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We study a networked control architecture where wireless sensors are used to mea-
sure and transmit plant outputs to a remote controller. Packet loss probabilities depend
upon the time-varying communication channel gains and the transmission powers of
the sensors. Within this context, we develop a centralized stochastic nonlinear model
predictive controller. It determines the sensor power levels by trading energy expendi-
ture for expected plant state variance. To further preserve sensor energies, the power
controller sends coarsely quantized power increment commands only when necessary.
Simulations on measured channel data illustrate the performance achieved by the pro-
posed controller.

1 Introduction
Wireless Sensor Networks (WSNs) are becoming an interesting alternative for closed
loop control [1, 2]. WSNs can be placed where wires cannot go and where power
sockets are not available. A drawback of using WSNs is that channel fading and inter-
ference may lead to packet errors and, thus, performance degradation. Whilst commu-
nication reliability and, thus, control accuracy, can certainly be improved by increasing
transmission power levels, saving energy in WSNs is uppermost to avoid unnecessary
maintenance, such as the replacement of batteries, see also [3, 4].

In the present work we examine a Networked Control System (NCS) architecture
where sensor measurements are sent over wireless fading channels. In contrast to other
approaches, see, e.g., [5], in the topology studied here, sensors do not communicate
with each other. Instead, sensor measurements are sent to a single gateway for state
estimation and subsequent plant input calculation. In addition, the gateway decides
upon the power levels to be used by the sensors. Within this setting, we show how the
sensor power levels can be designed via nonlinear predictive control. The proposed
controller trades expected plant state variance for energy expenditure. The present
work extends our recent conference contribution [6] (on state estimation) to NCS’s.

2 WSNs for Networked Control
We consider an LTI n-dimensional plant with input {µ(k)}k∈N0 :

x(k + 1) = Ax(k) + Bµ(k) + w(k), k ∈ N0 , {0, 1, . . . }, (1)



where the initial state is Gaussian distributed with mean x0 and covariance P0 ∈ Rn×n,
i.e., x(0) ∈ N (x0, P0). Similarly, the driving noise process w = {w(k)}k∈N0 is i.i.d.,
where each w(k) ∈ N (0, Q).

A collection of M sensors is used to measure and transmit plant output information
via wireless links to a single gateway. Each sensor provides a noisy measurement
signal, say {ym(k)}k∈N0 :

ym(k) = Cmx(k) + vm(k), m ∈ {1, 2, . . . ,M}, (2)

and where v = {vm(k)}k∈N0 is an i.i.d. process with vm(k) ∈ N (0, Rm).1

The signals received at the gateway are then used to calculate the control input µ.
The aim is to steer the system state x(0) to the origin. In the present work, we will
assume that the associated control policy has already been designed and is given by
linear state estimate feedback:

µ(k) = −L(k)x̂(k), k ∈ N0 , {0, 1, . . . }, (3)

where x̂(k) is an estimate of x(k) and where L(k) are given state feedback matrices of
appropriate dimensions. Thus, the gateway needs to remotely estimate the state of the
system (1). The situation is depicted in Fig. 1 for a networked control system (NCS)
having M = 2 wireless sensors.
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Figure 1: Networked Control with a WSN having M = 2 sensors.

The distinguishing aspect of the situation at hand is that, since the M links between
sensors and gateway are wireless, transmission errors are likely to occur. This leads to
loss of packets and control performance degradation.2 Packet loss probabilities depend
upon the time-varying channel gains and upon the transmission power used by the
sensors, higher power providing less transmission errors. However, in wireless sensor
networks, it is of fundamental importance to save energy: Sensor nodes are expected to
be operational for several years without maintenance. Thus, available energy resources
have to be used with care. The main purpose of the present work lies in designing a
centralized predictive power controller for the WSN used in the NCS of Fig. 1. Before
presenting our proposal, we will first set the work in context by briefly elucidating the
trade-off between power use and control accuracy.

1In addition to measurement noise, v may also describe quantization effects.
2We will assume that sensor data is not affected by delays. Extensions to include time-delay issues, and

also irregular sampling, does not present conceptual difficulties, provided sensor data are time-stamped.



3 Trading Energy Use for Control Performance
To describe the interplay between energy consumption and transmission reliability, we
quantify the energy used by each sensor m at time k ∈ N0 via:

gm(um(k)) ,


um(k)bm

r
+ EP if um(k) > 0,

0 if um(k) = 0.
(4)

Here, um(k) is the transmission power used by the m-th sensor radio power amplifier,
bm is the number of bits used per measurement value ym(k), r is bit-rate of the chan-
nels and EP is the total energy needed (per measurement value) for power-up, sensing
and circuitry. As we will see in Section 5, the choice of bm depends on the required
accuracy and the energy available. A large value of bm will lead to an improved ac-
curacy, but at the expense of a higher energy expenditure and an increased probability
of packet error. In general, the number of bits per transmitted packet will be governed
by the protocol used. In the present work, we focus on a simple scheme, where one
measurement is transmitted at a time.3 The selected bit rate, r, will thus depend on the
application as will the number of channels used.

Due to physical limitations of the radio power amplifiers, we assume that the power
levels are constrained in magnitude according to:

0 ≤ um(k) ≤ umax
m , ∀k ∈ N0, ∀m ∈ {1, 2, . . . ,M}, (5)

for given values {umax
m }. Thus, the maximum transmission energy per measurement

value at each node is given by:

(Emax
TX )m , (bm/r)umax

m , m ∈ {1, 2, . . . ,M}. (6)

We model transmission effects by introducing the M binary stochastic arrival processes
{γm(k)}k∈N0 , m ∈ {1, 2, . . . ,M}, where:

γm(k) =

{
1 if ym(k) arrives error-free at time k,
0 if ym(k) does not arrive error-free at time k.

(7)

The associated success probabilities satisfy

P
{
γm(k) = 1

}
= fm

(
um(k)hm(k)

)
, m ∈ {1, 2, . . . ,M}, (8)

where fm(·) : [0,∞) → [0, 1] is a monotonically increasing function, which depends
upon the communication scheme employed, and where hm(k) denotes the square of
the magnitude of the channel gain.

To calculate the plant input µ(k) in (3), the gateway needs to obtain plant state
estimates. Here, we will assume that the data transmitted incorporates error detection
coding [7]. Hence, at any time k, past and present realizations of the transmission
processes (7), say

γk ,
⋃

m∈{1,2,...,M}

{
γm(0), γm(1), . . . , γm(k)

}
(9)

3Alternatively, one could also aggregate measurements.



are available at the gateway. Faulty packets will be discarded when estimating the sys-
tem state. This amounts to sampling (1)-(2) only at the successful transmission instants
of each sensor link. Indeed, the conditional probability distribution of the system state
at any time k, given x0, P0, γk and correctly received sensor measurements up to time
k, say yk, is Gaussian. The conditional mean and covariance4 of the state, i.e.,

x̂(k) , Ew,v,x(0)

{
x(k)

∣∣ yk, γk
}

P̄ (k) , Ew,v,x(0)

{(
x̂(k)− x(k)

)(
x̂(k)− x(k)

)T ∣∣ yk, γk
}

,

satisfy the Kalman Filter recursions (see, e.g., [8]):

x̂(k + 1) = Ax̂(k) + Bµ(k) + K(k + 1)
(
y(k + 1)− C(k + 1)(Ax̂(k) + Bµ(k))

)
P (k + 1) = AP (k)AT + Q−AK(k)C(k)P (k)AT (10)

P̄ (k) = P (k)−K(k)C(k)P (k),

with initial values P (0) = P0 and x̂(0) = x0 and where:5

C(k) ,
[
γ1(k)(C1)T γ2(k)(C2)T . . . γM (k)(CM )T

]T

K(k) , P (k)C(k)T
(
C(k)P (k)C(k)T + R

)−1

R , diag
(
R1, R2, . . . , RM

)
.

(11)

The state estimate in (10) is used to calculate the plant input, see (3). The controlled
plant (1)-(3) is, thus, described via:

x(k + 1) = Ā(k)x(k) + e(k) + w(k),

where Ā(k) , A−BL(k), whereas

e(k) , BL(k)(x(k)− x̂(k)) (12)

denotes the effect of the state estimation error on the successor plant state.
We note that e(k) in (12) depends upon the transmission processes γm(k) through

the matrices C(k) in the state estimate x̂(k), see (10) and (11). As seen in (8), trans-
mission reliability can be improved by using larger power levels um(k), however, this
occurs at the expense of more energy consumption, see (4). This trade-off between en-
ergy consumption at the sensors and resulting control accuracy forms the background
to the power control scheme proposed in the following section.

4 Predictive Power Control
In the NCS architecture under study, the gateway not only calculates the plant inputs,
but also determines the power levels to be used by the sensors. For that purpose, the
gateway is equipped with a model predictive controller which trades energy consump-
tion for control quality over a future prediction horizon. Power control signals are sent
over wireless links to the sensors.6

4Here, Ew,v,x(0) denotes expectation taken w.r.t. the noise sequences w and v and the initial state x(0).
5Properties of this (and related) estimators have been studied, e.g., in [9, 10, 11].
6At the gateway saving energy is of less importance than at the sensors. We, thus, assume that communi-

cation from the gateway to the sensors is error-free.



Power Control Signal Coding To keep processing and associated power consump-
tion at the sensors to a minimum, in our approach the power control signals have short
word-lengths. Here, we will use coding ideas frequently used in power control archi-
tectures for cellular networks, see, e.g., [12] (and compare also to our work on NCS’s
in [13]) and send coarsely quantized power increments, say ∆um(k), rather than actual
power values, um(k), to each sensor m ∈ {1, 2, . . . ,M}. We thus have:

∆um(k) ∈ Um, ∀k ∈ N0, ∀m ∈ {1, 2, . . . ,M}, (13)

where {Um} are given finite sets, each having a small number of elements.
Upon reception of ∆um(k), each sensor m reconstructs the power level to be used

by its radio power amplifier by simply setting

um(k) = um(k − 1) + ∆um(k). (14)

For further reference, we define the signal

∆u(k) ,
[
∆u1(k) . . . ∆uM (k)

]T
, k ∈ N0 (15)

and note that the quantization constraint (13) imposes:

∆u(k) ∈ U , U1 × U2 × · · · × UM , ∀k ∈ N0.

Predictive Power Controller At every time instant k ∈ N0, the predictive power
controller first calculates P̄ (k), which results from iterating (10) for the (known) past
arrival process realizations γk, see (9). It also obtains channel gain predictions over a
finite horizon of fixed length N , namely:

{ĥm(k + 1|k), ĥm(k + 2|k), . . . , ĥm(k + N |k)}, ∀m ∈ {1, 2, . . . ,M},

which can be estimated by using previous channel estimates, see, e.g., [14, 15]. Given
this information, the controller minimizes the finite-set constrained cost7

J(∆U) ,
k+N∑

`=k+1

{
EΓ(k)

{
trace

(
Σ′(`)

)}
+ ρ

M∑
m=1

gm(u′m(`))
}

, (16)

where gm(u′m(`)) is as in (4) and where

Σ′(`) , Ew,v,x(0)

{
e′(`)e′(`)T

∣∣ yk, γk
}

= BL(`)P̄ ′(`)L(`)T BT ,

∆U , {∆u′(k + 1),∆u′(k + 2), . . . ,∆u′(k + N)},
(17)

see (10) and (12). The scalar ρ ≥ 0 is a design parameter which allows one to trade
control accuracy for energy consumption. The expectation operator EΓ(k) is taken with
respect to the distribution of future transmission outcomes in8

Γ(k) ,
[
γ(k + 1) γ(k + 2) . . . γ(k + N)

]T
.

This distribution depends upon the power level, see (8). The decision variables, i.e., the
tentative future power value increments, are collected in ∆U , see (15) and (17). These
determine the tentative future power levels u′m(`) in (16) via

u′m(`) = u′m(`− 1) + ∆u′m(`), ` ∈ {k + 1, . . . , k + N}, m ∈ {1, 2, . . . ,M},
7Primed variables refer to tentative values of the corresponding physical variables.
8Compare to the scenario based approaches taken in [16].



starting from the current values, u′m(k) = um(k), ∀m ∈ {1, 2, . . . ,M}.
Minimization of (16) subject to the constraints:

∆U ∈ UN , U× U× · · · × U
0 ≤ u′m(`) ≤ umax

m , ∀` ∈ {k + 1, . . . , k + N}, ∀m ∈ {1, 2, . . . ,M}

gives the sequence of control increments:

∆U opt , arg minJ(∆U). (18)

Following the moving horizon principle, only the M power updates in9

∆u(k + 1)opt ,
[
IM 0M . . . 0M

]
∆U opt

are sent to the corresponding sensors. At the next time step, namely k + 1, the op-
timization procedure is repeated, giving rise to power level increments ∆u(k + 2)opt.
This procedure is repeated ad infinitum.

We emphasize that, despite (18) being a stochastic nonlinear programme, ∆U opt

can be found via simple exhaustive search over the 2MN possible transmission scenar-
ios Γ(k) and, in a worst complexity case, |U|N values of ∆U .

The proposed controller jointly decides upon the power levels of all M sensors to
achieve the best trade-off between energy use and control accuracy.

5 Simulation Study
To illustrate basic features of the model predictive power controller presented in the
previous section, we consider a NCS as in Fig. 1 with M = 2 channels and use mea-
sured channel data. Measurements were acquired in the 2.4 GHz ISM band in an office
area at the Signals and Systems group at Uppsala University.

We assume that Binary Phase Shift Keying is employed and use the transmission
error model [7]:

fm(um(k)hm(k)) =


(
1− Q̃

(√
2um(k)hm(k)/(rkBT )

))bm

if um(k) > 0

0 if um(k) = 0,

where Q̃(z) , 1/
√

2π
∫∞

z
exp(−ν2/2)dν is the Q-function, kB is the Boltzmann

constant and T = 300 [K] is the temperature. The selected bit-rate of the channels
is r = 40 [kbits/s], and the number of bits per measurement value are b1 = b2 =
8 [bits].

The (unstable) plant is characterized via the model of Section 2 with:

A =
[
2 1
1 1

]
, B =

[
1
1

]
, x0 =

[
0
0

]
, P0 =

1
3
I2, Q =

1
2
I2,

[
C1

C2

]
= I2, R1 = R2 =

1
100

.

The plant input in (3) is provided by the LQG policy: µ(k) = −
[
1.452 0.898

]
x̂(k).

The constraints on the power values, see (5), are umax
1 = umax

2 = 0.5 [mW ]. The
power controller parameters are chosen as N = 1, ρ = 10 [1/µJ ]. Power increments
are restricted to belong to the finite sets U1 = U2 = {0,±50} [µW ]. We assume that
the gateway has perfect one-step-ahead channel predictions.

9IM denotes the M × M identity matrix and 0M the all zeros M × M matrix.



To investigate the impact of different kinds of sensor nodes, we introduce the energy
ratio η , EP/Emax

TX , see (4) and (6).
Fig. 2 illustrates that the proposed predictive controller tries to find the best compro-

mise between the two sensor links. In particular, the controller at times approximately
inverts the channel gains. At other times, it decides to send one of the sensors to sleep,
i.e., to set u1(k) = 0 or u2(k) = 0. This scheduling aspect is even more apparent in
Fig. 3, as a consequence of a higher value of η. It is important to notice that, in the
present case, the first component of x(k) is more important than the second component.
Consequently, the predictive controller favors Sensor 1 over Sensor 2.

If power levels would be kept constant, such that the same total amount of energy
is used, then, for η = 0.5, the trace of the empirical covariance of the state would be
25% larger. For η = 1.7, no such constant power levels exist, since EP is too large.
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Figure 2: System performance for sensor nodes with energy ratio η = 0.5.
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Figure 3: Power levels for sensor nodes with energy ratio η = 1.7.



6 Conclusions
We have developed a stochastic nonlinear model predictive power controller for wire-
less sensor networks used within a networked control system. Due to (time-varying)
fading on the wireless channels, transmission errors of sensor measurements are likely
to occur. The proposed controller trades energy expenditure at the sensors for expected
plant state variance to compensate for channel fading in an optimal manner, as illus-
trated on measured channel data. Key to keeping the computational burden limited is
the fact that the occurrence of transmission errors constitutes a binary random variable.
Thus, expectations can be exactly evaluated via finite sums, i.e., no integrals need to be
evaluated or approximated.
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