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This paper presents properties of a control law which quantises the unconstrained solution to a unitary horizon quadratic programme.
This näıve quantised control law underlies many popular algorithms, such as Σ∆-converters and decision feedback equalisers, and is
easily shown to be globally optimal for horizon one. However, the question arises as to whether it is also globally optimal for horizons
greater than one, i.e., whether it solves a finite horizon quadratic programme, where decision variables are restricted to belong to a
quantised set. By using dynamic programming, we develop sufficient conditions for this to hold. The present analysis is restricted to first
order plants. However, this case already raises a number of highly non-trivial issues. The results can be applied to arbitrary horizons and
quantised sets, which may contain a finite or an infinite (though countable) number of elements.
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1 Introduction

Many interesting engineering applications involve decision variables, which are restricted to belong to
a quantised set (Goodwin & Quevedo 2003). Typical examples include: on-off and multi-level con-
trol (Bockman 1991, Brockett & Liberzon 2000, Bicchi, Marigo & Piccoli 2002, Ishii & Ba̧sar 2004, Picasso
& Bicchi 2003, Sznaier & Damborg 1989), power electronics (Rodŕıguez, Lai & Peng 2002), A/D con-
version (Norsworthy, Schreier & Temes 1997, Tewksbury & Hallock 1978, Bölcskei & Hlawatsch 2001),
networked control systems (Li & Baillieul 2004, Nair & Evans 2000, Ishii & Francis 2002), design of filters
with quantised coefficients (Lim & Parker 1983, Evangelista 2001) and equalisation of bandlimited com-
munication channels (Proakis 1995, Forney 1972). In addition, quantised variables can also be regarded as
an approximation to variables affected by saturation-type constraints.

One methodology for solving these problems with quantised decision variables utilises concepts arising
from finite horizon control and estimation (Goodwin, Serón & De Doná 2005, Maciejowski 2002, Rao,
Rawlings & Lee 2001, Camacho & Bordons 1999). This approach has been used in audio quantisa-
tion (Quevedo & Goodwin 2005c, Goodwin, Quevedo & McGrath 2003), subband coding (Quevedo, Good-
win & Bölcskei 2004), networked control systems (Goodwin, Haimovich, Quevedo & Welsh 2004, Quevedo
& Goodwin 2005a, Kiihtelys 2003), channel equalisation (Quevedo, Goodwin & De Doná 2003, Williamson,
Kennedy & Pulford 1992), quantised coefficient filter design (Quevedo & Goodwin 2005b) and power con-
version (Quevedo & Goodwin 2004a).

Implementation of the schemes described in the above references requires the solution of a quantised
finite horizon optimisation problem. As shown in (Quevedo, De Doná & Goodwin 2002), the solution can be
implemented by means of a vector quantiser or, equivalently, via a polytopal partition of the state space, see
also (Quevedo, Goodwin & De Doná 2004, Bemporad 2003). Unfortunately, for large constraint horizons,
which are preferable from a performance perspective, calculating the solution becomes computationally
intractable even for relatively modest horizons due to an exponential dependence of complexity on the
horizon.

On the other hand, in many applications it has been found that very good performance is achieved
using rather simple schemes, such as decision feedback equalisers and Σ∆-converters, see, e.g., (Paulraj,
Nabar & Gore 2003, Norsworthy et al. 1997, Paramesh & von Jouanne 2001, Lipschitz, Vanderkooy &
Wannamaker 1991, Bölcskei & Hlawatsch 2001, Nielsen 1989). As documented in our recent work (Quevedo
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& Goodwin 2005c, Quevedo et al. 2003), it turns out that these simple methods implicitly amount to
utilising a prediction horizon of one. In this case, the optimal solution is given by the näıve procedure
of simply quantising the unconstrained solution. This is achieved using a standard scalar quantiser and
incurs limited computational complexity.

The undeniable success of these reduced-complexity schemes leads to a key question: “Are there sit-
uations, in which the solution of the unitary horizon problem is actually optimal for larger horizons?”
This question has been addressed for control systems, when affected by saturation in (De Doná &
Goodwin 1999, De Doná, Goodwin & Serón 2000), but has not previously been addressed for quantised
control, save for initial results in our conference contribution (Quevedo & Goodwin 2004b).

In the present work we develop conditions on the plant and design parameters which ensure that the
näıve quantised control law is optimal for non-unitary horizons. We expand and embellish our ideas first
expressed in (Quevedo & Goodwin 2004b). We focus our analysis on scalar first order plants. Unlike the
unconstrained case, the treatment of quantisation leads to non-trivial issues. Indeed, first order quantised
systems exhibit surprisingly rich properties and have been extensively studied in various contexts; see,
e.g., (Delchamps 1990, Baillieul 2002, Fagnani & Zampieri 2003, Li & Baillieul 2004).

The remainder of this paper is organised as follows: In Section 2 we will briefly describe Σ∆-converters
and decision feedback equalisers. Section 3 formulates quantised finite horizon control. In Section 4 we
describe the näıve control law (NCL) and state the question posed in this paper in precise terms. Section 5
presents sufficient conditions for finite horizon optimality of the NCL given finite constraint sets. These
conditions are further examined in Section 6. Section 7 extends the results to quantised constraint sets
with infinite cardinality. Section 8 draws conclusions.

2 Σ∆-Converters and Decision Feedback Equalisers

As foreshadowed in the introduction, the basic motivation for the present work lies in gaining understanding
of fundamental properties of simple design solutions for systems where decision variables are quantised. We
present here two especially relevant and widespread design solutions, namely Σ∆-converters and decision
feedback equalisers. Both methodologies are intimately related to the näıve control law to be analysed in
later sections.

2.1 Σ∆-Conversion

Σ∆-converters (and the related noise-shaping quantisers) are often deployed in A/D conversion (Candy
& Temes 1992, Norsworthy et al. 1997), audio quantisation (Lipschitz et al. 1991), but have also found
their way into subband coding (Bölcskei & Hlawatsch 2001), EMI mitigation in Switch-Mode Power Sup-
plies (Paramesh & von Jouanne 2001), and design of FIR filters with quantised coefficients, see, e.g.,
(Nielsen 1989).

input
G(z)

F (z)

qU(·)
−

+ output
signalsignal

Figure 1. Quantised feedback loop.

A topology which, at least algebraically, encompasses many Σ∆-converter structures is shown in Fig. 1.
As can be seen from that figure, the circuit consists of a quantiser, denoted here as qU(·), immersed in a
feedback loop. The feedback loop contains a feedforward filter, G(z), and a feedback filter, F (z).
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The basic idea underlying Σ∆-converters can be understood, at a heuristic level, by modelling qU(·)
as an additive white noise source. Following this paradigm, the feedback loop will shape the effect of
the quantisation noise on the output signal. If the filters F (z) and G(z) are designed carefully, then the
distortion spectrum can be pushed out of critical frequency bands.1 As documented in various books and
articles, see, e.g., (Norsworthy et al. 1997), and references therein, despite their simplicity, Σ∆-converters
often give good results.

2.2 Decision Feedback Equalisation

Decision feedback equalisers (DFE’s) underlie many design solutions within digital communication sys-
tems. For example, they can be used for channel equalisation (Paulraj et al. 2003) and multiuser detec-
tion (Tidestav 1999). DFE’s outperform simpler linear approaches by respecting the quantised nature of
signals.

Interestingly, as in the case of Σ∆-converters described above, DFE’s can be characterised by the quan-
tised feedback loop depicted in Fig. 1. Their operation can be visualised by focusing on equalisation of
channels which have a digital, i.e., quantised, input and are affected by intersymbol interference. In that
case, the input to the loop is given by the received signal (the communication channel output), which is
affected by intersymbol interference. The output of the DFE corresponds to the estimated channel input
symbols. Thus, the equaliser aims to invert the channel. The feedforward filter G(z) performs prefiltering
of the received signal. The task of the feedback filter F (z) is to remove the portion of the intersymbol
interference, that is a result of earlier symbols, from the current symbol to be detected. The rationale
behind the circuit is that, if previous symbols are estimated correctly, then intersymbol interference can
be removed and the channel input can be perfectly recovered.2

It can be seen that both, Σ∆-converters and DFE’s, use the power of feedback to give simple design
solutions in situations where decision variables are quantised. As we will show in Section 4.1, these schemes
are intimately related to quantised finite horizon control.

3 Quantised Finite Horizon Control

Consider the first order system

x(ℓ + 1) = ax(ℓ) + bu(ℓ), (1)

where a and b are nonzero scalars and where the input is quantised, i.e., it is required to satisfy

u(ℓ) ∈ U, ∀ℓ. (2)

In (2), U is a given countable, possibly finite, set.
We are interested in evaluating the input for the system (1) via a finite horizon approach. In this

methodology, at time instant, ℓ = k, and given the plant state x(k) the following cost function is minimised:

VN (~u(k)) , P (x′(k + N))2 +
k+N−1∑

ℓ=k

Q(x′(ℓ))2, (3)

where:

~u(k) ,
[
u′(k) u′(k + 1) . . . u′(k + N − 1)

]T
(4)

1We note that there exists a “Bode-type” trade-off, when designing F (z) and G(z), see, e.g., (Gerzon & Craven 1989) and compare to
work contained in (Serón, Braslavsky & Goodwin 1997).
2The drawback of this idea resides in the fact that channel input estimates are, in general, subject to errors. If wrong decisions are fed
back then these errors are propagated and cause performance degradation; see, e.g., (Cantoni & Butler 1976, Quevedo et al. 2003).



November 22, 2006 11:30 International Journal of Control N1˙ijc˙second
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contains the decision variables; see, e.g., (Quevedo, Goodwin & De Doná 2004).
In this cost, N ≥ 1 is the constraint horizon and P and Q are nonnegative scalar design variables.

The cost examines predictions of the future state trajectory. These depend upon the model (1) and the
variables contained in (4). More precisely, they are related via:

x′(ℓ + 1) = ax′(ℓ) + bu′(ℓ), ℓ ∈ {k, k + 1, . . . , k + N − 1}, (5)

with initial value x′(k) = x(k), the current state, which is assumed to be known. In accordance with (2),
all u′(ℓ) ∈ U, or, equivalently,

~u(k) ∈ U
N , U

N , U × · · · × U.

In general choosing long horizons in (3) gives better performance than choosing short horizons, see
also (Quevedo & Goodwin 2005c, Quevedo, Goodwin & Bölcskei 2004, Quevedo et al. 2003, Quevedo
& Goodwin 2005b). Unfortunately, minimisation of VN in (3), requires that one solve a combinatorial
programme whose search space has a cardinality which is exponential in the horizon N . This precludes
the use of long horizons in practical applications.

In contrast, using horizon-one, i.e., choosing N = 1 in (3), requires only little computational effort.
Thus, a simple alternative to solving (3) resides in computing the optimiser term-wise via N successive
horizon-one optimisations. The main goal of the present work is to examine if there are situations when
this, rather näıve, procedure is actually optimal for horizons N > 1.

As shown in (Quevedo, Goodwin & De Doná 2004), optimal control laws associated with (1)–(4) give
rise to a partition of the plant state space. Here, it is interesting to note that whenever the plant state
x(k) lies on a decision boundary, two (or more) candidate sequences, see (4), give identical (and optimal)
costs VN . Thus, in these situations –which for finite constraint sets are of measure zero– the optimising
sequence is not uniquely defined. To avoid ambiguity, throughout this work we define minimisers as those
which have minimal index with respect to the orders in U and in UN to be introduced in Section 4.

4 The Näıve Control Law

Having presented the main ideas surrounding quantised finite horizon control, in this section we will
introduce the associated näıve control law. For that purpose, we will first describe the quantised horizon-
one control law.

To keep expressions simple (and without loss of generality) we set k = 0 in the sequel, denote the
constrained minimiser to VN (~u(0)) as:

~u⋆ , arg min
~u(0)∈UN

VN (~u(0)) (6)

and also write:

~u⋆ =
[
u⋆

0 u⋆
1 . . . u⋆

N−1

]T
. (7)

In the first part of this paper, we will focus our attention on finite constraint sets given by:

U = {γ0,−γ1, γ1, . . . ,−γM , γM}, M ∈ N. (8)

Later, in Section 7, we will examine the situation of infinite, but countable, constraint sets.
As already mentioned in Section 3, we will first introduce ordering1 in the constraint sets U and UN :

1The choice of ordering is not unique. Nevertheless, the definitions used are convenient for our purposes.
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Definition 4.1 (Order in U) We define the order ≤ on U given in (8) via the convention:

Index(γ0) = 0

Index(γk) = 2k

Index(−γk) = 2k − 1,

where k > 0.

Definition 4.2 (Order in UN ) Consider two elements

v =




v0

v1
...

vN−1


 , w =




w0

w1
...

wN−1


 ∈ U

N .

If v = w, we define Index(v) = Index(w). Otherwise, we let m , min{0 ≤ j < N |wj 6= vj} and define:

Index(w) < Index(v) ⇔ Index(wm) < Index(vm).

For example, if N = 2 and U = {0,−δ, δ} we have

U
2 =

{[
0
0

]
,

[
0
−δ

]
,

[
0
δ

]
, . . . ,

[
δ
−δ

]
,

[
δ
δ

]}
.

4.1 The horizon-one solution

If the horizon N equals 1, then the cost function VN in (3) reduces to:

V1(~u(0)) = Q(x(0))2 + P (x′(1))2. (9)

Thus, the optimal control action (with minimal index) for initial state x(0) ∈ R is

~u⋆ = u⋆
0 = qU(−ax(0)/b), (10)

see (7). In (10), qU : R → U denotes the scalar quantiser:

qU(v) =





−γM if v < −(γM + γM−1)/2
γM if v > (γM + γM−1)/2
γk if (γk + γk−1)/2 < v ≤ (γk+1 + γk)/2 for some 1 ≤ k < M
0 if −γ1/2 ≤ v ≤ γ1/2
−γk if −(γk+1 + γk)/2 ≤ v < −(γk + γk−1)/2 for some 1 ≤ k < M.

(11)

By bringing (10) together with the system dynamics (1), one obtains that the horizon-one solution can
be characterised as in Fig. 2. Comparison of this figure with the quantised loop depicted in Fig. 1 shows
that both loops are described by the same dynamics, provided that in the scheme of Fig. 1 the input signal
is removed and that:

F (z) =
a

z − a
.
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qU(·) b

z − a

x(ℓ)u(ℓ)

−a

b

Figure 2. Quantised horizon-one control loop.

Remark 1 Whilst the above result only applies to a restricted class of systems, in (Quevedo & Goodwin
2005c, Quevedo et al. 2003) we have established that the equivalence between horizon-one solutions and
Σ∆-converters and DFE’s also holds in more general situations.

4.2 The Näıve Control Sequence

Based upon the horizon-one solution we can now define the näıve control sequence as follows:

Definition 4.3 (Näıve Control Sequence) The sequence (u′
0, . . . , u

′
N−1) ∈ UN given by

u′
j = qU(−ax(j)/b), x(ℓ + 1) = ax(ℓ) + bu′

ℓ (12)

is called the näıve control sequence (with horizon N and initial state x(0)).

We note that the näıve control sequence can be obtained via N successive Σ∆-conversion steps. It
therefore requires only minimal computational effort.

In the remainder of this work we will investigate possible multi-step optimality of the näıve control
sequence via the following notion:

Definition 4.4 (Horizon-N optimality of the näıve control law) We say that the näıve control law (NCL)
in (12) is (globally) optimal for horizon N iff1

u′
j = u⋆

j ∀j ∈ {0, 1, . . . , N − 1} and all initial states x(0) ∈ R, (13)

where u⋆
j characterises the optimiser as in (7).

To examine horizon-N optimality of the näıve control law, it is convenient to define the scalar quanti-
sation error:

ε(w) , w − qU(w), (14)

the family of nested nonlinearities:

g1(w) , w

gn+1(w) , aε(gn(w))
(15)

and the functions:

fi(v) ,
1

2


P

Q
g2
i (v) +

i−1∑

j=1

g2
j (v)


 , i ≥ 2. (16)

1We write “iff” for “if and only if”.
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We note that

gn+1(w) = gn(aε(w)), fi+1(v) = fi(aε(v)) + v2/2.

The above definitions allow us to state the main result of this section.

Theorem 4.5 Consider N ≥ 2 and let U be as in (8). Then, the following are equivalent:

1) The näıve control law is optimal for all horizons less or equal to N
2) arg min

u∈U
fi(az + au) = qU(−z), ∀i ∈ {2, 3, . . . , N}, ∀z ∈ R.

Proof The proof is included in Appendix A. �

Remark 2 The finite horizon optimisation problem (6) underlies receding horizon control with finite-set
constraints as examined in (Quevedo et al. 2002, Quevedo, Goodwin & De Doná 2004, Bemporad 2003)
and also used in (Goodwin et al. 2004, Quevedo & Goodwin 2005c, Quevedo & Goodwin 2005b). It can be
readily verified that, if the NCL is horizon-N optimal (see Definition 4.4), then it is also N -step optimal
in a moving horizon sense. Furthermore, it is easy to show that this condition is necessary and sufficient
in the case of horizon N = 2.

5 Sufficient Conditions for Horizon-N Optimality of the NCL

We will next utilise the equivalent form established in Theorem 4.5 to further elucidate possible horizon-N
optimality of the NCL. More precisely, we will base the subsequent analysis on the following corollary:

Corollary 5.1 If all functions f2, f3, . . . , fN̂ are strictly monotonic increasing on [0,∞), then the NCL

is horizon-N optimal for all horizons N ≤ N̂ .

Proof If f2, f3, . . . , fN̂ are strictly monotonic increasing on [0,∞), then

arg min
u∈U

fi(az + au) = qU(−z), ∀i ∈ {2, 3, . . . , N̂}, ∀z ∈ R.

The result then follows immediately from Theorem 4.5. �

The above result gives a sufficient condition for the NCL to be horizon-N optimal. Unfortunately, showing
that the functions fi with i ≥ 2 are strictly monotonic is far from trivial. These functions comprise linear
combinations of the squares of the functions gi defined in (15). Within that family, only (g1)

2 is convex;
all other functions (gi)

2 are non-convex and non-smooth.
Fig. 3 illustrates this situation. The figure shows plots of functions (g1)

2, (g2)
2 and of f2, for the following

parameters: a = 1.3, (P/Q) = 5, and U = {0,−0.75, 0.75,−1, 1}. As is clear from the figure, f2 is not
monotonic on [0,∞). The main reason for this resides in the fact that (g2)

2 is weighted heavily in the
linear combination which defines f2, see (16).

Two key observations follow from Fig. 3. Firstly, (in the case illustrated) f2 is continuous. Secondly, to
apply Corollary 5.1, one may use differential calculus techniques. In the sequel, we will formalise these two
observations for general situations.

Lemma 5.2 All functions fn defined in (16) are even and continuous.

Proof The proof is included in Appendix B. �

Next, we examine the derivatives of (gn)2 and of fn. In this context, it is convenient to utilise right-hand



November 22, 2006 11:30 International Journal of Control N1˙ijc˙second
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Figure 3. Typical functions (g1)2, (g2)2 and f2.

derivatives1 and to introduce the functions2:

ε̃(v) , lim
h↓0

ε(v + h) =





ε(v), if v 6∈
{

γk + γk−1

2

∣∣∣∣ 1 ≤ k ≤ M

}

γk−1−γk

2 , if v =
γk + γk−1

2
for some 1 ≤ k ≤ M

, (17)

and

g̃1(v) , v,

g̃j+1 , aε̃(g̃j(v)).
(18)

Lemma 5.3 The functions g2
n and fn are twice differentiable from the right on R, and

1)
d+

dv
g2
n(v) , lim

h↓0

g2
n(v + h) − g2

n(v)

h
= 2an−1g̃n(v) if n ≥ 1

2)
d+

dv

(
d+

dv
g2
n

)
(v) = 2a2n−2 if n ≥ 1

3)
d+

dv
fn(v) =

P

Q
an−1g̃n(v) +

n−1∑

j=1

aj−1g̃j(v) if n ≥ 2

4)
d+

dv

(
d+

dv
fn

)
(v) =

P

Q
a2n−2 +

n−1∑

j=1

a2j−2 if n ≥ 2

Proof The proof is included in Appendix C. �

Corollary 5.4 The functions fn are strictly monotonic increasing on [0,∞) iff d+

dv fn(v) ≥ 0 for all
v > 0.

Proof The proof is included in Appendix D. �

1See Remark F1 in Appendix F.
2Compare with (14) and (15).
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Corollary 5.4 can, in principle, be brought together with Corollary 5.1 to examine horizon-N optimality
of the NCL via examination of d+

dv fn(v) for all v > 0. Fortunately, it turns out that it is sufficient to

examine positiveness of d+

dv fn(v) at a finite number of points. To make this statement more precise, we
define:

G1 ,

{
γk + γk−1

2

∣∣∣∣ 1 ≤ k ≤ M

}
∪
{
−γk + γk−1

2

∣∣∣∣ 1 ≤ k ≤ M

}

Gj , {v ∈ R | g̃j(v) ∈ G1} if j ≥ 1

(19)

and

G
+
j , Gj ∩ (0,∞).

Lemma 5.5 The sets Gj and G
+
j satisfy:

1) Gj = −Gj for all j ≥ 1
2) G

+
j is non-empty and finite for all j ≥ 1

Proof See Appendix E. �

We then obtain the following results:

Theorem 5.6 Let n ≥ 2. If

min
1≤j<n

min
v∈G

+

j

d+

dv
fn(v) ≥ 0,

then fn is strictly monotonic increasing on [0,∞).

Proof The proof is included in Appendix F. �

This leads to the main result of this section, which we state as:

Corollary 5.7 Let N̂ ≥ 2. If

min
1<n≤N̂

min
1≤j<n

min
v∈G

+

j


P

Q
an−1g̃n(v) +

n−1∑

j=1

aj−1g̃j(v)


 ≥ 0, (20)

then the NCL is horizon-N optimal ∀N ≤ N̂ .

Proof By Lemma 5.3 and Theorem 5.6 the functions f2, . . . , fN̂ are strictly monotonic increasing on [0,∞).
The assertion follows from Corollary 5.1. �

Note that, as a consequence of Lemma 5.5, only a finite number of evaluations needs to be made to
apply this result. This stands in stark contrast to investigating horizon-N optimality of the NCL via
Corollaries 5.1 or 5.4, where conditions on fn(v) or d+

dv fn(v) need to be examined for all v > 0.
As an illustration, consider Fig. 4, which contains a plot of the derivative of f2 as shown in Fig. 3. As can

be seen, d+

dv f2(v) is negative on some intervals, where v > 0 and (20) is not satisfied. This explains why,
for this case, f2 is not strictly monotonic on [0,∞) and the sufficient condition for horizon-2 optimality
in (20) is not satisfied.

Corollary 5.7 establishes conditions on the plant pole a, the weights P and Q, and the constraint set U

which are sufficient to ensure that the NCL is horizon-N optimal. In the following section we will show
how this result can be applied to several specific situations.
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Figure 4. d
+

dv
f2(v) for the case included in Fig. 3.

Remark 1 Note that the terms aj−1g̃j(v) in (20) do not change their value when a is replaced by its
complement, (−a). Thus, the derivative from the right of fi is, so to say, even in a. Therefore, it is
sufficient to restrict analysis to a > 0.

6 Special Cases

In this section, we will focus our attention on specific cases, namely horizon N = 2, and stable systems (1).
Under these conditions, we will further investigate the results stated in Corollary 5.7.

6.1 Horizon N = 2

The general methodology described above can be readily applied to horizon-2 optimality. Indeed, we have
the following:

Corollary 6.1 Consider any constraint set U of the form (8). If

P ≤ a−2Q, (21)

then the NCL is optimal for horizon N = 2.

Proof We have

min
v∈G

+

1

d+

dv
f2(v) = min

1≤k≤M

(
P

Q
a2ε̃

(
γk + γk−1

2

)
+

γk + γk−1

2

)

= min
1≤k≤M

(
P

Q
a2

(
γk−1 − γk

2

)
+

γk + γk−1

2

)

=
1

2
min

1≤k≤M

(
γk−1

(
1 +

P

Q
a2

)
+ γk

(
1 − P

Q
a2

))
.

Thus, minv∈G
+

1

d+

dv f2(v) ≥ 0 ⇔ 1 − P
Qa2 ≥ 0. �
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Condition (21) can be easily interpreted, by noticing that, with N = 2, the cost function (3) reduces to:

V2(~u(k)) = Q(x(k))2 + Q(x′(k + 1))2 + P (x′(k + 2))2. (22)

Thus, Corollary 6.1 essentially states that, if the term P (x′(k + 2))2 in V2 is sufficiently small (for all
x′(k + 2)), then NCL is horizon-2 optimal. Given that for horizon N = 1, the cost function is as in (9),
the result becomes intuitively clear.

6.2 Stable Systems

For open-loop stable systems, i.e., when 0 < |a| < 1, the situation becomes particularly interesting. Perhaps
surprisingly, the following expressions hold:

Lemma 6.2 Let 0 < a < 1 and a(γk − γk−1) < γ1 for all 1 ≤ k ≤ M , see (8). Then:

1) g̃n

(
γk + γk−1

2

)
= an−1(γk−1 − γk)/2, for all n ≥ 2, 1 ≤ k ≤ M .

2) If j ≥ 1 then G
+
j+1 ⊂ (γM ,∞), and if v ∈ G

+
j+1, then aε̃(v) ∈ G

+
j .

3) If j ≥ 1 and n ≥ 2, then

min
v∈G

+

j+1

d+

dv
fn+1(v) ≥ a · min

v∈G
+

j

d+

dv
fn(v).

4) If n ≥ 2, then

min
v∈G

+

1

d+

dv
fn(v) ≥ 0 ⇔ P

Q
(a2)n−1 ≤ 1 − 2a2 + (a2)n−1

1 − a2
.

Proof The proof is included in Appendix G. �

As a consequence of the above expressions, the analysis simplifies enormously. Indeed, rather than
evaluating d+

dv fn(v) in (20) over all v ∈ G
+
j , where j ≤ N̂ , optimality of the NCL can be ensured by

restricting the analysis to v ∈ G
+
1 . This leads to the following simplifications:

Corollary 6.3 Let

0 < a ≤ 1/
√

2, a(γk − γk−1) < γ1, ∀1 ≤ k ≤ M.

If (21) holds, then the NCL is horizon-N optimal for all horizons.

Proof The proof is included in Appendix H. �

Corollary 6.4 Let

1/
√

2 < a < 1, a(γk − γk−1) < γ1, ∀1 ≤ k ≤ M

and consider N̂ ∈ N such that

2 ≤ N̂ < 1 +
ln(2a2 − 1)

2 ln a
.

If

P

Q
≤ 1 − 2a2 + (a2)N̂−1

(a2)N̂−1(1 − a2)
, (23)
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then the NCL is horizon-N optimal ∀N ≤ N̂ .

Proof The proof is included in Appendix I. �

As an example of the result stated in Corollary 6.3, consider a = 0.7, U = {0,−1, 1}, and N̂ = 4. In this
case, (23) reduces to (P/Q) ≤ 2.04. Fig. 5 contains plots of f2, f3 and f4 for the choices (P/Q) = 2 and
(P/Q) = 4. As can be seen in the figure, with (P/Q) = 2, the functions f2, f3 and f4 are all monotonic
increasing. However, this does not hold when (P/Q) = 4. Following Corollary 6.3, we conclude that the
NCL with (P/Q) = 2 is optimal for N ∈ {1, 2, 3, 4}. On the other hand, we cannot ensure that the NCL
with (P/Q) = 4 is optimal for horizons larger than one.

0 1 2
0

1

2

P
/Q

 =
 2

f
2

0 1 2
0

1

2

f
3

0 1 2
0

1

2

f
4

0 1 2
0

1

2

P
/Q

 =
 4

0 1 2
0

1

2

0 1 2
0

1

2

Figure 5. Functions f2, f3 and f4 given (P/Q) = 2 (top row) and given (P/Q) = 4 (bottom row).
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7 Infinite Constraint Sets

So far we have examined finitely quantised control laws, where the constraint set U is given as in (8). We
will now examine the situation where the constraint set has infinite cardinality. More precisely, we will
consider

U = {γ0,−γ1, γ1, . . .} (24)

where:

0 = γ0 < γ1 < γ2 < . . . , lim
k→∞

γk = ∞. (25)

Note that we require (25) to be satisfied, so as to ensure the existence of the optimiser (6). As an
illustration, this rules out sequences (γk)k∈N

, where γk = 1 − 1/k, for which the optimiser does not exist
in general.

It turns out that the main results developed in the previous sections for finite constraint sets can be
applied mutatis mutandis to infinite constraint sets as in (24) although some additional technicalities arise
in the proofs. To keep the exposition short, we will outline the main aspects and state the key results
without proof.

7.1 Basic Definitions

In the infinite constraint set case, all the definitions of Sections 3 and 4 hold essentially unaltered. The
only exception is that, with U as in (24), the scalar quantiser, see (11), has no extremal regions. To be
more precise, it is characterised via

qU(v) =





γk if (γk + γk−1)/2 < v ≤ (γk+1 + γk)/2 for some 1 ≤ k < M
0 if −γ1/2 ≤ v ≤ γ1/2
−γk if −(γk+1 + γk)/2 ≤ v < −(γk + γk−1)/2 for some 1 ≤ k < M.

(26)

7.2 Sufficient Conditions for Horizon-N Optimality of the NCL when U has Infinite Cardinality

The results contained in Section 5, can be directly extended to the present case. Indeed, Lemma 5.3 and
Corollary 5.4 still apply. We simply note that, in the infinite constraint set case, ε̃(v) defined in (17)
satisfies:

ε̃(v) =





ε(v) if v 6∈
{

γk + γk−1

2

∣∣∣∣ k ≥ 1

}

(γk−1 − γk)/2 if v = (γk + γk−1)/2 for some k ≥ 1
. (27)

Similarly, if we re-define

G1 ,

{
γk + γk−1

2

∣∣∣∣ k ≥ 1

}
∪
{
−γk + γk−1

2
k ≥ 1

}

Gj , {v ∈ R | g̃j(v) ∈ G1},
G

+
j , Gj ∩ (0,∞), j ≥ 1,

(28)

then we obtain the following results:
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Theorem 7.1 Let n ≥ 2. If

min
1≤j<n
G

+

j 6=∅

inf
v∈G

+

j

d+

dv
fn(v) ≥ 0,

then fn is strictly monotonic increasing on [0,∞).

Proof The proof follows similar lines to the proof of Theorem 5.6 and is therefore omitted.1 �

Corollary 7.2 Let N̂ ≥ 2. If

min
1<n≤N

min
1≤j<n
G

+

j 6=∅

inf
v∈G

+

j


P

Q
an−1g̃n(v) +

n−1∑

j=1

aj−1g̃j(v)


 ≥ 0,

then the NCL is horizon-N optimal ∀N ≤ N̂ .

Proof The proof is similar to the proof of Corollary 5.7. �

7.3 Special Cases

Here we examine some specific situations as was done in Section 6. The extension of Corollary 6.1 to the
infinite cardinality case is:

Corollary 7.3 If (21) holds, then the NCL is horizon-2 optimal.

Proof The proof is similar to the proof of Corollary 6.1. �

For stable systems we can derive the following counterpart to Lemma 6.2:

Lemma 7.4 Let 0 < a < 1, U as in (24), and a(γk − γk−1) < γ1 for all k ≥ 1. Then we have:

1) g̃n

(
γk + γk−1

2

)
= an−1(γk−1 − γk)/2 for all n ≥ 2, k ≥ 1

2) Gj = ∅ for all j ≥ 2
3) If n ≥ 2 then

inf
v∈G

+

1

d+

dv
fn(v) ≥ 0 ⇔ P

Q
a2n−2 ≤ 1 − 2a2 + a2n−2

1 − a2

Proof The proof of 1) and 3) is similar to the proof of Lemma 6.2.
2) As in the proof of Lemma 6.2, we see that max|v|≤R |ε̃(v)| < γ1

2a for all R > 0.
If v ∈ G2 then aε̃(v) ∈ G1, thus |aε̃(v)| ≥ γ1/2, which is a contradiction. Thus G2 = ∅.
If Gj = ∅ for some j ≥ 2 and v ∈ Gj+1 then aε̃(v) ∈ Gj = ∅, thus Gj+1 = ∅. This proves 2). �

As a consequence of this result, only G1 need be examined when using Corollary 7.2. It is easy to show
– and very interesting to note – that Corollaries 6.3 and 6.4 still apply in the infinite cardinality case,
provided a(γk − γk−1) < γ1 for all k ≥ 1.

1Note that Jn defined as in (F1) is no longer finite. Thus, we obtain infv≥0
d
+

dv
fn(v) = infv∈Jn∪{0}

d
+

dv
fn(v).
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8 Conclusions

This paper has presented conditions which guarantee that the näıve quantised control law is finite horizon
optimal for horizons larger than one. We have utilised differential calculus techniques to derive these
sufficient conditions. The conditions can be expressed as upper bounds on the ratio of the weighting
terms in the quadratic cost function. These bounds depend upon the magnitude of the system pole and
the horizon length. The work presented gives further insight into basic properties of Σ∆-converters and
decision feedback equalisers. The latter structures are used in many application areas. Thus, it is of practical
importance to know when using optimisation with horizon length greater than one gives significantly better
performance than using horizon one (which turns out to be equivalent to Σ∆-conversion). The current
paper has taken a first step in that direction by showing that there exist cases where increasing the horizon
beyond one makes no difference at all.

Many problems remain open, e.g., how to deal with non-zero reference signals and how to quantify the
impact of increasing the horizon in cases where it does affect the result. These topics are currently under
study using geometric insights related to those developed in the current paper. Future research may also
include the development of both necessary and sufficient conditions for horizon-N optimality of the NCL;
closer examination of moving horizon optimality (see Remark 2); extensions to higher-order systems; and
investigation of local conditions for optimality of the NCL. It would also be interesting to weaken the notion
of optimality and to study the performance loss which results from using the NCL instead of quantised
finite horizon control.
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Appendix A: Proof of Theorem 4.5

We use the principle of optimality; see, e.g., (Dreyfus & Law 1977). We first show that the NCL achieves
the optimal cost for all horizons less than or equal to N iff u = qU(−z) is a minimiser of the function
fi(az + au) on U for all 2 ≤ i ≤ N and all z ∈ R.

Towards this goal we denote by Si(x) the optimal cost-to-go with initial state x ∈ R and horizon N − i,
0 ≤ i < N , i.e.

Si(x) , min
ui,...,uN−1∈U

Px(N)2 +
N−1∑

ℓ=i

Qx(ℓ)2,

where x(i) = x and x(ℓ + 1) = ax(ℓ) + buℓ if i ≤ ℓ < N .
We also define SN (x) , Px2. Then it is easy to see that

Si(x) = min
u∈U

(
Qx2 + Si+1(ax + bu)

)
for 0 ≤ i < N, (A1)

and u ∈ U minimises (A1) iff u is the first component of some optimal control sequence (ui = u, . . . , uN−1)
with initial state x. We note that if x is fixed then, in general, u is not uniquely determined.
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We next show by induction that, if 2 ≤ i ≤ N and the NCL gives the optimal cost for all horizons less
or equal to i − 1, then we have

SN−i(x) = Qx2 + 2Q(b/a)2 · fi

(a

b
(ax + bu⋆(x))

)
for all x ∈ R, (A2)

where u⋆(x) is the first component of some optimal control sequence (uN−i = u⋆(x), . . . , uN−1).
Next, let i = 2. Then SN−2(x) = Qx2 + SN−1(ax + bu⋆), where (u⋆ = uN−2, uN−1) is some optimal

control sequence with initial state x.
Define û(y) , qU(−ay/b) and v , ax + bu⋆. Then,

SN−1(y) = min
u∈U

Qy2 + P (ay + bu)2 = Qy2 + P (ay + bû(y))2.

Thus,

SN−2(x) = Qx2 + Qv2 + P (av + bû(v))2 = Qx2 + Q(b/a)2
(

(av/b)2 +
P

Q
a2(av/b + û(v))2

)

= Qx2 + Q(b/a)2
(

P

Q
a2ε2(av/b) + (av/b)2

)
= Qx2 + 2Q(b/a)2f2(av/b).

Let us assume the assertion is true for some 2 ≤ i < N , and that the NCL gives the optimal cost for all
horizons less or equal to i. Then SN−(i+1)(x) = Qx2 + SN−i(ax + bu′), where (u′ = uN−(i+1), . . . , uN−1) is

some optimal control sequence with initial state x. Let w , ax + bu′. By assumption we have

SN−(i+1)(x) = Qx2 + Qw2 + 2Q(b/a)2fi

(a

b
(aw + bu⋆(w))

)
,

where u⋆(w) is the first component of some optimal control sequence (u⋆(w) = si, . . . , sN−1) with initial
state w.

Again, by assumption, we may choose u⋆(w) = qU(−aw/b). Thus,

SN−(i+1)(x) = Qx2 + Q(b/a)2
(
(aw/b)2 + 2fi

(a

b
(aw − bqU(aw/b))

))

= Qx2 + 2Q(b/a)2fi+1(aw/b), since 2fi(aε(aw/b)) = 2fi+1(aw/b) − (aw/b)2

= Qx2 + 2Q(b/a)2fi+1

(a

b
(ax + bu′)

)
.

This establishes (A2).
We have previously noted that, if 1 ≤ i ≤ N and x ∈ R, then the two sets

Mi ,

{
u ∈ U

∣∣∣∣
u is the first component of some optimal control sequence
(uN−i = u, . . . , uN−1) with initial state x

}

and Ni , {u ∈ U |u minimises SN−i(x)} coincide.
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Now, we have:

The NCL achieves the optimal cost for all horizons less or equal to N

⇔ For all x ∈ R and all 2 ≤ i ≤ N the number qU(−ax/b) is the first component

of some optimal control sequence (uN−i = qU(−ax/b), . . . , uN−1) with initial state x

⇔ qU(−ax/b) ∈ Mi for all x ∈ R, 2 ≤ i ≤ N

⇔ qU(−ax/b) ∈ Ni for all x ∈ R, 2 ≤ i ≤ N

⇔ For all x ∈ R and all 2 ≤ i ≤ N the number u = qU(−ax/b) is a minimiser of fi(a/b(ax + bu)) on U

⇔ For all z ∈ R and all 2 ≤ i ≤ N the number qU(−z) is a minimiser of fi(az + au) on U.

Next, we show 1)⇒2).
Let z ∈ R, 2 ≤ i ≤ N , and let (vN−i, . . . , vN−1) ∈ Ui be the optimal control sequence with initial state

bz/a and with minimal index in Ui. By assumption, we have vN−i = qU(−z), and since the NCL gives the
optimal cost for all horizons less than or equal to N , the number qU(−z) minimises u 7→ fi(az + au) on U.

Assume that there is some u′ ∈ U with Index(u′) < Index(qU(−z)) that minimises u 7→ fi(az+au) on U.
Then, by (A2), u′ minimises SN−i(bz/a). Thus u′ is the first component of some optimal control sequence
(wN−i = u′, . . . , wN−1) with initial state bz/a. Also, by assumption, we have Index(vN−i, . . . , vN−1) ≤
Index(wN−i, . . . , wN−1).

However, this cannot be true, since

Index(vN−i) = Index(qU(−z)) > Index(u′) = Index(wN−i),

by virtue of the order in Ui.
Finally, we will prove 2)⇒1).

Let x ∈ R, 2 ≤ i ≤ N and let
[
vN−i . . . vN−1

]T ∈ Ui be the optimal control sequence with initial state

x and with minimal Index in Ui. Let
[
uN−i . . . uN−1

]T
be the näıve control sequence with initial state x.

From the analysis presented above, it follows that

Vi

([
uN−i . . . uN−1

]T)
= Vi

([
vN−i . . . vN−1

]T)
,

i.e., uN−i and vN−i both minimise SN−i(x). Therefore, u 7→ fi(az + au), where z = ax/b. Thus
Index(uN−i) = Index(qU(−z)) ≤ Index(vN−i) and uN−i = vN−i.

Now assume there exists some ℓ, 2 ≤ ℓ ≤ i, such that uN−k = vN−k for all k = ℓ, . . . , i. Then
(vN−(ℓ−1), . . . , vN−1) is the optimal control sequence in Uℓ−1 with the same initial state, say y, as the

näıve control sequence (uN−(ℓ−1), . . . , uN−1), where we have again invoked the order in Uℓ.
If ℓ = 2 then vN−1 = uN−1 and thus (uN−i, . . . , uN−1) = (vN−i, . . . , vN−1).
If ℓ > 2 then uN−(ℓ−1) and vN−(ℓ−1) both minimise SN−(ℓ−1)(y) and therefore u 7→ fℓ−1(az + au), where

z = ay/b.
Thus, Index(uN−(ℓ−1)) = Index(qU(−z)) ≤ Index(vN−(ℓ−1)) and uN−(ℓ−1) = vN−(ℓ−1).
This shows that (vN−i, . . . , vN−1) = (uN−i, . . . , uN−1). As a consequence, the NCL is optimal for all

horizons less or equal to N .

Appendix B: Proof of Lemma 5.2

It is easy to see that gn is odd by induction, thus fn is even.
To show that fn is continuous it is sufficient to show that ε2 is continuous. The points of discontinuity

of qU are exactly ±(γk + γk+1)/2 for 0 ≤ k < M . Since ε2 is even it suffices to show that ε2 is continuous
in wk , (γk + γk+1)/2 for 0 ≤ k < M .



November 22, 2006 11:30 International Journal of Control N1˙ijc˙second

D. E. Quevedo, C. Müller and G. C. Goodwin 19

We have

ε2(wk) = (wk − qU(wk))
2 = (wk − γk)

2 = (γk+1 − γk)
2/4.

If δ > 0 is small enough then

ε2(wk + δ) = (wk + δ − γk+1)
2.

Moreover, this expression converges to (γk+1 − γk)
2/4 as δ goes to 0.

Similarly we have ε2(wk − δ) = (wk − δ− γk)
2, and this expression converges to (γk+1 − γk)

2/4 as δ goes
to 0.

Appendix C: Proof of Lemma 5.3

First note that g̃j+1(v) = g̃j(aε̃(v)) = limh↓0 gj+1(v + h), and

|ε̃(v)| = |ε̃(−v)|, |g̃j(v)| = |g̃j(−v)|, ∀j ≥ 1, v ∈ R.

We only prove the lemma for a > 0. The proof for a < 0 is similar.
1) The assertion is true if n = 1. Assume it is true for some n ≥ 1. Then

lim
h↓0

g2
n+1(v + h) − g2

n(v)

h
= lim

h↓0

g2
n(aε(v + h)) − g2

n(aε(v))

h
(C1)

First let (γk + γk−1)/2 < v < (γk+1 + γk)/2 for some 1 ≤ k < M . Then, for small h > 0 it follows that:

ε(v) = v − γk = ε̃(v)

ε(v + h) = v + h − γk.

Thus, the expression (C1) becomes

lim
h↓0

g2
n(a(v − γk) + ah) − g2

n(a(v − γk))

ah
· a = a

d+

dv
g2
n(a(v − γk)) = a

d+

dv
g2
n(aε̃(v))

= 2ang̃n(aε̃(v)) = 2ang̃n+1(v).

Now let −(γk+1 + γk)/2 ≤ v < −(γk + γk−1)/2 for some 1 ≤ k < M . Then, for small h > 0 it follows
that:

ε(v) = v + γk = ε̃(v)

ε(v + h) = v + h + γk,

so that now the expression (C1) becomes:

lim
h↓0

g2
n(a(v + γk) + ah) − g2

n(a(v + γk))

ah
· a = a

d+

dv
g2
n(aε̃(v)) = 2ang̃n(aε̃(v)) = 2ang̃n+1(v).

Now let −γ1/2 ≤ v < γ1/2. Then, for small h > 0, ε(v) = v = ε̃(v) and ε(v + h) = v + h. As a
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consequence, (C1) becomes:

lim
h↓0

g2
n(av + ah) − g2

n(av)

ah
· a = a

d+

dv
g2
n(aε̃(v)) = 2ang̃n(aε̃(v)) = 2ang̃n+1(v).

Now let v = (γk+1 + γk)/2 for some 0 ≤ k < M . Then ε(v) = v − γk = (γk+1 − γk)/2, ε̃(v) =
(γk − γk+1)/2 and ε(v + h) = v + h − γk+1 = (γk − γk+1)/2 + h. Thus, expression (C1) becomes

lim
h↓0

g2
n

(
aγk−γk+1

2 + ah
)
− g2

n

(
aγk+1−γk

2

)

ah
· a = a

d+

dv
g2
n

(
a
γk − γk+1

2

)
(recall that g2

n is even)

= a
d+

dv
g2
n(aε̃(v)) = 2ang̃n(aε̃(v)) = 2ang̃n+1(v).

Now let v > (γM + γM−1)/2. Then ε(v) = v − γM = ε̃(v) and ε(v + h) = v + h− γM for small h > 0. As
a consequence, (C1) becomes

lim
h↓0

g2
n(a(v − γM ) + ah) − g2

n(a(v − γM ))

ah
· a = a

d+

dv
g2
n(aε̃(v)) = 2ang̃n(aε̃(v)) = 2ang̃n+1(v).

Now let v < −(γM + γM−1)/2. Then ε(v) = v + γM = ε̃(v) and ε(v + h) = v + h + γM for small h > 0.
Thus, expression (C1) becomes

lim
h↓0

g2
n(a(v + γM ) + ah) − g2

n(a(v + γM ))

ah
· a = a

d+

dv
g2
n(aε̃(v)) = 2ang̃n(aε̃(v)) = 2ang̃n+1(v).

This proves 1).
2) can be proved in a similar way, and 3) and 4) are direct consequences of 1) and 2).

Appendix D: Proof of Corollary 5.4

It is only necessary to show that, if d+

dv fn ≥ 0 on (0,∞), then fn is strictly monotonic increasing on [0,∞).
Let 0 ≤ v < w. We show that fn(v) < fn(w). Since fn is continuous at 0, we may assume v > 0. If we

assume fn(v) ≥ fn(w) then fn is constant on [v, w] since fn is monotonic increasing on [v,∞). Thus, by
Lemma 5.3 and since a 6= 0, it follows that

0 =
d+

dv

(
d+

dv
fn

)
(s) > 0 for all s ∈ [v, w).

This is a contradiction, thus establishing the result.

Appendix E: Proof of Lemma 5.5

1) Since |g̃j(v)| = |g̃j(−v)| for all j ≥ 1 and all v ∈ R, we have

v ∈ Gj ⇒ g̃j(v) ∈ G1 ⇒ |g̃j(v)| ∈ G
+
1 ⇒ |g̃j(−v)| ∈ G

+
1 ⇒ g̃j(−v) ∈ G1 ⇒ −v ∈ Gj .

2) We first show that G
+
j 6= ∅. By 1) it suffices to show that Gj 6= ∅.

This is true if j = 1. Assume Gj 6= ∅ for some j ≥ 1. Since U is finite the function ε̃ : R → R is onto, and
since Gj 6= ∅ there is some v′ ∈ R such that aε̃(v′) ∈ Gj . Thus g̃j+1(v

′) = g̃j(aε̃(v′)) ∈ G1, and v′ ∈ Gj+1.
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Finally, we show that Gj is finite. Since G1 is finite it suffices to show that the set g̃−1
j ({w}) is finite

for all w ∈ R and all j ≥ 1. (Recall the definition of Gj .) To this end we show, by induction, that
lim|w|→∞ |g̃j(w)| = ∞ for all j ≥ 1.

The claim is true if j = 1. Assume it is true for some j ≥ 1. Then

lim
|w|→∞

|g̃j+1(w)| = lim
|w|→∞

|ag̃j(aε̃(w))| = ∞

by assumption and by the fact that lim|w|→∞ |aε̃(w)| = ∞.

Appendix F: Proof of Theorem 5.6

If n ≥ 2 we let

Jn ,

{
v > 0

∣∣∣∣
d+

dv
fn is not continuous in v

}
(F1)

be the set of all positive points of discontinuity of d+

dv fn. It is easy to see that Jn is finite.

Since d+

dv fn is piecewise monotonic increasing and continuous from the right by Lemma 5.3 we see that

inf
v≥0

d+

dv
fn(v) = min

v≥0

d+

dv
fn(v) = min

v∈Jn∪{0}

d+

dv
fn(v). (F2)

By Corollary 5.4 and Equation (F2), we need to show that minv∈Jn∪{0}
d+

dv fn(v) ≥ 0.
If n ≥ 1 let

Vn , {v ∈ R | g̃n is not continuous in v}.

First, we show that

Vn+1 ⊂
n⋃

j=1

Gj for all n ≥ 1. (F3)

This is true if n = 1, since V2 = {v ∈ R | ε̃ is not continuous in v} = G1.
If it is true for some n ≥ 1, then we have

Vn+2 = {v ∈ R | g̃n+2(v) = g̃n+1(aε̃(v)) is not continuous in v}

⊂ (V2 ∪ {v ∈ R | aε̃(v) ∈ Vn+1}) ⊂


V2 ∪

n⋃

j=1

{v ∈ R | aε̃(v) ∈ Gj}


 by assumption

= V2 ∪
n⋃

j=1

{v ∈ R | g̃j(aε̃(v)) ∈ V2} = V2 ∪
n+1⋃

j=2

{v ∈ R | g̃j(v) ∈ V2} = G1 ∪
n+1⋃

j=2

Gj =
n+1⋃

j=1

Gj .

This establishes (F3).
Thus, if n ≥ 2, then it follows that

Jn ⊂
(

(0,∞) ∩
n⋃

k=2

Vk

)
⊂

n−1⋃

j=1

G
+
j .
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Thus,

min
v∈Jn

d+

dv
fn(v) ≥ min

1≤j<n
min
v∈G

+

j

d+

dv
fn(v) ≥ 0,

so that

min
v∈Jn∪{0}

d+

dv
fn(v) ≥ 0,

since d+

dv fn(0) = 0.

Remark F1 Actually, from (F2), it is clear why we did not consider left-hand derivatives d−

dv , since then
we would end up with the more complicated expression

inf
v≥0

d−

dv
fn(v) = min

v∈J
−

n ∪{0}
lim
h↓0

d−

dv
fn(v + h),

where J−n ,

{
v > 0

∣∣∣ d−

dv fn is not continuous in v
}

. This is why we use g̃j and ε̃ instead of the original

functions gj and ε, defined in (14) and (15).

Appendix G: Proof of Lemma 6.2

1) We have g̃2

(
γk + γk−1

2

)
= aε̃

(
γk + γk−1

2

)
= a(γk−1 − γk)/2.

Now assume the assertion is true for some n ≥ 2. Then

g̃n+1

(
γk + γk−1

2

)
= aε̃

(
g̃n

(
γk + γk−1

2

))
= aε̃

(
an−1 γk−1 − γk

2

)
= an γk−1 − γk

2
.

2) First we note that since ε̃ is continuous from the right, piecewise monotonic increasing with non-
negative points of discontinuity (γk + γk−1)/2 (1 ≤ k ≤ M). Since ε̃(0) = ε̃(γM ) = 0, we have that, if
0 ≤ v ≤ γM , then:

ε̃(v) ≥ min

(
{0} ∪

{
ε̃

(
γk + γk−1

2

)∣∣∣∣ 1 ≤ k ≤ M

})
= min

(
{0} ∪

{
γk−1 − γk

2

∣∣∣∣ 1 ≤ k ≤ M

})
> −γ1

2a
,

and

ε̃(v) ≤ max

(
{0} ∪

{
ε

(
γk + γk−1

2

)∣∣∣∣ 1 ≤ k ≤ M

})
= max

(
{0} ∪

{
γk − γk−1

2

∣∣∣∣ 1 ≤ k ≤ M

})
<

γ1

2a
.

Since |ε̃(v)| = |ε̃(−v)|, we obtain

max
|v|≤γM

|ε̃(v)| <
γ1

2a
.

Next we utilise induction to show Gj+1 ⊂ ((−∞,−γM ) ∪ (γM ,∞)). If v ∈ G2, then aε̃(v) ∈ G1, thus
|aε̃(v)| ≥ γ1/2, and therefore |v| > γM .

Assume the assertion is true for some j ≥ 1. If v ∈ Gj+2 then aε̃(v) ∈ Gj+1, thus |aε̃(v)| > γM > γ1/2,
and therefore |v| > γM .
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Finally if v ∈ G
+
j+1 then g̃j(aε̃(v)) ∈ G1 and v > γM , thus aε̃(v) ∈ Gj and ε̃(v) > 0. As a consequence,

aε̃(v) ∈ G
+
j .

3) We have

min
v∈G

+

j+1

d+

dv
fn+1(v) = min

v∈G
+

j+1

(
P

Q
ang̃n(aε̃(v)) +

n∑

k=2

ak−1g̃k−1(aε̃(v)) + v

)

≥ min
v∈G

+

j

(
P

Q
ang̃n(v) +

n∑

k=2

ak−1g̃k−1(v)

)
by 2)

= a · min
v∈G

+

j

(
P

Q
an−1g̃n(v) +

n−1∑

k=1

ak−1g̃k(v)

)
= a · min

v∈G
+

j

d+

dv
fn(v).

4) The assertion follows from

min
v∈G

+

1

d+

dv
fn(v) = min

1≤k≤M


P

Q
an−1g̃n

(
γk + γk−1

2

)
+

γk + γk−1

2
+

n−1∑

j=2

aj−1g̃j

(
γk + γk−1

2

)


= min
1≤k≤M


P

Q
a2n−2 γk−1 − γk

2
+

γk + γk−1

2
+

n−1∑

j=2

a2j−2 γk−1 − γk

2




= min
1≤k≤M

(
γk + γk−1

2
+

γk−1 − γk

2

(
P

Q
a2n−2 +

a2 − a2n−2

1 − a2

))

=
1

2
min

1≤k≤M

(
γk−1

(
1 +

P

Q
a2n−2 +

a2 − a2n−2

1 − a2

)
+ γk

(
1 − P

Q
a2n−2 − a2 − a2n−2

1 − a2

))
.

Appendix H: Proof of Corollary 6.3

Let N ≥ 2. Since 0 < a ≤ 1/
√

2, the sequence
(

1−2a2+a2n−2

a2n−2(1−a2)

)∞
n=2

is monotonic increasing. Thus,

P

Q
≤ 1

a2
≤ 1 − 2a2 + a2n−2

a2n−2(1 − a2)
, ∀2 ≤ n ≤ N.

By Lemma 6.2 we have:

min
v∈G

+

1

d+

dv
fn(v) ≥ 0,

min
v∈G

+

j

d+

dv
fn(v) ≥ aj−1 min

v∈G
+

1

d+

dv
fn−j+1(v),

∀2 ≤ n ≤ N, 1 ≤ j < n

Thus,

min
1<n≤N

min
1≤j<n

min
v∈G

+

j

d+

dv
fn(v) ≥ min

1<n≤N
min

1≤j<n
aj−1 min

v∈G
+

1

d+

dv
fn−j+1(v) ≥ 0.

The assertion follows from Corollary 5.7.
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Appendix I: Proof of Corollary 6.4

Since 1/
√

2 < a < 1 the sequence
(

1−2a2+a2n−2

a2n−2(1−a2)

)∞
n=2

is monotonic decreasing, and since N̂ < 1 + ln(2a2−1)
2 ln a

we have 1 − 2a2 + a2N̂−2 > 0.
From

P

Q
≤ 1 − 2a2 + a2N̂−2

a2N̂−2(1 − a2)

we obtain

P

Q
≤ 1 − 2a2 + a2n−2

a2n−2(1 − a2)
, ∀2 ≤ n ≤ N̂ .

The rest of the proof parallels that of Corollary 6.3.


