns variance constraints on v̄ into an upper bound
on the ratio between the variance of the signal v and
that of the equivalent noise source q. For a fixed power
constraint V and a fixed underlying noise source q̄, the
bound on γ is also fixed and corresponds to the maximal
available channel SNR.

Motivated by the previous discussion we introduce the
following definition:

Definition 1 A scalar SNR constrained AWN channel
is a device with scalar input v and scalar output w related

via w = v+q, where q is a zero mean white noise sequence
with a variance that is a decision variable in R+, and γ
defined in (3) satisfies γ ≤ Γ for some given Γ ∈ R+. 2

Remark 2 Definition 1 implicitly assumes that v has a
stationary variance. This holds provided that the channel
is part of an internally stable LTI system and that all
exogenous signals are wss. 2

Remark 3 We will use in the paper “channel” as a syn-
onym for “SNR constrained AWN channel”. 2

According to the motivation leading to Definition 1,
choosing σ2

q is equivalent to choosing the scaling fac-
tor α in Figure 1(a). Since Γ is assumed finite (which
is consistent with the assumptions V, σ2

q̄ ∈ R+), σ2
q = 0

(equivalently, α = 0) is not an admissible choice in SNR
constrained AWN channels. We will refer to γ in (3) as
the (stationary) channel SNR.

Remark 4 SNR constrained AWN channels also arise
in situations different from those described above. Indeed,
[29] shows that certain erasure channels can be exactly
modelled (as far as second order properties are concerned)
as AWN channels with an SNR constraint that depends
on the data-loss probability. On the other hand, [28] shows
that for a certain class of source coding schemes (i.e.,
quantization schemes), average data rate constraints can
be posed as SNR constraints in an AWN channel. We
thus conclude that the study of SNR constrained AWN
channels will yield insights into different NCS problems.

4 Problem Definition

In this paper we focus on the NCS depicted in Fig-
ure 2(a). In that figure, P̄ is a generalized plant (see,
e.g., [36]), d is a disturbance signal, e is a signal related
to closed loop performance, ȳ is a measurement that the
controller K uses to generate the plant input ū, and q
corresponds to noise in a scalar SNR constrained AWN
channel.

The scheme of Figure 2(a) can be re-written as in Fig-
ure 2(b), where





e
v
ȳ



 = P





d
q
ū



 , P ,





Pe11 Pe12

Pv11 Pv12

P21 P22



 . (4)

Also define P11 , [PT
e11 PT

v11]
T and P12 , [PT

e12 PT
v12]

T .

Assumption 5 The feedback system in Figure 2(b) is
such that:

(a) The generalized plant P belongs to Rp, is stabilizable
and is such that P22 ∈ Rsp (see (4)).
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Fig. 2. (a) NCS closed over additive noise channel and (b)
equivalent re-writting.

(b) d is a second order wss process that admits a spectral
factor Ωd ∈ U∞, and is uncorrelated with q.

(c) The initial states of both P and K are jointly second
order random variables, uncorrelated with (d, q). 2

Our assumptions are mostly standard, except for the
third part of (a) which is non-essential, but simplifies
matters.

In the sequel, we adopt the notion of mean square sta-
bility, as defined in, e.g., [7]:

Definition 6 Consider the linear system x(k + 1) =
Ax(k)+ Bw(k), where k ∈ N0, A, B are constant matri-
ces of appropriate dimensions, x(k) ∈ Rn is the system
state at time instant k, x(0) = xo, xo is a second order
random variable, and the input w is a second order wss
process uncorrelated with xo. The system is said to be
mean square stable (MSS) if and only if there exist finite
µ ∈ Rn and finite M ∈ Rn×n, M ≥ 0, such that 1

lim
k→∞

E {x(k)} = µ, lim
k→∞

E
{

x(k)x(k)T
}

= M,

regardless of the initial state xo. 2

It is well-known [2] that, for linear systems, MSS is equiv-
alent to internal stability (in the standard sense [36]).

This paper studies the interplay between constraints on
the stationary channel SNR, and the MSS and perfor-
mance of the NCS depicted in Figure 2(a). To that end,
we adopt the stationary variance σ2

e of e as performance
measure 2 and recall that, in our setup, the designer has
the freedom to choose both K ∈ Rp and σ2

q ∈ R+ (equiv-

alently, α ∈ R+). We also denote by Txy the transfer
function from any signal x to another signal y in Figure
2(b).

1 E {·} denotes the expectation operator.
2 Our results can be readily extended to other (weighted)
quadratic performance measures.

5 Mean square stability

Subject to Assumption 5, and provided σ2
q ∈ R+, the

NCS of Figure 2(a) is MSS if and only if K ∈ S, where

S , {K ∈ Rp : the feedback loop of Figure 2(b)

is internally stable and well-posed} . (5)

We use the well-known Youla parametrization to char-
acterize S:

Theorem 7 (See, e.g., [9, 35, 36]) Consider the feed-
back system of Figure 2(b) and assume that P satisfies
Assumption 5(a). Consider a doubly coprime factoriza-
tion of P22 over RH∞, i.e., consider Xi, Yi, Xd, Yd, Ni,
Di, Nd, Dd ∈ RH∞, with Xi, Xd, Di, Dd biproper, such
that P22 = NdD

−1
d = D−1

i Ni and

[

Xi −Yi

−Ni Di

] [

Dd Yd

Nd Xd

]

=

[

I 0
0 I

]

. (6)

Then, K ∈ S if and only if

K = (Xi − QNi)
−1(Yi − QDi),

where Q ∈ RH∞. 3 All transfer functions Td̄ē from d̄ ,

[dT qT ]T to ē , [eT vT ]T that are achievable with K ∈ S
can be K ∈ S can be written as

Td̄ē = T o
d̄ē

− P12DdQDiP21,

where Q is as above, and T o
d̄ē

, P11+P12DdYiP21. More-
over, T o

d̄ē
, P12Dd and DiP21 belong to RH∞. 2

Define J(Q) , ||M1 + M2QM3||22, where Q ∈ RH∞ is
the decision variable and Mi ∈ RH∞ are given trans-
fer functions. It is always possible to write J(Q) = µ +

||A − Bovec {Q}||22, where µ ∈ R
+
0 is independent of Q,

A ∈ RH∞ and Bo is outer (see [18] and [9, 34, 35]).

Jopt , infQ∈RH∞
J(Q) always exists and is finite, but

may not be achievable with Q ∈ RH∞ [35, Section
6.3]. In particular, Jopt is achievable if Bo has full row
rank on the unit circle. However, there always exists
Qopt ∈ RH∞ such that Jopt = J(Qopt). If Qopt 6∈ RH∞,
then the definition of inf guarantees the existence of
a family of functions in RH∞, parameterized by ε ∈
(0, 1] and with elements denoted by Kε {Qopt}, such that
Jopt = limε→0+ J(Kε {Qopt}) (see the proof of Lemma
10 in p. 171 of [35]). For convenience, we use the notation
arg infQ∈RH∞

J(Q) to refer to any Qopt with the above
properties. We also make Kε {Qopt} = Qopt whenever
Qopt ∈ RH∞.

3 Since P22 ∈ Rsp, it suffices to pick Q ∈ RH∞ (see, e.g.,
[35, Section 5.2]).
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Using Theorem 7 we conclude that all transfer functions
Tqv from q to v in Figure 2(b) that are achievable with
K ∈ S can be written as

Tqv = T o
qv − Pv12DdQDiP21η, (7)

where T o
qv , Pv11η+Pv12DdYiP21η, and η , [0 · · · 0 1]T .

Lemma 8 Consider the NCS of Figure 2(a), where q is
the noise in an SNR constrained AWN channel, and sup-
pose that Assumption 5 holds. Define E , (DiP21η)T ⊗
(Pv12Dd), where all transfer functions are as defined
above. Factorize E as E = EiEo, where Ei is inner and
Eo is outer [9], and define H , E∼

i T o
qv. Then:

(1) The minimal SNR compatible with MSS, say γinf , is
given by

γinf , inf
Q∈RH∞

σ2
q∈R

+

γ = inf
Q∈RH∞

||Tqv||22 , (8)

and

Qinf , arg inf
Q∈RH∞

||Tqv||22

= vec−1
{

E†
o

({

[H ]H⊥

2

}∣

∣

∣

z=0
+ [H ]H2

)}

,

where E†
o is any right inverse of Eo in RH∞.

(2) γinf is achievable if P22 has no poles on the unit
circle, both Pv12 and P21η have no zeros on the unit
circle, and the transfer function Tdv between d and
v is zero when Q = Qinf . If that is the case, then it
suffices to choose Q = Qinf and any σ2

q ∈ R+.
(3) If γinf is not achievable, then one can cause γ → γinf

by choosing Q = Kε {Qinf} with ε → 0+, and σ2
q as

follows: if Tdv|Q=Qinf
= 0, then choose any σ2

q ∈ R+;

otherwise, let σ2
q → ∞.

PROOF. Figure 2(b) and the definition on the left
hand side of (3) imply that, for K ∈ S and σ2

q ∈ R+,

γ =
||TdvΩd||22

σ2
q

+ ||Tqv||22 ≥ ||Tqv||22 (9)

from where (8) follows. Define the unitary matrix φ ,

[(I − EiE
∼
i )T (E∼

i )T ]T . Use of (7), properties of the
2-norm (see, e.g., [18]), and standard analytic H2 opti-
mization techniques (see, e.g., [34]) yield

||Tqv||22 =
∣

∣

∣

∣φ(T o
qv − EiEovec {Q})

∣

∣

∣

∣

2

2

= µ1 +
∣

∣

∣

∣

∣

∣

{

[H ]H⊥

2

}∣

∣

∣

z=0
+ [H ]H2

− Eovec {Q}
∣

∣

∣

∣

∣

∣

2

2
,

(10)

where µ1 ∈ R
+
0 is independent of Q. The remaining

claims follow immediately from (9), (10), the definition
of E, and properties of outer functions (see [9]). 2

Lemma 8 states that finding the minimal channel SNR
that is compatible with MSS, namely γinf , can be recast
as the problem of minimizing the 2-norm of the transfer
function Tqv. It is possible to use the techniques in, e.g.,
[5, 34], to provide an explicit analytic characterization
of γinf . However, unless some structure is imposed on
P , these characterizations are not easy to interpret. An
explicit characterizations of γinf will be given in Section 7
for specific NCSs.

Unless special conditions are satisfied, approaching γinf

requires a noise q with arbitrarily large variance. (In
the context of Section 3, this is tantamount to requiring
an arbitrarily large scaling factor α.) As a consequence,
achieving MSS at SNRs close to γinf compromises perfor-
mance. This fact, which is consistent with results in [14]
(see also [20]), motivates the study of the best perfor-
mance that is achievable with a given SNR constraint
Γ. It is also worth noting that having the freedom to
choose σ2

q (equivalently, α) is key to being able to achieve

SNRs arbitrarily close to γinf for all disturbances d. If σ2
q

were fixed (e.g., by choosing α = 1), then the minimal
SNR compatible with MSS would be, in general, strictly
greater than γinf unless d = 0. This fact is also implicitly
stated in [12, Section II.B].

6 Performance

We next study the best achievable performance in the
scheme of Figure 2(a), when the channel is subject to an
SNR constraint. We are interested in finding, for a given
Γ ∈ R+,

[

σ2
e

]

Γ
, inf

K∈S

σ2
q∈R

+

γ≤Γ

σ2
e . (11)

It follows from Figure 2(b) that, if K ∈ S, σ2
q ∈ R

+ and

Assumption 5 holds, then both σ2
e and σ2

v exist, are finite
and satisfy

σ2
e = ||Td̄eΩd̄||22 , σ2

v = ||Td̄vΩd̄||22 ,

where d̄ is as in Theorem 7 and Ωd̄ , diag {Ωd, σq}. All
transfer functions Td̄e and Td̄v that are achievable with
K ∈ S can be written as (see Theorem 7)

Td̄e = T o
d̄e

− Pe12DdQDiP21, (12a)

Td̄v = T o
d̄v

− Pv12DdQDiP21, (12b)

5



where T o
d̄e

, Pe11 + Pe12DdYiP21, T o
d̄v

, Pv11 +
Pv12DdYiP21, and Q is a free parameter in RH∞. Thus,
(11) becomes equivalent to

[

σ2
e

]

Γ
= inf

σ2
q∈R+

inf
Q∈RH∞

R
σ2

q
(Q)≤Γσ2

q

Jσ2
q
(Q), (13)

where

Jσ2
q
(Q) , ||Td̄eΩd̄||22 , Rσ2

q
(Q) , ||Td̄vΩd̄||22 . (14)

Here, Jσ2
q
(Q) is the stationary variance of e expressed

as a function of Q with σ2
q as a parameter. Analogously,

Rσ2
q
(Q) denotes the corresponding stationary variance

of v. We also define 4

(

σ2
Γ, QΓ

)

, arg inf
Q∈RH∞

σ2
q∈R

+

R
σ2

q
(Q)≤Γσ2

q

Jσ2
q
(Q). (15)

We will assume that the following holds (see also [18,
p.17])

Assumption 9 The plant transfer functions PT
21, Pv12

and Pe12 in (4) have full column normal rank. 5
2

Assumption 9 and Assumption 5(b) ensure that both
Jσ2

q
and Rσ2

q
are strictly convex functions of Q for every

fixed σ2
q ∈ R+. These assumptions can be removed at

the expense of more involved notation.

We are now ready to solve the problems in (13) and (15).
Define, for every fixed σ2

q ∈ R+, the set Pσ2
q

containing

all Pareto-optimal points of the vector valued criterion
[Jσ2

q
Rσ2

q
] (see, e.g., [4, Section 4.7.3], [18]). Values of

(Jσ2
q
, Rσ2

q
) ∈ Pσ2

q
provide the best trade-offs in the sense

that there exist Youla parameters that achieve a smaller
value for Jσ2

q
at the expense of a smaller value for Rσ2

q

for every feasible pair (Jσ2
q
, Rσ2

q
) that does not belong to

Pσ2
q
. In our case, Pσ2

q
corresponds to a curve in R2, the

optimal trade-off curve. The next lemma characterizes
Pσ2

q
:

Lemma 10 Consider the feedback system of Figure 2(a)
and suppose that Assumptions 5 and 9 hold.

4 Consistent with our previous notation, σ2
Γ ∈ R

+ ∪ {0,∞}

and QΓ ∈ RH∞ are such that J
σ
2
Γ
(QΓ) =

ˆ

σ2
e

˜

Γ
.

5 i.e., full column rank for almost every z ∈ C; see, e.g., [36].

(1) Define, for every σ2
q ∈ R+ and every ε ∈ [0, 1],

Lσ2
q ,ε(Q) , εJσ2

q
(Q) + (1 − ε)Rσ2

q
(Q), (16)

Qσ2
q ,ε , arg inf

Q∈RH∞

Lσ2
q ,ε(Q), (17)

where Jσ2
q

and Rσ2
q

are as in (14). Then, (αe, αv) ∈
Pσ2

q
if and only if

(αe, αv) =
(

Jσ2
q
(Qσ2

q ,ε), Rσ2
q
(Qσ2

q ,ε)
)

for some ε ∈ [0, 1].
(2) Define

A ,

[ √
ε T o

d̄e√
1 − ε T o

d̄v

]

Ωd̄, Eε ,

[ √
ε Pe12√

1 − ε Pv12

]

,

(18)

Av , vec {A}, Bv , (DiP21Ωd̄)
T ⊗ (EεDd), where

all symbols are as before, and factorize Bv as Bv =
BiBo, where Bi is inner and Bo is outer [9]. Then,
for any σ2

q ∈ R+ and ε ∈ [0, 1], we have

Qσ2
q ,ε = vec−1

{

B−1
o

({

[H ]H⊥

2

}∣

∣

∣

z=0
+ [H ]H2

)}

,

where H , B∼
i Av. Moreover, if P22 has no poles on

the unit circle and both P21 and Eε have no zeros on
the unit circle, then Qσ2

q ,ε ∈ RH∞.

PROOF.

(1) Given our assumptions, Jσ2
q

and Rσ2
q

are strictly

convex and, thus, so is Lσ2
q ,ε, ∀ε ∈ [0, 1]. Accord-

ingly, the optimization problem in (17) admits, at
most, one solution (see [4, 19]) and Theorem 2.1
in [18] yields the result.

(2) Using (16), (14), (12) and proceeding as in the proof
of Lemma 8, it is possible to write

Lσ2
q ,ε(Q) = ||Av − Bvvec {Q}||22

= µ2 +
∣

∣

∣

∣

∣

∣

{

[H ]H⊥

2

}
∣

∣

∣

z=0

+ [H ]H2
− Bovec {Q}

∣

∣

∣

∣

∣

∣

2

2
,

where µ2 ∈ R
+
0 is independent of Q. Since PT

21, Pe12

and Pv12 have full column normal rank, and Ωd̄ ∈
U∞, it is immediate to see that Bv has full column
normal rank [3, Fact 7.4.20]. Hence, the definition
of outer function [9] implies that Bo ∈ U∞ and
that all its zeros on the unit circle correspond to
the zeros on the unit circle of EεDd and DiP21Ωd̄.
Our claims are now immediate. (Bo ∈ U∞ is only
sufficient for Qσ2

q ,ε ∈ RH∞.) 2
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Lemma 10 allows one to find, for every σ2
q ∈ R+, an

optimal trade-off curve in the Jσ2
q

versus Rσ2
q

plane or,

equivalently, in the σ2
e versus γ plane.

We now present an exact characterization of the best
achievable performance

[

σ2
e

]

Γ
:

Theorem 11 Consider the setup of Figure 2(a), where
q is the noise in an AWN channel with SNR constraint Γ.
Suppose that Assumptions 5 and 9 hold and that γinf <
Γ < ∞. Define the set

ΣΓ ,

{

σ2
q ∈ R

+ : inf
Q∈RH∞

Rσ2
q
(Q) ≤ Γσ2

q

}

and the function fΓ : ΣΓ → [0, 1], where

fΓ(σ2
q ) ,

{

1 if Γσ2
q > Rσ2

q
(Qσ2

q ,1),

ε if ε ∈ [0, 1] is such that Γσ2
q = Rσ2

q
(Qσ2

q ,ε).

Then:

(1) The optimal noise variance σ2
Γ is given by

σ2
Γ = arg inf

σ2
q∈ΣΓ

Jσ2
q
(Qσ2

q ,fΓ(σ2
q)), (19)

and the optimal Youla parameter QΓ and the mini-
mal stationary variance

[

σ2
e

]

Γ
satisfy

QΓ = Qσ2
Γ
,f(σ2

Γ
),

[

σ2
e

]

Γ
= Jσ2

Γ
(QΓ).

(2) If P22 has no poles on the unit circle and both P21 and
EfΓ(σ2

Γ
) (see (18)) have no zeros on the unit circle,

then QΓ ∈ RH∞ and
[

σ2
e

]

Γ
can be achieved with

an SNR no greater than Γ upon choosing σ2
q = σ2

Γ
and Q = QΓ. In all other cases, it is possible to get
arbitrarily close to

[

σ2
e

]

Γ
, while violating the SNR

constraint as little as desired, by choosing σ2
q = σ2

Γ

and Q = Kε {QΓ} with ε → 0+.

PROOF. Since Γ > γinf , the problem of finding
[

σ2
e

]

Γ
is feasible. It is also clear that the inner optimization
problem in (13) is feasible if and only if infQ∈RH∞

Rσ2
q
(Q) ≤ Γσ2

q . Thus, all σ2
q of interest lie in ΣΓ. For a

fixed σ2
q ∈ ΣΓ, define

Qσ2
q

, arg inf
Q∈RH∞

R
σ2

q
(Q)≤Γσ2

q

Jσ2
q
(Q).

Lemma 10, the strict convexity of both Jσ2
q

and Rσ2
q
,

and the definition of Pareto optimality imply that: (i)

if Γσ2
q ≤ Rσ2

q
(Qσ2

q ,1), then Qσ2
q

is unique and Qσ2
q

=

Qσ2
q ,fΓ(σ2

q); (ii) if Rσ2
q
(Qσ2

q ,1) < Γσ2
q , then, by convex-

ity, Rσ2
q
(Qσ2

q ,ε) < Γσ2
q for every ε ∈ [0, 1] and the con-

straint on Rσ2
q

becomes redundant. In those cases, one

can choose Qσ2
q

= Qσ2
q ,1 = Qσ2

q ,fΓ(σ2
q). (Here, Qσ2

q
is not

unique.)

We now return to (13). To solve (13), it suffices
to pick the value of σ2

q that minimizes Jσ2
q
(Qσ2

q
) =

Jσ2
q
(Qσ2

q ,fΓ(σ2
q)). This is achieved by solving the opti-

mization problem in (19). Our remaining claims follow
from Part 2 of Lemma 10. 2

Remark 12 From Lemma 8 we know that the optimiza-
tion problem in (13) is infeasible if Γ < γinf. If Tdv or Tqe

are zero for Q = Qinf (see Lemma 8), or γinf is achiev-
able, then [σ2

e ]Γ → J0(Qinf) as γ → γinf . If, on the other
hand, γinf is not achievable and both Tqe 6= 0 and Tdv 6= 0
for Q = Qinf, then [σ2

e ]Γ → ∞ when γ → γinf . 2

Remark 13 Using Lemma 10 and the definition of
Pareto optimality, Theorem 11 can be modified so as to
provide a characterization of the minimal channel SNR
that allows one to achieve a given performance level. 2

Theorem 11 provides an analytic characterization of the
best performance achievable with an SNR constraint Γ
in the NCS of Figure 2. Although analytical, our results
are not explicit, but can be used as the basis of simple
numerical algorithms to approximate

[

σ2
e

]

Γ
, and to find

the associated optimal noise variance and Youla param-
eter (see, e.g., Algorithm 1 in [29]).

We next present two properties of the solution to the
problems in (13) and (15):

Lemma 14 Consider the setup and assumptions of The-
orem 11. Assume that either Tdv = 0 is not achievable
with Q ∈ RH∞, or that infQ∈RH∞

J0(Q) < J0(Q
0),

where Q0 ∈ RH∞ is such that Tdv|Q=Q0 = 0. Then:

(1) If Γ 6=
∣

∣

∣

∣T 0
qv

∣

∣

∣

∣

2

2
, where T 0

qv , Tqv|Q=Q0 , then σ2
Γ 6= 0

and Tdv|Q=QΓ
6= 0.

(2) If QΓ is such that Tqe 6= 0, then the inequality con-
straint in (13) is active at the optimum.

PROOF. The proof is not difficult, but omitted due to
space constraints. 2

If infQ∈RH∞
J0(Q) ≥ J0(Q

0), then the use of even a per-
fect channel between v and w in Figure 2(a) brings no
benefits to closed loop performance. This situation is of
no interest in an NCS setting. Thus, Part 1 of Lemma 14
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guarantees, for almost every choice of Γ, a non zero op-
timal channel noise variance σ2

Γ. (This is natural since
we consider finite upper bounds on the channel SNR.)
Consider now Part 2. If Tqe = 0 at the optimum, then
one would have an NCS where the effects of commu-
nication constraints on closed loop performance can be
made zero while respecting the SNR constraint. Again,
this situation is of little interest in NCSs. Thus, for most
cases of interest, the SNR constraint will be active at the
optimum.

7 Specific Architectures

In this section we study specific SNR constrained NCSs
built around discrete-time LTI SISO plant models. We
assume that one-step-delayed channel feedback is avail-
able, and focus on the setup illustrated in Figure 3. In
that figure, G is the plant, r is a reference signal, do is a
disturbance, 6 q is the noise in an SNR constrained AWN
channel, K1 is the encoder, and K2 is the controller and
decoder. The role of the encoder is to use the plant out-
put y and the channel output w to construct the signal
that is sent over the channel. The controller and decoder
uses the reference signal r and channel output w to gen-
erate the plant input u.

The architecture of Figure 3 is based on feedback coding
ideas (see, e.g., [17]), and generalizes the architectures
in [5, 12, 16, 30, 32]. As will become clear below, the use
of channel feedback is a key feature of the proposed ar-
chitecture.

Remark 15 Perfect (but delayed) channel feedback may
not be available in some practical settings. There exist,
however, situations where this is a natural assumption.
Recall from Section 3 that AWN channels can be used to
model situations that include noiseless digital channels or
channels prone to data loss. In the former case, knowing
the channel input amounts to knowing its output [20]. In
channels prone to data loss (but otherwise transparent;
see, e.g., [26]), the use of packet acknowledgements is
also equivalent to having ideal feedback around the chan-
nel. 2

Throughout this section we assume the following:

Assumption 16 The feedback architecture in Figure 3
is such that:

(a) G is SISO, non-zero, and has a stabilizable and de-
tectable underlying realization.

(b) r and do are second order mutually uncorrelated wss
scalar processes that, if not zero, admit spectral fac-
tors in U∞. At least one signal, r or do, is non-zero.
The channel noise q is uncorrelated with (r, do).

6 The inclusion of additional disturbance signals and mea-
surement noise does not pose any difficulty.

u

do

GK2

channel

q

w v
K1

Encoder

Controller
and decoder

Plant

y

−

r e

Fig. 3. A specific networked control architecture.

(c) The initial states of K1, K2 and G are jointly second
order random variables, and are uncorrelated with
(r, do, q). 2

Assumption 16 is standard, except for the fact that we
require r or do to be non-zero for brevity.

Our interest lies in control architectures that use only
LTI filters. This choice limits the performance of the re-
sulting NCS, but opens the door to use linear control the-
oretic results, such as those presented in Sections 5 and 6.
Thus, we consider K1 , [K11 K12] and K2 , [K21 K22]
to be design variables in R1×2

p that that satisfy 7

v = K11w + K12y, u = K21r + K22w.

We also define K̄ , [K1 K2], and recall that the signal
w, if available at the encoder side, is available with one
step delay. Accordingly, K11 ∈ Rsp. This constraint will
be enforced throughout the rest of the paper.

Re-define S as follows (cf. (5)):

S ,
{

K̄ ∈ R1×4
p : K11 ∈ Rsp, and the feedback loop

of Figure 3 is internally stable and well-posed} . (20)

Note that, when channel feedback is not available, then
K11 = 0 is a natural constraint on S. Note also that the
choice

K11 = 0, K12 = 1, K21 = −K22 = C, (21)

with C ∈ Rp, reduces the architecture of Figure 3 to
a one degree-of-freedom (one-dof) NCS, as studied in
[5, 12, 32].

It follows from [5, Theorem III.2] and Lemma 8 that,
provided Assumption 16 holds and the plant has only
simple finite strictly-non-MP zeros, the minimal SNR

7 The n × m superscript emphasizes the dimension of K1

and K2.
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compatible with MSS in a one-dof architecture is given
by

γone-dof
inf , inf

K̄∈S∩O

σ2
q∈R

+

γ =

(

np
∏

i=1

|pi|2
)

− 1 + ∆G, (22)

where O is the set of all K̄ satisfying (21), pi is the ith

unstable plant pole, ∆G ≥ 0 depends on the non-MP
zeros and relative degree of G, and ∆G = 0 if and only
if the plant has no finite strictly-non-MP zeros and has
relative degree one (see [5]).

As shown next, the architecture of Figure 3 allows one
to reduce the minimal SNR compatible with MSS:

Theorem 17 Consider the feedback system of Figure 3,
where G is unstable, 8 q is the noise in an SNR con-
strained AWN channel, and Assumption 16 holds. Then:

(1) If K̄ can be chosen freely in S, then

γinf , inf
K̄∈S

σ2
q∈R

+

γ =

(

np
∏

i=1

|pi|2
)

− 1.

(2) If no channel feedback is available, and G has only
simple finite strictly-non-MP zeros, 9 then

γno-fb
inf , inf

K̄∈S∩W

σ2
q∈R

+

γ = γone-dof
inf ,

where W is the set of all K̄ with K11 = 0, and
γone-dof
inf is as in (22).

PROOF.

(1) Theorem 7 and other standard results (see, e.g., [36,
Chapter 12]) imply that K̄ ∈ S if and only if: (i) K2

has a detectable and stabilizable underlying realiza-
tion such that the inherited realization of the trans-
fer function between v and [w y] in Figure 3, when
K1 is removed, is detectable and stabilizable, and
(ii) K1 = (Xi − QNi)

−1(Yi − QDi) diag
{

z−1, 1
}

,
where Q, Xi, Yi, Ni, Di, Nd, Dd are as in Theorem 7
with P22 = [z−1 GK22]

T .
Consider any K2 as above, and N, D ∈ RH∞,

coprime in RH∞ and with D biproper, such
that GK22 = ND−1. Then, the following choices
are possible Nd , [z−1D N ]T , Dd , D,

8 If G is stable then the minimal SNR compatible with MSS
is zero for any architecture.
9 This part (and the results in [5]) can be extended to general
unstable plants at the expense of more involved notation.

Ni , [z−1 N ]T and Di , diag {1, D}. Thus, we
can use use Theorem 7 to conclude that all trans-
fer functions Tqv from q to v in Figure 3 that are
achievable with K̄ ∈ S are given by

Tqv = YiNd − DQNi = XiD − 1 − DQNi, (23)

where the second equality follows from (6). (We
also note that (6) implies that, since G ∈ Rsp and
Yi ∈ RH∞, Xi(∞)D(∞)−1 = Yi(∞)Nd(∞) = 0.)

Since Assumption 16 holds, it suffices to find
infQ∈RH∞

||Tqv||22 (see Lemma 8). From (23),

||1 − XiD + DQNi||22
(a)
=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ξp − ξpXiD + ξpDQ

[

z−1

N

]∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

2
(b)
= ||ξp − ξp(0)||22 + ||ξp(0) − ξp(∞)||22

+

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(ξp(∞) − XiξpD) + ξpDQ

[

z−1

N

]∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

2

(c)
=

(

np
∏

i=1

|pi|2
)

− 1

+

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

z (ξp(∞) − XiξpD) + ξpDQ

[

1

zN

]∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

2

, (24)

where ξp ,
∏np

i=1
1−zpi

z−pi
. In (24), (a) follows from

the definition of Ni, the fact that ξp is unitary and
properties of the 2−norm, (b) follows using stan-
dard analytic H2 optimization techniques based on
orthogonal decompositions (see, e.g., [5, 34]), and
(c) follows from the fact that z is unitary and from
the residue theorem (see, e.g., Appendix A in [27]).
Thus,

γ
(a)

≥ ||Tqv||22
(b)

≥
(

np
∏

i=1

|pi|2
)

− 1, (25)

for every K̄ ∈ S and every σ2
q ∈ R+. The gap be-

tween the left and right hand sides of (a) in (25) can
be made arbitrary small by choosing σ2

q sufficiently
large (see proof of Lemma 8). On the other hand,

choosing Q = Kε{−z (ξpD)
−1

(ξp(∞) − XiξpD) ×
[

1 0
]

}, with a sufficiently small ε ∈ (0, 1], guaran-
tees that the gap between both sides of (b) in (25)
is arbitrarily small. The result is now immediate.

(2) This part follows proceeding as above and using the
proof of Theorem III.2 in [5]. 2

Remark 18 An expression for the filter K̄ ∈ S (or K̄ ∈
S∩W) and the channel variance σ2

q ∈ R+ that allows one

to achieve any SNR arbitrarily close to γinf (or γno-fb
inf )
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follows immediately from the proof of Theorem 17 and
Lemma 8. 2

Part 1 of Theorem 17 states that, when the proposed
architecture is employed, the minimal SNR compatible
with MSS becomes a function of the unstable plant poles
only. This stands in contrast to the one-dof architecture
studied in [5], where plant non-MP zeros and relative
degree play a role. The control architecture proposed
here thus has the ability to enlarge the class of plants
that are stabilizable over a given SNR constrained AWN
channel. The key feature of the proposed architecture is
that it exploits channel feedback and, accordingly, uses
additional degrees of freedom not available in a one-dof
control architecture. (Our conclusions are thus akin to
those in, e.g., [6, Section IV], where it is shown that addi-
tional degrees of freedom are fundamental to circumvent
limitations imposed by plant non-MP zeros or unstable
poles.) The latter is reinforced by the second part of our
result: When no channel feedback is available (equiva-
lently, K11 = 0) then, no matter how many additional
degrees of freedom are employed, the minimal SNR re-
quired for MSS is as in a one-dof architecture.

Remark 19 If K2 ∈ RH∞ is fixed and satisfies the con-
ditions at the beginning of the proof of Theorem 17, then
Part 1 of the result still applies. Also, if K1 = [0 K12] and
K12 ∈ U∞ is any fixed transfer function with stabilizable
and detectable underlying realization, and such that the
inherited realization of the transfer function between u
and w in Figure 3, when K2 is removed, is detectable and
stabilizable, then Part 2 of Theorem 17 also applies. 2

Assume now that the performance of the architecture of
Figure 3 is measured by means of the stationary variance
σ2

e of the tracking error e , r − y. In principle, once
Figure 3 is arranged as in Figure 2(b), and provided
Assumption 16 holds, the results of Section 6 yield a
characterization of the minimal stationary tracking error
variance that is achievable with a given SNR constraint.
This is true if K̄ is constrained as in (21), or if either K1

or K2 are fixed and the remaining transfer function has
to be designed.

Unfortunately, the situation is not that simple when no
constraints are imposed on K̄ or when only K11 = 0 is
enforced. In those cases, u cannot depend on y and v
cannot depend on r (see Figure 3). Hence, the equivalent
controller K in Figure 2(b) has entries that are identi-
cally zero. Thus, the optimal design of K becomes an
optimal control problem with sparsity constraints (see,
e.g., [25,31]). Such problems are, in general, non-convex
and difficult to solve [33]. In these cases, we propose to
use the results of Section 6 to design K in an iterative
fashion: Fix K1 (or K2) and choose K2 (resp. K1) so as
to optimize performance subject to the SNR constraint
Γ. For that choice of K2 (resp. K1) choose K1 (resp. K2)
in a similar fashion, etc. The procedure outlined con-
verges, at least, to a local minimum.

10
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bound Γ on the channel SNR.

8 Example

Consider the unstable plant model

G =
z − 0.8

z(z − 2)
,

assume that do = 0, and that the reference r has a spec-
tral factor Ωr = 0.1z(z − 0.9)−1. We will design a one-
dof NCS architecture (see (21)) so as to minimize the
stationary tracking error variance in the face of an SNR
constraint. For this plant and architecture, the minimal
SNR compatible with MSS is given by γone-dof

inf = 3.

We have computed [σ2
e ]Γ for several values of Γ ∈

(3, 3 · 104]. The results are shown in Figure 4. As ex-
pected, [σ2

e ]Γ is a decreasing function of Γ that tends
to the best achievable non-networked performance
Dinf , infQ∈RH∞

J0(Q) = 0.04 as Γ → ∞, and that
grows unbounded when Γ → 3 (see horizontal and verti-
cal lines in Figure 4, respectively). For moderate values
of Γ, the best achievable performance is almost identical
to Dinf .

9 Conclusions

This paper has presented a framework within which one
can study control problems with SNR constraints. We
have focused on the problem of elucidating the interplay
between closed loop performance and SNR constraints
and, in particular, we have provided a characterization
of the best achievable performance subject to a given
SNR constraint. We have also presented a detailed study
of the minimal SNR needed to achieve MSS in two ar-
chitectures of interest. Our results show that the bound
on the channel SNR required to achieve MSS presented
in [5] for the noiseless static state feedback case, can be
recovered with noisy output feedback, and for any plant
model and any combination of external noise sources,
provided channel feedback is available.

10



Possible extensions of the results presented in this pa-
per lie in the consideration of MIMO plant models, and
of architectures with multiple channels (see preliminary
results in [21]). The search for explicit analytical char-
acterizations of the best performance achievable with a
given SNR constraint are also of interest.
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