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Abstract

We propose a novel method for controlling vibrations within a resonant structure
equipped with piezoelectric transducers. The scheme uses a parallel connection of
modulated and demodulated controllers, each designed to damp the transient os-
cillation corresponding to a single mode. This technique allows multiple modes to
be controlled with a single actuator. A simulation example is presented and design
considerations for the scheme are discussed. Experimental results obtained from a
piezoelectric laminate cantilever beam confirm the theoretical analysis.
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1 Introduction

There has been significant research interest in utilising piezoelectric transduc-
ers for vibration mitigation in resonant mechanical structures, see e.g. Mo-
heimani and Goodwin (2001); Moheimani (2003); Fuller et al. (1996); Clark et
al. (1998); Moheimani et al. (2003). By bonding piezoelectric materials to the
surface of a resonant structure, these transducers can be used for vibration
control, where they can be deployed as actuators, as sensors or both. For that
purpose, several control algorithms have been proposed, see e.g. Hagood et al.
(1990); Lazarus et al. (1991); Hagood and von Flotov (1991); Moheimani et
al. (2001).
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Given the fact that piezoelectric transducers can be accurately described with
linear models over a significant operating range (Moheimani, 2000), both ac-
tive and passive LTI (linear time invariant) methods have been proposed, see
e.g. the survey in Moheimani (2003). Restricting controllers to be LTI is cer-
tainly attractive since, in this case, the design problem can be cast in the
well studied LTI control systems framework, see e.g. Goodwin et al. (2001).
On the other hand, it is well known that resonant systems are not always
easy to control with LTI methods (Serón et al., 1997; Goodwin et al., 2001).
As a consequence, depending upon the application, non-LTI methods may be
worth studying, see e.g. Corr and Clark (2003) for work on nonlinear switching
methods within this context.

In the present work, we propose a time varying (more precisely, periodic) vi-
bration control method for resonant systems. It makes use of the fact that
signals within a resonant structure are of an oscillatory nature, and hence
concentrate their energies around a set of discrete frequencies, which corre-
spond to the modes of the mechanical system. The method described here
utilises concepts from amplitude-modulated communication systems in order
to isolate and shift the spectrum of the high-frequency oscillations down to the
baseband. It then operates on these low frequency signals. This corresponds
to controlling the envelope of the oscillations and has strong conceptual and
computational advantages, when compared to operating on high frequency
signals.

Our methodology is based upon so-called modulated and demodulated control
methods, which have been proven to be effective in a number of applications,
see e.g. Bode (1945); Chen et al. (2005); Chang (1993); Leland (2001); Gerber
(1978). Specifically, in relation to vibration suppression of flexible structures,
an indirect method has been proposed in Chang (1993). It utilises the plant
output as the modulation signal which translates energy into the baseband.
The method emulates modulation with exogenous signals by relying upon a,
rather ad-hoc, non-linear gain adjust module. Implicit in Chang (1993) is the
assumption that the controlled plant output always has enough energy at the
natural frequencies of the structure so as to provide an adequate modula-
tion signal. This certainly constitutes a limiting factor, since the aim of the
controller resides precisely in vibration suppression.

As shown by Chang (1993), one of the advantages of using modulation and
demodulation is that it allows the modes of the structure to be controlled
using a low bandwidth controller. This is particularly useful in the control of
high frequency vibration modes.

In the present paper, we propose to utilise modulated and demodulated control
with exogenous modulation signals. This allows one to control several modes
with a single piezoelectric actuator in a simple manner. It also overcomes the
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above mentioned limitations of the output-modulation based method of Chang
(1993). We study the behaviour of the resulting closed loop system using
several linear models each of which yields different insights. Indeed, the closed
loop behaviour turns out to be governed by a trade-off between attenuation
and stability margin.

Our work extends Lau et al. (2004b) to the control of multiple modes within a
resonant structure, which we assume fixed and known. Preliminary ideas can
also be found in our conference contribution (Lau et al., 2004a).

The remainder of the paper is organised as follows: In the next section, we
describe the system to be controlled. Then, in Section 3, we investigate the
application of modulated control to vibration damping. Section 4 elucidates
design considerations, and Section 5 documents experimental studies. Sec-
tion 6 concludes the paper.

2 Piezoelectric Beam Model

Piezoelectric materials can transform electrical energy into mechanical energy
and vice versa. Thus they can be deployed as actuators, as sensors or both.
More precisely, due to their permanent dipole nature, piezoelectric materials
strain when exposed to an electric field and conversely produce an electric
charge when strained. More details can be found e.g. in Fuller et al. (1996);
Moheimani (2003).

In the present work, we concentrate upon the piezoelectric laminate beam
schematised in Fig. 1. In this configuration, the beam is fixed at one end and
free at the other. Three piezoelectric patches are mounted on the beam, two
being collocated. As shown in Fig. 1, one patch is used as an actuator, i.e., it
transforms the voltage u(t) into strain. Another patch functions as a sensor,
providing a voltage v(t), which depends upon the (local) beam deflection.
The beam is also equipped with a piezoelectric actuator, which represents
disturbances. Despite the fact that often disturbances on a flexible structure
are of a distributed nature, from an experimental viewpoint, it is convenient
to utilise a lumped model where the disturbance, denoted here as do(t), exerts
a moment on the beam.

The overall goal of our work is to provide a controller for the system depicted
in Fig. 1 which, based upon the measured signal v(t) and by manipulating
the signal u(t), mitigates the vibration caused by do(t). We also examine the
displacement z(t), which corresponds to some other point Z on the beam.

The laminate beam of Fig. 1 is governed by a partial differential equation
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Actuator

Sensor

z(t)
Z

Disturbance

v(t) do(t)

u(t)

Fig. 1. Piezoelectric laminate beam.

which can be solved in a variety of ways, see e.g. Fuller et al. (1996); Pota et
al. (1999); Moheimani et al. (2003). In the present work, we will utilise the
following model, taken from Moheimani (2003):

v(t) = Gvu(s)u(t) + Gvd(s)do(t)

z(t) = Gzu(s)u(t) + Gzd(s)do(t).
(1)

Here, Gvu(s), Gvd(s), Gzu(s) and Gzd(s) are linear time invariant transfer
functions, which reflect the resonant nature of the beam. In principle, they
contain an infinite number of natural modes, being of the form

∞
∑

i=1

γi

s2 + 2ζiωis + ω2
i

, (2)

where ωi are the resonance frequencies and ζi are their (uncontrolled) damping
factors. The scalars γi depend upon the position of the piezoelectric patches
and, in the collocated case of Fig. 1, are always non-negative.

For control design purposes it is convenient to truncate the model structure (2)
such that only M modes are considered. Thus, the relationship between u(t)
and v(t) can be described as:

Gvu(s) = D +
M
∑

i=1

γi

s2 + 2ζiωis + ω2
i

, (3)

where the scalar D accounts for the spillover effect of the neglected terms
over the bandwidth of interest (Clark, 1997; Moheimani, 2000). The transfer
functions Gvd(s), Gzu(s) and Gzd(s) are commonly of the same form as Gvu(s)
and often only differ in the location of their zeros, i.e. in the values adopted
by the terms γi and D in (3).

3 The Proposed Controller Architecture

As stated above, we will use feedback from the sensor signal v(t) to the ac-
tuator signal u(t) to suppress vibrations in the beam. The controller consists
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of a parallel connection of systems, each designed to damp a single mode. For
ease of exposition, we will first consider the control of a single mode and then
describe the multimodal architecture.

3.1 Notation

Arg z denotes the principal argument of z. Thus −π < Arg z ≤ π. A symbol
with a tilde denotes a modulated signal. If f̃ = f(t) cos ωt then we refer to f
as the envelope of f̃ . Important exceptions to this rule are the system inputs
and outputs u, v, do and z. Upper case denotes the Laplace transform of a
signal. In the sequel, G(s) and Gvu(s) are used interchangeably.

3.2 Control of a Single Mode

The control scheme for a single mode (at frequency ωi) is depicted in Fig. 2.
In this figure, G(s) = Gvu(s), and d̃(t) is an output disturbance which can be
used to model initial conditions as well as the effect of do(t). The single-mode
controller has two branches, each consisting of a demodulator, an LTI con-
troller Ci(s) (the baseband controller), and a modulator. Within each branch,
v(t) is first demodulated by correlating it with cos(ωit + φ) (or sin(ωit + φ))
and then filtered by a low-pass filter Fi(s). Each demodulated signal is then
passed through Ci(s) and the resulting signal is used to modulate cos ωit (or
sin ωit). We note that the two demodulators (and the two modulators) are π/2
rad out of phase, and hence they are orthogonal. The phase shift φi is defined
as Arg[G(jωi)] and may be approximated by −π/2.

Demodulators
Baseband

Controller Modulators

uiI(t)

cos(ωit)2 cos(ωit + φi)

d̃(t)

G(s)

viIf (t)
Fi(s) −Ci(s)

+

+

+

+
u(t) v(t)

uiQ(t)

− sin(ωit)−2 sin(ωit + φi)

viQf (t)
Fi(s) −Ci(s)

Fig. 2. Single mode control scheme.
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Since we are dealing with resonant structures governed by (2), the sensor
output v(t), has its energy concentrated in narrow bands centred about the
resonance frequencies of the system. Thus, v(t) can be written as a sum of
modulated signals, i.e.,

v(t) =
∞
∑

k=1

ṽk(t), (4)

where

ṽk(t) = vkI (t) cos(ωkt + φk) − vkQ(t) sin(ωkt + φk), (5)

and vkI (t) and vkQ(t) are band-limited (low-pass) signals with bandwidths
≤ Ωk (i.e., |VkI(jω)| and |VkQ(jω)| are small for ω > Ωk). We refer to the the
cos and sin terms in (5) as the in-phase and quadrature components of ṽk(t).
We note that vkI (t) and vkQ(t) are the envelopes of these components.

It can be seen that

2ṽi(t) cos(ωit + φi) = viI (t)[1 + cos(2(ωit + φi))] − viQ(t) sin(2(ωit + φi)).

Moreover, for k 6= i, 2ṽk(t) cos(ωit+φi) has its energy concentrated in narrow
bands centred at ωi ± ωk and −ωi ± ωk. It follows that viIf (t) is viI (t) filtered
by Fi(s) provided that the following assumptions are satisfied:

Assumptions

A1. ωi > Ωi and |ωi − ωk| > Ωi + Ωk for all k 6= i.
A2. Fi(s) is a low-pass filter with bandwidth Ωi, i.e., |Fi(jω)| ≈ 0 ∀ ω > Ωi.

In a similar manner, it can be shown that, if A1 and A2 hold, then viQf (t) is
approximately equal to viQ(t) filtered by Fi(s).

The baseband controllers transform the filtered envelopes viIf (t) and viQf (t)
to produce uiI (t) and uiQ(t), the envelopes of the in-phase and quadrature
components of u(t). We note that the phases of the modulators and demod-
ulators are chosen so that the two input two output (TITO) system from
ui = [uiI , uiQ ]T to vif = [viIf , viQf ]

T is ‘decoupled (diagonal) at dc’. Hence,
it is reasonable to use uiI (t) to control the in-phase component of ṽi(t) and
uiQ(t) to control the quadrature component.

3.3 Multimodal Modulated Control

Multiple, say Mc, modes can be controlled in a decentralised manner by using
one modulated controller per mode. This is illustrated in Fig. 3 for the case
of a two mode controller, i.e., Mc = 2. In this figure, Ci denotes the controller
for the ith mode (see Fig. 2), and ũi(t) = uiI (t) cos ωit − uiQ(t) sin ωit. It is
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worthwhile to note that each of the single mode controllers acts as a band-
pass filter (this is shown in Section 4.1 below). It follows that the multimodal
scheme is, at least conceptually, similar to filter banks which are widespread
in signal processing applications, see e.g. Vaidyanathan (1993).

G(s)
u(t) +

+

v(t)

d̃(t)

C2

ũ2(t)

C1

ũ1(t)

+

+

Fig. 3. Multimodal control scheme for two modes.

We emphasise that when controlling Mc modes, an underlying assumption of
the scheme is that the closed loop output v(t) satisfies (compare to (4))

v(t) =
Mc
∑

k=1

(vkI (t) cos(ωkt + φk) − vkQ(t) sin(ωkt + φk)) ,

where vkI (t) and vkQ(t) are band-limited signals. It is also assumed that ukI (t)
and ukQ(t) are band-limited. Let Ωk be an upper bound on the bandwidths of
these signals. We require that Fi(s) and Ωi satisfy the following conditions:

C1. Ω1 < ω1 and Ωi + Ωi+1 < ωi+1 − ωi for i = 1, 2, .., Mc − 1.
C2. Fi(s) is a low-pass filter which rolls off for ω > Ωi.
C3. |Fi(j(ωk − ωi))G(jωk)| � |Fi(0)G(jωi)|, i 6= k.

These conditions ensure that the coupling between the modes is relatively
small. In particular, the third condition implies that, for i 6= k, the gain
from ui(t) to vkf (t) (or, equivalently, the gain from ũi(t) to ṽk(t)) is small.
The conditions also ensure that the baseband approximation (given below in
Lemma 1 of Section 4.1) can be applied.

As outlined above, the modes can be considered to be approximately decou-
pled, and hence the corresponding controllers designed independently.
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4 Design Considerations

4.1 Linear Analysis of the Control Scheme

The scheme in Fig. 2 is clearly time-varying (periodic), and is, thus, in princi-
ple, difficult to analyse. However, approximately equivalent LTI systems may
be found. We will consider two alternative approaches. The first gives a TITO
approximate (baseband) model. When further simplified to a pair of decoupled
SISO systems, this gives deep insights into the controller design. The second
(narrowband) approach is exact and gives a quantification of stability margins
etc., but is slightly less insightful.

The baseband approach approximates the TITO system from ui to vif by a
linear system with transfer function G2×2(s, ωi), as shown in Fig. 4. In this
figure, dif (t) = [diIf(t), diQf(t)]

T is the demodulated disturbance. As will be
discussed in this section, the TITO baseband model can be further approxi-
mated by a pair of decoupled SISO baseband models.

Remark 1 We note that, in practice, the low-pass filter Fi(s) may introduce
a significant delay (relative to 1/ωi) into the system. This would seem to imply
that it is difficult to control the system at ωi rad/s. However, it is clear from
Fig. 4 that the filter delay limits only the speed of response of the baseband
system, not the full system. Thus, the delay limits only the speed of response
of the envelope of ṽi. This fact is analysed in more detail in Lau et al. (2004b).

2

The narrowband approach replaces the controller (from v(t) to u(t)) by an
exact transfer function Cim(s). The resulting closed loop system is shown in
Fig. 5.

The following lemma gives the expression for the TITO transfer function
G2×2(s, ωi) in the baseband model shown in Fig. 4.

Lemma 1 Consider the system in Fig. 2. Suppose that uiI , uiQ , viI , viQ are
band-limited with bandwidths ≤ Ωi, where Ωi < ωi, and Fi(s) is a low-pass filter
with bandwidth Ωi. Then the system from [UiI(s), UiQ(s)]T to [ViIf(s), ViQf(s)]

T

can be approximated by a linear system with transfer function G2×2(s, ωi)Fi(s)
(as shown in Fig. 4), where

G2×2(s, ωi)=







Gm(s, ωi) Gx(s, ωi)

−Gx(s, ωi) Gm(s, ωi)






,
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Gm(s, ωi)=
1

2

[

e−jφiG(s + jωi) + ejφiG(s − jωi)
]

and Gx(s, ωi)=
j

2

[

e−jφiG(s + jωi) − ejφiG(s − jωi)
]

.

Proof

See Appendix A.1. 2

−Ci(s) G2×2(s, ωi)Fi(s)

+

+

vif (t)

dif (t)

uif (t)

Fig. 4. Equivalent (TITO) baseband system.

d̃(t)

−Cim(s) G(s)
u(t)

+

+

v(t)

Fig. 5. Equivalent narrowband system.

Remark 2 It can be seen that Gx(0, ωi) = 0. By continuity, this implies that,
for small ω, G2×2(jω, ωi) can be approximated by Gm(jω, ωi)I2, where I2 is
the 2 × 2 matrix identity. For this reason, we refer to this approximation as
the SISO baseband model, and we refer to Gm(s, ωi) as the SISO baseband
transfer function. Note that the SISO baseband model, by its very nature, does
not describe the potential interactions that can arise between the in-phase and
quadrature components. 2

It is useful to elucidate the properties of the SISO baseband transfer function
Gm(s, ωi). For that purpose, let G(s) = N(s)/D(s), where N(s) and D(s) are
coprime polynomials. Then

Gm(s, ωi) =
1

2

Nm(s, ωi)

Dm(s, ωi)
, (6)

where

Nm(s, ωi) = e−jφiN(s + jωi)D(s − jωi)

+ ejφiN(s − jωi)D(s + jωi), (7)
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and Dm(s, ωi) = D(s + jωi)D(s − jωi). (8)

We refer to the zeros of Nm(s, ωi) as the zeros of Gm(s, ωi) and the zeros of
Dm(s, ωi) as the poles of Gm(s, ωi). Thus, Gm(s, ωi) may contain pole zero
cancellations.

It can be shown that Gm(s, ωi) has the following properties (Lau et al., 2004b,
Lemmata 5.1, 5.6, 5.7):

Property 1 The poles of Gm(s, ωi) are the poles of G(s) shifted by jωi and
−jωi.

Property 2 If G(s) has poles at p ∈ C and p+2jωi, then Gm(s, ωi) has two
poles and one zero at p + jωi.

Property 3 If G′(s) = e−sτG(s), τ > 0, then G′

m(s, ωi) = e−sτGm(s, ωi).

Remark 3 If G(s) has a pair of poles at a± jωi, then Gm(s, ωi) has a double
pole at a and a pair of poles at a±2jωi (Property 1). Gm(s, ωi) also has a zero
at a which cancels one of the poles (Property 2). If ω0 ≈ ωi, then Gm(s, ω0)
contains an approximate cancellation. 2

The next lemma provides an expression for Cim(s) in the narrowband model
shown in Fig. 5. We note that this result has been proved previously (for the
special case of Fi(s)Ci(s) = 1/s) in Bodson et al. (1994).

Lemma 2 Let (FC)i(s) denote Fi(s)Ci(s). Then the modulated and demod-
ulated controller in Fig. 2 has the following transfer function:

−Cim(s) = −
[

e−jφi(FC)i(s − jωi) + ejφi(FC)i(s + jωi)
]

.

Proof

See Appendix A.2. 2

Remark 4 Suppose that Ci(s) is a constant gain. Then from Lemma 2, it
can be seen that the modulators and demodulators convert the low-pass filter
(FC)i(s) to a band-pass filter. 2

In the above development, we have described two alternative approaches for
the analysis of the scheme in Fig. 2. These two approaches yield three alter-
native models. Specifically, the application of Lemma 1 yields the TITO base-
band model shown in Fig. 4, which can be further simplified (when s is small)
to a SISO baseband model. Alternatively, the application of Lemma 2 yields
the narrowband model shown in Fig. 5. A comparison of the methods/models
will be given in Sections 4.3 and 4.4.

Let Li(s), Lia(s) and L̃i(s) denote the loop transfer functions of the TITO
baseband model, the SISO baseband model and the narrowband model, re-
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spectively. We note that

Lia(s) = Gm(s, ωi)Fi(s)Ci(s)

=
1

2

[

e−jφiG(s + jωi) + ejφiG(s − jωi)
]

(FC)i(s),

and that

L̃i(s) = G(s)Cim(s)

= G(s)
[

e−jφi(FC)i(s − jωi) + ejφi(FC)i(s + jωi)
]

.

It can easily be shown that, when |s| is small, Lia(s) and L̃i(s) are related as
follows:

Lia(s) ≈
1

2

[

L̃i(s + jωi) + L̃i(s − jωi)
]

.

We also note that the loop gain at the ith mode, L̃i(jωi), is approximately
equal to Lia(0) = |G(jωi)|(FC)i(0).

For the multimodal scheme, the loop transfer function for the entire system
(narrowband approach) is given by

L̃(s) =
Mc
∑

i=1

L̃i(s), (9)

and the closed loop transfer function from Do(s) to Z(s) is given by

Tzd(s) = Gzd(s) −
Gzu(s)Gvd(s)

Gvu(s)

L̃(s)

1 + L̃(s)
.

These relations will be used in the controller design as described below.

4.2 Simulation Example

In this section, we illustrate the principles outlined above by applying the
modulated controller to a simplified two-mode model of a beam. This example
provides insight into the scheme, in particular, into the relationship between
the baseband and narrowband models developed in the previous section.

We give simulation results for the control of the flexible beam modelled in
Pota et al. (1999). The beam is 0.775 m long and 0.05 m wide, and can be
modelled by (3) with D = 0, M = 2, γ1 = 32.29, γ2 = 584.39, ζ1 = ζ2 =
0.008, ω1 = 50.18 rad/s and ω2 = 314.46 rad/s. The model Gvu(s) has poles
at approximately 2 −a1 ± jω1 and −a2 ± jω2, where a1 ≈ 0.4 and a2 ≈ 2.52.

2 The imaginary parts of the poles are actually ±
√

1 − ζ2
i ωi ≈ ±ωi.
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It follows that the time constant of the (envelope of) the first mode is 1/0.4 s
and that of the second mode is 1/2.52 s.

In this example, we use the SISO baseband model to design the controller.
We recall that the use of this model reduces the control problem to one of
choosing Ci(s) to control Gm(s, ωi)Fi(s). As noted in Remark 3, Gm(s, ω1)
has a pair of poles and a zero at approximately −a1. It follows that Gm(s, ω1)
contains an approximate pole zero cancellation at −a1. Since the rest of the
poles are large, Gm(s, ω1) has a dominant pole at −a1. Similarly, Gm(s, ω2) has
a dominant pole at −a2. We note that the transient response (of Gm(s, ωi))
associated with ai corresponds to the envelope of the ith mode of Gvu(s).

We take F1(s) and F2(s) as fourth order Butterworth filters with bandwidths
Ω1 = 20 and Ω2 = 50, respectively, to satisfy the conditions given in Sec-
tion 3.3. The Bode magnitude plots of Gvu(s)F1(s−jω1) and Gvu(s)F2(s−jω2)
are shown in Figs. 6 and 7, respectively. From these diagrams, it is clear that
F1(s− jω1) and F2(s − jω2) have strong attenuation at s = jω2 and s = jω1,
respectively.
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Fig. 6. Bode magnitude plot of Gvu(s)F1(s − jω1) showing the attenuation of the
peak at the second mode.
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Fig. 7. Bode magnitude plot of Gvu(s)F2(s − jω2) showing the attenuation of the
peak at the first mode.

The upper plots in Figs. 8 and 9 show the transient uncontrolled responses
ṽ1(t) and ṽ2(t). The lower plots in the figures show the controlled responses
with C1(s) = C2(s) = 5 (i.e., proportional control in the baseband) and both
of the loops closed. We observe that the closed loop responses are significantly
faster than the open loop ones. Note that C1(s) shifts the dominant pole of
Gm(s, ω1) from −a1 ≈ −0.4 to −2.65. This is equivalent to shifting the poles of
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Gvu(s), corresponding to the first mode, to the left (increasing the damping).
Similarly, C2(s) shifts the dominant pole of Gm(s, ω2) from −2.52 to −10.33.

0 1 2 3 4 5 6
−100

−50

0

50

100
uncontrolled response

(V
)

0 1 2 3 4 5 6
−100

−50

0

50

100
controlled response

t (s)

(V
)

Fig. 8. First mode time responses (ṽ1(t)).
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0 1 2 3 4 5 6
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−50

0
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100
controlled response

t (s)

(V
)

Fig. 9. Second mode time responses (ṽ2(t)).

As discussed in Section 2, we are often interested in the vibration measured
at another point on the beam. Fig. 10 contains plots of the displacement,
z(t), measured at a point 0.76 m from the fixed end. The open and closed
loop responses are both shown. In this case, we have, γz1 = 0.0028 and γz2 =
−0.0013 (Pota et al., 1999). We note that the response is dominated by the
first mode.

Let du(t) be an additive input disturbance which enters the closed loop system
at the input to Gvu(s). Figs. 11 and 12 show the open and closed loop frequency
response (magnitude only) from du to v and to z, respectively. The responses
up to the third mode are shown. We note that the open loop responses were
obtained by plotting |Gvu(jω)| and |Gzu(jω)|. The closed loop responses were
‘measured’ by simulating the system in Fig. 3 with Gvu(s) replaced by a three
mode approximation to Gvu(s). The initial conditions were set to zero (d̃(t) =
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Fig. 10. Time responses for z.

0) and the frequency response estimated by injecting a series of sine waves
at du. It can be seen that the controller attenuates the peak at the first and
second mode by approximately 14 dB and 9 dB, respectively. These values are
given by 1/(1 + Gm(0, ωi)Ci(0)) for i = 1, 2. As one would expect, the third
mode is essentially unaffected by the controller.
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Fig. 11. Open loop (dotted) and closed loop (solid) frequency responses (du to v).
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Fig. 12. Open loop (dotted) and closed loop (solid) frequency responses (du to z).

Remark 5 The simulations documented above were performed using the nom-
inal plant Gvu(s). However, we note that if we replace Gvu(s) in the simula-
tions by, for example, an eight mode approximation of Gvu(s) then the time
responses ṽ1(t) and ṽ2(t) turn out to be almost identical. This implies that the
higher modes are sufficiently decoupled from the lower two so as not to affect
the performance of the controller. 2

14



4.3 Baseband vs. Narrowband

In this section, we provide a brief discussion of the relative merits of the TITO
baseband model, the SISO baseband model, and the narrowband model.

In the TITO baseband model, the modulated and demodulated plant is re-
placed by an equivalent TITO baseband system (i.e., the plant is shifted down
to the baseband). This approach has benefits in the design of the baseband
controller since Ci(s) appears directly in the loop transfer function. The ap-
proach also allows one to use a non-diagonal TITO controller.

As we have illustrated in Section 4.2, the use of the simplified SISO baseband
model allows the problem of controlling a single mode to be reduced to one
of controlling a simple first order system. It should be noted that, whilst the
SISO model is useful for predicting the response of the closed loop, it should
not be used to analyse the stability margins of the loop 3 . This is due to the
fact that the first order approximation holds only for ω close to zero. This will
be discussed further in Section 4.4.

In the narrowband model, the modulated and demodulated controller is re-
placed by an equivalent narrowband system (i.e., the controller is shifted up
to the passband). It is clear that the design of the controller is less intuitive in
this case. However, the loop transfer function L̃i(s) given in (9) can be used to
analyse the stability margin (of the ith loop). Moreover, since L̃i(s) is exact,
the stability analysis will also be exact. The narrowband approach also allows
the entire multimodal scheme to be analysed, since the loop transfer function
L̃(s) is simply the sum of the individual loop transfer functions L̃i(s).

4.4 Comments on the First Order Approximation (SISO baseband model)

The assumption that G2×2(jω, ωi) ≈ Gm(jω, ωi)I2, is equivalent to the as-
sumption that Gx(jω, ωi) ≈ 0. To gain insight into this, let us suppose that
Gx(jω, ωi) = 0. Then

e−jφiG(jω + jωi) = ejφiG(jω − jωi)

= e−jφiG(jωi − jω). (10)

3 If one wishes to analyse the stability margin in the baseband, it is necessary to
consider the TITO baseband loop transfer function Li(s). However, since G2×2(s, ωi)
is an approximate transfer function, Li(s) is also approximate. For a more accurate
analysis, the narrowband loop transfer function L̃i(s) should be used.
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Let H(s) = e−jφiG(s + jωi). Then condition (10) is equivalent to H(jω) =
H(−jω). It follows that G2×2(jω, ωi) = Gm(jω, ωi)I2 if and only if e−jφiG(jω)
is conjugate symmetric about ω = ωi.

The preceding discussion implies that the first order approximation does not
hold when the asymmetry of H(jω) is significant. Since H(jω) will never
be perfectly symmetric the approximation will, in general, be valid only for
sufficiently small ω. We note that the feedthrough term D causes asymmetry,
and hence the approximation is valid for a smaller range of frequencies when
D is large.

The first order approximation also neglects the effect of the filter. The filter
introduces a phase shift, and hence can affect the stability/robustness of the
closed loop.

It can thus be seen that the first order approximation holds for ω close to
zero in the baseband (or for ω close to ωi in the passband). However, the
approximation neglects the asymmetry of G(jω) about ω = ωi, and also the
phase shift introduced by the filter. In practice these additional features will
not affect the closed loop response in the vicinity of the modes but may affect
the analysis of the stability margin or robustness of the loop.

4.5 Choice of decoupling filters

Several factors need to be considered when designing the decoupling filters.
The bandwidth of the filter should be greater than that of the closed loop
system. The filter should also provide sufficient attenuation to prevent the
modes from interacting. A large phase shift in the passband of the filter is
also undesirable as this reduces the gain margin of the system.

It is clear that increasing the controller gain increases the attenuation of the
mode, and also increases the closed loop bandwidth. It follows that, in order
to increase the gain, a filter with a higher bandwidth and faster roll off (higher
order) is required. This will be accompanied by an increase in the phase shift
in the passband and a decrease in the gain margin. It can thus be seen that
there will be a limit to how far the gain can be increased.

5 Experimental Study

In order to further investigate properties of the proposed controller architec-
ture, we carried out experiments on a physical beam in the Laboratory of
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Dynamics and Control of Smart Structures at The University of Newcastle,
Australia.

5.1 Testbed

The experimental set-up used is built around a cantilever beam of length
55 cm, which is equipped with piezoelectric patches, as depicted in Fig. 1. The
output voltage of the sensor patch is passed through a high-impedance buffer
to avoid low-frequency distortion in v(t). The disturbance patch is located at
the centre of the beam. It is driven by a voltage source, which generates a
disturbance in the beam. Tip displacement (point Z in Fig. 1) was measured
with a Polytec laser scanning vibrometer (PSV-300). Controllers were imple-
mented with a dSPACE DS-1103 DSP board (sampling frequency 50 kHz) and
corresponding anti-aliasing and reconstruction filters.

5.2 System Identification

For the purpose of identifying the beam, i.e., to obtain models Gvu(s), Gvd(s),
Gzu(s) and Gzd(s) within the structure (3), we decided to work in the frequency
domain. Chirp signals (from 5 to 250 Hz) were applied to u(t) and do(t), and
v(t) and z(t) were measured. The input/output data so obtained was processed
in real time by the Polytec software in order to provide all four frequency
responses.

We considered the case of controlling the first two modes of the beam (the
extension to other modes follows the same principles). Thus, we identified a
fourth-order model, i.e., we chose M = 2 in (3). The system modes and damp-
ing factors (parameters ωi and ζi in (3)) were characterised directly by measur-
ing size and location of the peaks of the experimental frequency response plots.
Then, the feedthrough terms D and the gains γi were determined according to
an optimisation procedure. More precisely, we set up an optimisation problem
which minimises the normalised least square difference between model and
measured frequency response. It can be seen from the frequency responses of
Fig. 13, that the identified transfer functions match closely the experimental
data in the bandwidth covering the first two modes.

5.3 Controller Design

The design of the modulated and demodulated controller requires the choice
of two low-pass filters, F1(s) and F2(s) and two controller transfer functions
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Fig. 13. Measured (dotted line) and model (solid line) frequency responses.

C1(s) and C2(s).

As in the simulation example (Section 4.2), we take F1(s) and F2(s) as fourth
order Butterworth filters with bandwidths of Ω1 = 20 and Ω2 = 50, respec-
tively. As it was found previously, these filters provide strong decoupling of
the modes. It follows that C1(s) and C2(s) can be chosen independently. It has
also been shown that the system can be controlled using proportional control
in the baseband, and so, we let C1(s) = K1 and C2(s) = K2.

As a first guideline for tuning the two gains, we utilise the Nyquist plot of
Gvu(s)(C1m(s) + C2m(s)) with K1 = K2 = 1 depicted in Fig. 14. From the
Nyquist plot, it can be seen that the closed loop should be stable, if

K1 ≤ 1.96, K2 ≤ 2.18. (11)
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Fig. 14. Nyquist plot of Gvu(s)(C1m(s) + C2m(s)) with K1 = K2 = 1 (ω > 0 only).
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The controller gains can also be chosen with the aid of the frequency re-
sponses shown in Figs. 15 and 16. These figures show the effect of K1 and K2

on Tzd(jω), i.e., on the closed loop frequency response between disturbance
do(t) and displacement z(t). We emphasise here, that K1 does not have any
(significant) influence on the second mode and, conversely, the first mode re-
sponse does not depend upon K2. For comparison, the open loop frequency
response Gzd(jω) (see also Fig. 13) is also included. It can be seen that in
both loops, larger gains give more peak attenuation. However, increasing the
gain also leads to the appearance of secondary peaks in the closed loop fre-
quency response. These peaks arise from the interaction between the in-phase
and quadrature components and thus, in view of Remark 2, one needs to use
the TITO baseband or narrowband model to predict their occurrence. From
Figs. 15 and 16, the choice

K1 = K2 = 1.5 (12)

appears to give a good compromise between peak attenuation and robustness.
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10
2.4

10
2.5

10
2.6

−120

−110

−100

−90

−80

−70

M
ag

ni
tu

de
 (d

B
)

ω (rad/s)

open loop
K

2
=0.5

K
2
=  1

K
2
=1.5

K
2
=  2

Fig. 16. Effect of K2 on Tzd(jω).

19



5.4 Closed Loop Results

Experimental frequency responses of the closed loop transfer function Tzd(s)
for several values of the controller gains were obtained. The low-pass filters
F1(s) and F2(s) were taken as fourth order Butterworth filters as described
in the previous section. We confirmed experimentally that there is little in-
teraction between channels, so that the closed loop behaviour around ω2 is
essentially independent of K1. Likewise, the closed loop behaviour around ω1

is essentially independent of K2. The results are documented in Tables 1 and 2.
The tables contain the values of the peaks corresponding to the first two nat-
ural modes of the beam. It can be seen from these tables that more active
control (i.e., larger gains) gives stronger peak attenuation, but decreases the
stability margin of the closed loop. From the tables, it can also be seen that
the experimentally determined critical gain for both loops is between 2 and
2.5. This agrees well with the critical gains predicted using the narrowband
model in Section 5.3.

Fig. 17 shows the experimental frequency response when K1 = K2 = 2. The
secondary peaks observed (using the narrowband model) in Section 5.3 are
clearly visible in this figure.

Table 1
Effect of K1 on peaks in Tzd(jω) corresponding to ω1.

K1 peak value, dB

0 −53.77

0.25 −61.81

0.5 −66.06

1 −70.80

1.5 −72.99

2 −73.55

2.5 unstable loop

The experimental frequency response when K1 = K2 = 1.5 is shown in Fig. 18.
As expected from the analysis in Section 5.3, this choice of controller gains does
indeed give a good compromise between peak attenuation and robustness. It
can be seen from Fig. 18 (see also Tables 1 and 2) that the resultant modulated
and demodulated controller reduces the peak magnitudes of the oscillations
by more than 19 dB (first mode) and 12 dB (second mode). This mitigation
is accomplished with only small side-peak effects. Time domain analysis, such
as the experimental step response contained in Fig. 19, confirm the quality of
the design.
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Table 2
Effect of K2 on peaks in Tzd(jω) corresponding to ω2.

K2 peak value, dB

0 −65.87

0.25 −70.14

0.5 −73.01

1 −76.25

1.5 −77.88

2 −78.56

2.5 unstable loop
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Fig. 17. Experimental frequency response with K1 = K2 = 2.
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Fig. 18. Experimental frequency response with K1 = K2 = 1.5.

6 Conclusions

This paper has described the design of a controller based on modulation and
demodulation principles aimed at the control of flexible structures. Both sim-
ulation and experimental results have been presented for a cantilever beam.
These results confirm the efficacy of this approach. Insights into the design
of the controller can be obtained by considering the SISO baseband model
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, given K1 = K2 = 1.5.

which shows that the system is approximately describable as a first order
model. However, to obtain greater precision one needs to consider the cou-
pling between the quadrature and in-phase components. Both the TITO base-
band model, which is approximate, and the narrowband model, which is exact,
take these components into account. The narrowband model, in particular, has
been shown to be capable of accurately predicting the performance/robustness
trade-offs inherent in this controller architecture.

A Proofs

A.1 Proof of Lemma 1

We provide a derivation for the transfer function from UiI(s) to ViIf(s). The
other three transfer functions can be found in a similar manner. Suppose that
uiQ(t) = 0 and d̃(t) = 0. Then it is readily seen that ViIf(s) is given by

ViIf(s) = Fi(s)

[

Gm(s, ωi)UiI(s) +
1

2

[

e−jφiG(s + jωi)UiI(s + 2jωi)

+e+jφiG(s − jωi)UiI(s − 2jωi)
]

]

.

We note that the bandwidth conditions on uiI and Fi(s) imply that Fi(jω)UiI(jω±
2jωi) ≈ 0. Therefore, we can safely approximate viIf (t) as

viIf (t) ≈ L
−1{UiI(s)Gm(s, ωi)Fi(s)}.

It follows that the system from uiI to viIf has an approximate transfer function
given by Gm(s, ωi)Fi(s).
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A.2 Proof of Lemma 2

It can easily be seen that

UiI(s) =
[

e−jφiV (s + jωi) + ejφiV (s − jωi)
]

(FC)i(s)

and that

2ŨiI(s) =
[

e−jφiV (s) + ejφiV (s − 2jωi)
]

(FC)i(s − jωi)

+
[

e−jφiV (s + 2jωi) + ejφiV (s)
]

(FC)i(s + jωi).

Similarly, we can show that

2ŨiQ(s) =
[

e−jφiV (s) − ejφiV (s − 2jωi)
]

(FC)i(s − jωi)

+
[

−e−jφiV (s + 2jωi) + ejφiV (s)
]

(FC)i(s + jωi).

As a consequence,

U(s)

V (s)
=

[

e−jφi(FC)i(s − jωi) + ejφi(FC)i(s + jωi)
]

,

from which the result follows.
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