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quienes, allá lejos y hace tiempo, empezó toda esta historia.

Para Carmen, que a fuerza de cariño hizo de Newcastle nuestro lugar.
Y especialmente, para Marimar, mi compañera y amada. Para ella también,
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Abstract

This thesis is aimed at analysis of sampled-data feedback systems. Our approach
is in the frequency-domain, and stresses the study of sensitivity and complemen-
tary sensitivity operators. Frequency-domain methods have proven very success-
ful in the analysis and design of linear time-invariant control systems, for which
the importance and utility of sensitivity operators is well-recognized. The exten-
sion of these methods to sampled-data systems, however, is not straightforward,
since they are inherently time-varying due to the intrinsic sample and hold oper-
ations.

In this thesis we present a systematic frequency-domain framework to de-
scribe sampled-data systems considering full-time information. Using this frame-
work, we develop a theory of design limitations for sampled-data systems. This
theory allows us to quantify the essential constraints in design imposed by in-
herent open-loop characteristics of the analog plant. Our results show that: (i)
sampled-data systems inherit the difficulty imposed upon analog feedback de-
sign by the plant’s non-minimum phase zeros, unstable poles, and time-delays,
independently of the type of hold used; (ii) sampled-data systems are subject to
additional design limitations imposed by potential non-minimum phase zeros of
the hold device; and (iii) sampled-data systems, unlike analog systems, are sub-
ject to limits upon the ability of high compensator gain to achieve disturbance
rejection. As an application, we quantitatively analyze the sensitivity and robust-
ness characteristics of digital control schemes that rely on the use of generalized
sampled-data hold functions, whose frequency-response properties we describe
in detail.

In addition, we derive closed-form expressions to compute the L2-induced
norms of the sampled-data sensitivity and complementary sensitivity operators.
These expressions are important both in analysis and design, particularly when
uncertainty in the model of the plant is considered. Our methods provide some
interesting interpretations in terms of signal spaces, and admit straightforward
implementation in a numerically reliable fashion.



1
Introduction

This thesis deals with frequency-domain properties and essential design limita-
tions in linear sampled-data feedback control systems.

A sampled-data system combines both continuous and discrete-time dynamic
subsystems. Because of this inherent mixture of time domains, we shall also refer
to a sampled-data system as a hybrid system, understanding both terms as syn-
onyms. A typical hybrid feedback control configuration is shown in Figure 1.1.
Although the plant is usually a continuous-time, or analog, system, the controller
is a discrete-time device in most practical applications. This is mainly due to the
numerous advantages that digital equipments offer over their analog counter-
parts. With the great advances in computer technology, today digital controllers
are more compact, reliable, flexible and often less expensive than analog ones.

There is a fundamental operational difference between digital and analog con-
trollers: the digital system acts on samples of the measured plant output rather
than on the continuous-time signal. A practical implication of this difference is
that a digital controller requires special interfaces that link it to the analog world.
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Figure 1.1: Typical sampled-data feedback configuration.

A digital controller can be idealized as consisting of three main elements: the
analog-to-digital (A-D) interface, the digital computer, and the digital-to-analog
(D-A) interface. The A-D interface, or sampler, acts on a physical variable, nor-
mally an electric voltage, and converts it into a sequence of binary numbers,
which represent the values of the variable at the sampling instants. These num-
bers are then processed by the digital computer, which generates a new sequence
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of binary numbers that correspond to the discrete control signal. This control sig-
nal is finally converted into an analog voltage by the D-A interface, also called
the hold device.

The digital computer implements the control algorithm as a set of difference
equations, which represent a dynamic system in the discrete-time domain. We
shall refer to this system as the discrete controller. In general, the discrete controller
will include nonlinearities and varying parameters in it; our discussion here is
restricted to linear time-invariant controllers, which nevertheless constitute an
useful and important case in analysis and design.

Essentially, two classic approaches are taken in engineering practice for the
design of a discrete controller. The first technique, referred to as emulation [Franklin
et al., 1990], is the most widely applied in industry. Emulation consists in first
designing an analog controller such that the closed-loop system has satisfactory
properties, and then translating the analog design into a discrete one using a
suitable discretization method (see Keller and Anderson [1992] for a recent ap-
proach). This technique has the advantage that the synthesis is done in continuous-
time, where the design goals are typically specified, and where most of the de-
signer’s experience and intuition resides. Also, the system’s analog performance
will in general be recovered for fast sampling. Yet, the hybrid performance cannot
be expected to be better than the analog, and there may be a serious degradation
if the sampling is not sufficiently fast. This is an important drawback, since the
sampling rate is a critical constraint in many applications.

The second traditional technique consists in discretizing the plant and per-
forming a discrete design. The main benefit of this approach is that the synthesis
procedure is again simplified, since the discretized plant is linear time-invariant
(LTI) in the discrete-time domain. However, a serious limitation of discrete de-
sign is that it is generally difficult to translate the analog specifications into dis-
crete. Furthermore, the simple models obtained by discretization fail to represent
the full response of the system, since intersample behavior is inherently lost or hid-
den1.

In particular, neither of these approaches offers an adequate framework for
analysis of the continuous-time time-varying hybrid system. Emulation is purely
a method of synthesis, whereas discrete design gives a partial answer, since only
the sampled behavior can be studied in the discretized model. On the other hand,
the analysis of the hybrid system requires the consideration of both sampled and
intersample behavior. This is crucial especially when considering robustness and
sensitivity properties of the system, since analog uncertainties, disturbances and
noise are frequently the issues of practical significance.

1.1 Recent Developments in Sampled-data Systems

Naturally, in view of the technological appeal of digital implementations, sampled-
data systems have been the subject of many research works in recent years. Two

1Some intersample information can still be handled in a discrete model by using the modified Z-
transform introduced by Jury [1958]. However, this line of work seems to have been largely aban-
doned.
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research directions in particular have generated much activity. First, various op-
timal control problems have been stated and solved for hybrid systems using
frameworks that incorporate intersample behavior [e.g., Chen and Francis, 1991,
Bamieh and Pearson, 1992, Dullerud and Francis, 1992, Tadmor, 1992, Kabamba
and Hara, 1993, Bamieh et al., 1993]. Second, several researchers have explored
the potential ability of nonstandard hold functions, periodic digital controllers,
and multirate sampling to circumvent design limitations inherent to LTI sys-
tems [e.g., Khargonekar et al., 1985, Kabamba, 1987, Francis and Georgiou, 1988,
Hagiwara and Araki, 1988, Das and Rajagopalan, 1992, Yan et al., 1994]. Within
these two research avenues, we shall restrict the discussion here to optimal H∞
sampled-data control, and control techniques using generalized sampled-data hold
functions (GSHFs).

The earliest efforts to extend H∞ control methods to sampled-data systems
focused on the computation of the induced L2-norm. The L2-induced norm mea-
sures the maximum gain of an operator acting on spaces of square integrable,
or “finite energy”, signals. For a LTI system, the optimization of the L2-induced
norm is equivalent to the minimization of the H∞-norm of its transfer matrix.
This is not trivial to extend to sampled-data systems, since they are time-varying
due to the presence of the sampler, and hence we cannot describe their input-
output behavior with ordinary transfer matrices. Therefore, special procedures
have been developed. For example, Thompson et al. [1983], and Thompson et al.
[1986] provided the first bounds for the norm of open-loop hybrid systems using
conic sector techniques. Exact expressions of the L2-induced norms were later
on obtained by Chen and Francis [1990] via frequency-domain methods. In 1991,
Leung et al. derived a formula for sampled-data feedback systems with band-
limited signals.

In recent years, different general frameworks to handle intersample behavior
appeared on the scene, and led the way to the solution of certain hybrid optimal
H∞ control problems2. These frameworks include lifting techniques [Bamieh et al.,
1991, Toivonen, 1992, Bamieh and Pearson, 1992, Yamamoto, 1993, 1994], descrip-
tor system techniques [Kabamba and Hara, 1993], and techniques based on linear
systems with jumps [Sun et al., 1993, Sivashankar and Khargonekar, 1994]. More
specifically, the lifting technique consists on transforming the original sampled-
data system into an equivalent LTI discrete-time system with infinite-dimensional
input-output signal spaces. Then, the L2-induced norm of the sampled-data sys-
tem is shown to be less than one if and only if the H∞-norm of this equivalent
discrete system is less than one. In the descriptor system approach, on the other
hand, the system is represented by a hybrid state-space model, from which the
descriptor system is formulated. The solution of the H∞ sampled-data problem
is then characterized by the solution of certain associated Hamiltonian equation.
In contrast with these procedures, the theory of linear systems with jumps allows
a direct characterization of the problem in similar — although more involved —
terms to those of standard LTI H∞-control problems, and leads to a pair of Riccati
equations. Despite the procedural differences in all these approaches, the results

2Yet, as pointed out by Glover [1995], practical design guidelines are still under development.
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obtained are mathematically equivalent.

On the other hand, new control schemes using GSHFs were introduced to ap-
proach various problems that are insoluble with LTI control schemes. A GSHF
reconstructs an analog signal from a discrete sequence of values, but instead of
holding these values constant along the sample period — as it is the case of a clas-
sic zero-order hold (ZOH) — a GSHF scales a fixed suitable waveform. In particu-
lar, by selecting this waveform it is possible to assign the zeros of the discretized
plant, and hence, e.g., convert a non-minimum phase (NMP) analog plant into
a minimum phase discrete plant [Bai and Dasgupta, 1990]. This is the key tech-
nique of several applications of GSHFs. For example, Kabamba [1987] obtained
simultaneous pole-assignment of an arbitrary finite number of plants using a sin-
gle GSHF; and Yan et al. [1994] proposed the combination of a discrete controller
with a GSHF to achieve arbitrary gain-margin improvement of continuous-time
NMP linear systems. Other applications of GSHFs include decoupling, exact
model-matching, and exact discrete loop transfer recovery of NMP plants [Liu
et al., 1992, Paraskevopoulos and Arvanitis, 1994, Er and Anderson, 1994].

Besides the benefits offered by GSHFs, some authors have pointed out the
existence of intersample difficulties and serious robustness and sensitivity prob-
lems associated with the use of these devices [Araki, 1993, Feuer and Goodwin,
1994, Zhang and Zhang, 1994]. For example, Feuer and Goodwin [1994] have
argued that GSHF control relies on the generation of high-frequency harmonics,
which tend to make the system more sensitive to high-frequency plant uncer-
tainty, disturbances and noise. As a consequence, the potential utility of GSHFs
in overcoming LTI design limitations seems still to be a matter of debate.

Despite these advances in synthesis, there is as yet no well-developed the-
ory of inherent design limitations for hybrid feedback systems. For analog feed-
back systems, on the other hand, many results on design limitations are available.
Bode first stated the sensitivity integral theorem in 1945, whose importance for
feedback control was emphasized by Horowitz [1963]. Later extensions were ob-
tained by several researchers; of particular relevance to the present discussion are
the results of Freudenberg and Looze [1985] and Middleton [1991]. Briefly, the
theory describes how plant properties such as NMP zeros, unstable poles, and
time delays limit the achievable performance of a feedback system consisting of
a LTI plant and a continuous-time controller. These limitations manifest them-
selves as tradeoffs between desirable system properties in different frequency
ranges, and are expressed mathematically using Bode and Poisson integrals.

A parallel theory of inherent design limitations for purely discrete-time feed-
back systems is also available [Sung and Hara, 1988, Middleton and Goodwin,
1990, Mohtadi, 1990, Middleton, 1991]. Unfortunately, this theory is insufficient
to describe fundamental limitations in hybrid systems. Indeed, discrete-time re-
sults do not consider intersample behavior, and therefore do not tell us the whole
story (in particular, good sampled behavior is necessary but not sufficient for
good overall behavior). The development of an equivalent theory for sampled-
data systems is one of the main goals of this thesis.
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1.2 Contributions of this Thesis

This thesis is aimed at analysis of sampled-data feedback systems. Our approach
is in the frequency-domain, and stresses the study of sensitivity and complemen-
tary sensitivity operators. Our main contributions may be summarized as fol-
lows:

(i) We expound a systematic frequency-domain framework to describe sampled-
data systems considering full-time information. This framework allows us
to study important properties of the system in a way that appears to be
simpler than in alternative state-space approaches. There are two reasons
why we believe the frequency-domain approach to be simpler. First, this
frequency-domain setting has better links with classical frequency-domain
analysis for analog control systems, in which a large heuristic knowledge
is available. Second, the mathematics involved seems easier to understand
and relate to the original plant model.

(ii) We develop a theory of design limitations for sampled-data systems. This
theory allows us to quantify the essential constraints imposed by NMP ze-
ros of the hold function, and NMP zeros and unstable poles of the analog
plant and discrete controller. As an application, we quantitatively analyze
the sensitivity and robustness properties of control schemes that rely on
GSHF discrete zero-shifting capabilities.

(iii) We derive closed-form expressions to compute the L2-induced norms of the
hybrid sensitivity and complementary sensitivity operators. These expres-
sions have interesting interpretations in terms of signal spaces associated
with the hold, the plant and the anti-aliasing filter. All our formulas admit
straightforward implementation in a numerically reliable fashion.

(iv) We study the frequency-domain properties of GSHFs, providing results that
describe in detail their zero-distribution, and some integral relations that
their frequency response must satisfy. In particular, these results show the
source of some of the difficulties associated with the use of GSHFs.

The framework of (i), and the results of (iii) are valid for multiple-input multiple-
output (MIMO) systems. The results in (ii) and (iv) are restricted to the single-
input single-output (SISO) case. Due to the issue of directionality, the general-
ization of these results to multivariable is difficult — for (ii) this is so even in the
analog case — and hence we have not pursued it here.

Many of the results referred to in (ii) have been developed in collaboration,
and published in Freudenberg et al. [1995] and Freudenberg et al. [1994], with
significant input from the first author. The results in (i) and (iii) have been par-
tially communicated in Braslavsky et al. [1995b], while some of the results in (iv)
will appear in Braslavsky et al. [1995a].

We now give an overview of the rest of the thesis.

Chapter 2: This chapter introduces most of our notation, main assumptions, and
the basic preliminary results upon which the rest of the chapters will be
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developed. Here, we define the mathematical representations of the A-D
and D-A interfaces, the sampler, and the hold device. A distinctive fea-
ture of our approach is that the hold device is not restricted to the ZOH.
Indeed, we shall consider that the hold is a GSHF of the type introduced by
Kabamba [1987], which will allows us to develop a comprehensive frame-
work to study sampled-data systems. We also present in this chapter a basic
but key sampling formula concerning the Laplace transform of a sampled
signal. This relation will be the starting point of our discussion on the fre-
quency response of hybrid systems in the following chapters. We conclude
with a review of two important results concerning the closed-loop stabiliz-
ability properties of sampled-data systems.

Chapter 3: The focus of this chapter is the frequency response of a GSHF. As
opposed to that of a ZOH, the frequency response of a GSHF may have
large high-frequency peaks that compromise the robustness properties of
the system. It is also known that GSHFs may have zeros off the jω-axis that
pose discrete stabilizability difficulties. In this chapter we go deeper into
the analysis of these issues by studying fundamental properties of the fre-
quency response of GSHFs. Specifically, we describe their zero-distribution
and the constraints that these zeros impose on the values on the jω-axis.
One of the main results of this chapter is that GSHFs with “asymmetric”
pulse response function will necessarily have zeros off the jω-axis.

Chapter 4: In this chapter, we study the frequency response of a sampled-data
system, and develop a theory of design limitations wherein we consider
the response of the analog system output. To do this, we use the fact that
the steady-state response of a hybrid feedback system to a sinusoidal input
consists of a fundamental component at the frequency of the input together
with infinitely many harmonics, located at frequencies spaced integer mul-
tiples of the sampling frequency away from the fundamental. This fact al-
lows us to define fundamental sensitivity and complementary sensitivity
functions that relate the fundamental component of the response to the in-
put signal. These sensitivity and complementary sensitivity functions must
satisfy integral relations analogous to the Bode and Poisson integrals for
purely analog systems. The relations show, for example, that design limi-
tations due to NMP zeros of the analog plant constrain the response of the
sampled-data feedback system regardless of whether the discretized system
is minimum phase, and independently of the choice of hold function.

Chapter 5: This chapter deals with the analysis and computation of the L2-induced
norm of operators in sampled-data systems. We first expound a frequency-
domain lifting technique to derive “closed-form” expressions for the fre-
quency gains of hybrid sensitivity operators in a MIMO setup. We show
that these frequency-gains can be characterized by the maximum eigen-
value of certain finite-dimensional discrete transfer matrices; even in the
case of the sensitivity operator, which — since it is known to be non-compact
— presents extra difficulties for the analysis. The L2-induced norm is then
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computed by searching the maximum of this eigenvalue over a finite range
of frequencies. At the end of the chapter, we provide expressions from
which the generation of numerical algorithms to compute these norms is
straightforward.

Chapter 6: This chapter is about stability robustness of sampled-data systems.
Dullerud and Glover [1993] have derived necessary and sufficient condi-
tions for robust stability of hybrid systems against multiplicative perturba-
tions in the analog system. These authors have used a frequency-domain
formulation based on state-space lifting techniques. We show in this chap-
ter that the same type of result may be obtained in a simpler way when
the problem is directly formulated in the frequency-domain. We do this
by using the frequency-domain lifting framework introduced in Chapter 5.
We also give both necessary conditions and sufficient conditions for robust
stability as simple expressions that emphasize the role played by the fun-
damental and harmonic sensitivity functions defined in Chapter 4. We con-
clude the chapter by showing that the same framework may be used to
approach the problem of robust stability against divisive perturbations.

Chapter 7: As an application of the preceding results, in this chapter we study
the difficulties associated with the zero-shifting capabilities of GSHFs. Many
GSHF-based proposed schemes rely on zero-shifting, since this appears to
circumvent fundamental limitations imposed by analog NMP zeros. We
show that if the plant has a NMP zero with significant phase lag within the
desired closed-loop bandwidth of the system, then zero-shifting will nec-
essarily lead to serious robustness and sensitivity problems in both analog
and discrete performances of the system.

Chapter 8: In this chapter we summarize the main results of the thesis, and give
some concluding remarks and directions for future research.


