Vibration and Position Control of Piezoelectric Tube Scanners for Fast Atomic Force Microscopy

Iskandar Al-Thani Mahmood

B.Eng (Hons) in Mechatronics Engineering M.Sc in Mechatronics Engineering

Supervisor: Professor S. O. Reza Moheimani

A thesis submitted in fulfillment of the requirements for the degree of

Doctor of Philosophy

School of Electrical Engineering and Computer Science

The University of Newcastle Callaghan, NSW 2308 Australia

October, 2009

To my parents, for your love, support and prayers.

Acknowledgments

I would like to thank my supervisor Professor S. O. Reza Moheimani for giving me his supports and guidance without which the completion of this thesis would be very difficult. Many thanks also go to my colleagues at the Laboratory for Dynamics and Control of Nanosystems (LDCN) specifically, Dr. Bharath Bhikajji, Dr. Andrew J. Fleming and Dr. Kexiu Liu for their direct collaborations on different parts of this thesis. I also need to extend my thanks to those who have been there along the way, including Dr. Sumeet S. Aphale, Dr. Yuen Yong and many other people in LDCN.

On a personal note, I would like to thank my wife Salmi Mohd Nazir for always being there for me, your faith and belief in me and of course, your love. To my precious children Najihah 'Aqilah and Muhammad Kamil Zaki, thank you for the constant inspiration both of you bring to my life. Last but not least, I would like to thank my parents for their love and prayers, without whom I would not be where I am now.

Declaration

This thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying subject to the provisions of the Copyright Act 1968.

> Iskandar Al-Thani Mahmood October, 2009

List of Publications

During the course of this research, a number of papers have been submitted to international journal and conferences. The following is a list of those articles which have already been appeared in international journals or accepted for publication, as well as a list of conference papers which have been presented or accepted for presentation.

Journal Articles

- I. A. Mahmood, S. O. R. Moheimani and B. Bhikkaji. A new scanning method for fast atomic force microscopy. Conditionally accepted in *Nanotechnology, IEEE Transactions on*, 2009.
- I. A. Mahmood and S. O. R. Moheimani. Fast spiral-scan atomic force microscopy. *Nanotechnology*, Volume 20, Number 36, Pages 365503 (4pp), September 2009.
- I. A. Mahmood and S. O. R. Moheimani. Making a commercial atomic force microscope more accurate and faster using positive position feedback control. *Review of Scientific Instruments*, Volume 80, Number 6, Pages 063705 (8pp), June 2009.
- I. A. Mahmood, S. O. R. Moheimani and K. Liu. Tracking control of a nanopositioner using complementary sensors. *Nanotechnology, IEEE Transactions on*, Volume 8, Number 1, Pages 55 – 65, January 2009.
- I. A. Mahmood, S. O. R. Moheimani and B. Bhikkaji. Precise tip positioning of a flexible manipulator using resonant control. *Mechatronics, IEEE/ASME Transactions on*, Volume 13, Number 2, Pages 180 – 186, April 2008.

Conference Papers

- I. A. Mahmood and S. O. R. Moheimani. Improvement of accuracy and speed of a commercial AFM using positive position feedback control. *American Control Conference*, St. Louis, Missouri, June 2009.
- 2. I. A. Mahmood, K. Liu and S. O. R. Moheimani. Two sensor based H_{∞} control of a piezoelectric tube scanner. *IFAC World Congress*, Seoul, Korea, July 2008.
- I. A. Mahmood, S. O. R. Moheimani and B. Bhikkaji. Precise tip positioning of a flexible manipulator using resonant control. *Advanced Intelligent Mechatronics*, Zurich, Switzerland, September 2007.
- I. A. Mahmood, B. Bhikkaji and S. O. R. Moheimani. Vibration and position control of a flexible manipulator. *Information, Decision and Control*, Adelaide, Australia, February 2007.

ABSTRACT

The performance of piezoelectric tube scanner in Atomic Force Microscope (AFM) is limited by vibrations and nonlinearities exhibited by the piezoelectric material such as hysteresis and creep. The aforementioned limitations restrict the use of the piezoelectric tube scanner for fast and high resolution operations. As such, this thesis presents several ways of improving the speed and accuracy of piezoelectric tube scanner for the use in Atomic Force Microscopy. In this thesis, two types of feedback control approaches are designed and implemented experimentally in order to improve the performance of piezoelectric tube scanners. The first approach uses strain voltage signal induced in the piezoelectric tube to measure of high frequency displacements of the scanner. Together with capacitive sensor, the use of strain voltage signal allows the closed-loop bandwidth to be increased for fast scans without the additional sensor noise otherwise contributed by the capacitive sensor during fast operation of the scanner. In the second approach, a Positive Position Feedback (PPF) control scheme is implemented on a commercially available AFM to compensate for scan-induced vibration and cross-coupling of its piezoelectric tube scanner. As a result of the implementation of the PPF control scheme, the scanning speed is doubled in comparison to the scanning speed obtained from the standard controller supplied with the commercial AFM. Finally, a spiral scanning method is comprehensively described and evaluated for the use in AFM. Two modes of spiral scanning method, Constant Angular Velocity (CAV) and Constant Linear Velocity (CLV) modes, are presented and compared with the widely used raster scanning method. The use of the spiral scan in CAV mode is shown to allow the scanning speed to be increased very high, approaching the mechanical bandwidth of the scanner. The use of the spiral scan in CLV mode allows scanning of samples to be done at linear velocity, a property shared with the raster scan.

Contents

1	Int	roduction	1
	1.1	Thesis Objectives	1
	1.2	Thesis Outline	3
2	Ato	omic Force Microscopy	5
	2.1	Introduction	5
	2.2	Working principle of Atomic Force Microscope	7
	2.3	Operating modes in Atomic Force Microscopy	9
		2.3.1 Static mode	9
		2.3.2 Dynamic mode	11
	2.4	Piezoelectric Tube Scanner	14
	2.5	Limiting factors for high-precision positioning	17
		2.5.1 Hysteresis	17
		2.5.2 Creep	20
		2.5.3 Vibrations	22
	2.6	Summary	24
3	Fee	dback Control of a Piezoelectric Tube Scanner using Comple-	
	me	ntary Sensors	25
	3.1	Introduction	25
	3.2	System Description	28
	3.3	System Identification	32
	3.4	Controller Design	35

viii

	3.4.1	Two-sensor-based H_{∞} controller	35
	3.4.2	One-sensor-based H_{∞} controller	42
3.5	Result	S	44
	3.5.1	Hysteresis reduction	44
	3.5.2	Closed-loop frequency response	46
	3.5.3	Time response	46
	3.5.4	One-sensor-based H_{∞} controller	50
3.6	Summ	ary	52

4 Positive Position Feedback control of an Atomic Force Micro-

SCO]	he	53
4.1	Introduction	53
4.2	Experimental Setup	55
4.3	System Identification	58
4.4	Controller Design	61
	4.4.1 PPF Controller	61
	4.4.2 High-gain Integral Controller	65
4.5	Experimental Results	67
	4.5.1 Frequency and Time Responses	67
	4.5.2 AFM Imaging	71
4.6	Discussion of Results	74
4.7	Summary	75
Fas	t Spiral-Scan Atomic Force Microscopy	76
5.1	Spiral Scan	77
	5.1.1 The CAV spiral	78
	5.1.2 The CLV spiral	81
	5.1.3 Inversion Technique for CLV spiral	82
	 4.1 4.2 4.3 4.4 4.5 4.6 4.7 Fas 	 4.1 Introduction

	App	oendix		-	111
	Bib	liogra	phy	-	102
6	Con	nclusio	ons		99
	5.4	Summ	ary		98
		5.3.2	AFM Imaging		92
		5.3.1	Tracking Performance		89
	5.3	Result	S		89
	5.2	Contro	oller Design		88
		5.1.5	Mapping Spiral Points to Raster Points		86
		5.1.4	Total scan time: Spiral scan vs. Raster scan		85

х

List of Figures

2.1	Basic AFM schematic with feedback controllers	8
2.2	Curves illustrating micro-cantilever deflection corresponding to the	
	scanner vertical displacement during approach and retraction of the tip in	
	static mode. During retraction, the tip is affected by an additional surface	
	tension force from the ambient water layer on the sample surface which	
	caused the tip-sample separation to occur at a longer distance	11
2.3	Amplitude-frequency curve illustrating a shift in the resonant frequency of	
	the micro-cantilever from ω_o to $\widetilde{\omega_o}$ due to a shift in the gradient of the	
	interactive forces. In AM mode, the micro-cantilever is driven at a fixed	
	frequency ω_f and the change in the resonant frequency ΔF resulted in a	
	change in the oscillating amplitude ΔA . In FM mode, the oscillating	
	amplitude remain unchanged as the micro-cantilever is always driven at its	
	resonant frequency.	13
2.4	(a) Front view and (b) Bottom view drawing of the piezoelectric tube	
	scanner featuring the labels for each electrodes. (Both drawings are not to	
	scale and the thickness of the electrodes is exaggerated.)	15
2.5	Illustration of (a) staircase and (b) triangular wave signals applied to the y	
	axis and x axis respectively to obtain (c) a raster pattern with 5 x 5 data	
	points	17

2.6	The effect of hysteresis on the piezoelectric tube scanner when driven by a	
	voltage source. (a) Measured scanner's displacement (solid line) due to	
	5 Hz triangular wave input signal (dashed line). (b) Hysteresis curve	
	illustrating the relationship between the scanner's displacement and the	
	reference input signal. (c) The resulting surface topography image of a	
	calibration grating obtained using the same piezoelectric tube scanner	19
2.7	Successive AFM images of a calibration grating taken after the scanner	
	was applied with a step voltage to offset each axis of the scanner by 4 μ m.	
	The images was scanned horizontally with the image origin at bottom-left	
	of each image	21
2.8	The effect of scan-induced vibration on piezoelectric tube scanner.	
	Scanner's displacements (solid line) when driven by (a) 10 Hz and (b)	
	30 Hz triangular wave signals (dashed line). AFM images of a calibration	
	grating generated at scan frequency of (c) 10 Hz and (d) 30 Hz	23
3.1	Piezoelectric tube dimensions in millimeters. (a) Isometric-view and	
	(b) Bottom-view (dimensions are not to the scale and the thickness of the	
	electrode is exaggerated).	29
3.2	The piezoelectric tube is housed in a circular aluminum enclosure	30
3.3	Schematics of the proposed feedback control system.	32
3.4	One-loop-frequency responses, $G_{v_x u_x}(i\omega)$ (dash-dots), $G_{c_x u_x}(i\omega)$ (dash),	
	and the identified model $G_{y_x u_x}(s)$ (solid)	33
3.5	2-DOF control block diagram.	37
3.6	Feedback control block diagram with weighting functions.	38
3.7	General feedback control configuration.	39
3.8	(a) Weighting functions. (b) Sensitivity functions: desired (solid),	
	achieved two-sensor (dash) and achieved single-sensor (dash-dot)	40

3.9	Frequency response of the designed controllers $K_{c}(s)$ (solid), $K_{v}(s)$ (dash)	
	and $\tilde{K}_{c}(s)$ (dash-dot).	41
3.10	Procedure to obtain shaped reference $r(t)$	41
3.11	2-DOF control block diagram for the one-sensor-based H_{∞} controller	42
3.12	Feedback control block diagram with weighting functions for the	
	one-sensor-based H_{∞} controller.	43
3.13	Hysteresis plot of open-loop 5 Hz scan using (a) voltage amplifier and (b)	
	charge amplifier.	45
3.14	Experimentally obtained frequency responses of $T_{y_x r}(i\omega)$ (solid),	
	$T_{y_x \tilde{d_i}}(i\omega)$ (dash) and $G_{y_x u_x}(i\omega)$ (dash-dots).	47
3.15	Open-loop (left) and closed-loop (right) time response plots of 5, 20 and	
	40 Hz scan. Solid line is measured scanners displacement and dashed line	
	is desired trajectory	48
3.16	Experimentally obtained closed-loop frequency responses using	
	one-sensor-based H_{∞} controller, $T_{y_x r}(i\omega)$ (solid), $T_{y_x d_i}(i\omega)$ (dash) and	
	$G_{y_x u_x}(i\omega)$ (dash-dots).	50
3.17	Closed-loop time response plots of 5, 20 and 40 Hz scan using	
	one-sensor-based H_{∞} controller. Solid line is measured scanners	
	displacement and dashed line is desired trajectory	51
4.1	SPM system and experimental setup used in this work	56
4.2	Top view of the piezoelectric tube with the internal and external electrode	
	wired in a bridge configuration	58
4.3	Block diagram of the experimental setup used for system identification of	
	the scanner.	59
4.4	Experimental (dash-dot) and identified model (solid) frequency response	
	of (a) $G_{c_x u_x}(i\omega)$ and (b) $G_{c_y u_y}(i\omega)$.	60

4.5	Structure of the x axis feedback controller. The inner feedback loop is a	
	PPF controller designed to damp the highly resonant mode of the tube.	
	Integral action is also incorporated to achieve satisfactory tracking	62
4.6	Map of open-loop (o), desired closed-loop (\times) and achieved closed-loop	
	(+) poles for the x axis	64
4.7	Bode diagrams showing gain margins when a unity gain integral controller	
	is cascaded with undamped $()$ and damped $()$ scanner's transfer	
	functions in (a) x and (b) y axes.	66
4.8	Open-loop (dash) and closed-loop (solid) frequency responses of the	
	scanner. The resonant behavior of the scanner is improved by over 30 dB	
	due to control action. The proposed feedback control strategy results in	
	significant improvement in cross-coupling between the fast and slow axes	
	of the scanner.	68
4.9	Closed-loop (dash) and open-loop (solid) tracking performance (left) and	
	cross-coupling properties (right) of the scanner for 2 Hz scan (top), and	
	30 Hz scan (bottom). (A small phase shift was purposely added into the	
	close-loop time responses in order to clearly display the open- and	
	closed-loop time responses.)	70
4.10	First two columns: AFM images of NT-MDT TGQ1 grating scanned in	
	contact mode constant force at 2, 10 and 30 Hz. Images displayed in (a),	
	(b) and (c) were developed using the well-tuned PI controller. Images	
	displayed in (d), (e) and (f) were generated using the PPF controller. A	
	significant improvement in image quality can be observed. Third column:	
	We were able to generate images at scan frequencies beyond the AFM	
	limit of 30 Hz. 40, 50 and 60 Hz scans are illustrated in (g), (h) and (i)	
	respectively.	72

4.11	Cross-section (solid) and reference (dash) curves of the AFM images	
	illustrated in Fig. 4.10 (a) to (i). The cross-section curves were taken	
	about the center of the AFM images and parallel to the square profile of	
	the calibration grating. The scan direction of the curves displayed in (a),	
	(b) and (c) are from 0 to 8 μ m. The scan direction of the curves displayed	
	in (d) to (i) are from 8 to 0 μ m	73
5.1	Spiral trajectory of 6.5 μ m radius with <i>number of curve</i> = 8	78
5.2	Input signals to be applied to the scanner in the <i>x</i> and <i>y</i> axes of the scanner	
	to generate CAV spiral scan with $\omega = 188.50$ radians/sec. Solid line is the	
	achieved response and dashed line is the desired trajectory	80
5.3	Input signals to be applied to the scanner in the <i>x</i> and <i>y</i> axes of the scanner	
	to generate CLV spiral scan with $v = 1.13$ mm/sec (or	
	$\widetilde{\omega}_{end} = 188.50$ radians/sec). Solid line is the achieved response and	
	dashed line is the desired trajectory.	83
5.4	Spiral points (+) for (a) CAV spiral with $\omega_s = 188.5$ radians/s and (b) CLV	
	spiral with $v_s = 1.1$ mm/s. The sampling frequency used for generating	
	these spiral points is 2 kHz. Both spiral trajectories have a 6.5 μ m radius	
	with <i>number of curves</i> $=$ 8. The spiral points are plotted on top of the	
	raster points (.) that make up a 13 \times 13 μm raster-scanned image with of	
	8×8 pixels resolution	87
5.5	First two columns: (a) - (f) Tracking trajectories of CAV spirals between	
	between $\pm 0.15 \ \mu m$ in closed-loop for $\omega_s = 31.4, 94.3, 188.5, 565.5,$	
	754.0 and 1131.0 radians/s. Third column: (g) - (i) Tracking trajectories	
	of CLV spirals between $\pm 0.30 \ \mu m$ in closed-loop for $v_s = 0.2, 0.6$ and	
	1.1 mm/s. The pitch of the spirals was set at 25.44 nm. Solid line is the	
	achieved response and dashed line is the desired trajectory	91

5.6	AFM images of NT-MDT TGQ1 grating scanned in closed-loop using the	
	CAV spiral scanning mode for (a) - (f) $f_s = 5$, 15, 30, 90, 120 and 180 Hz	
	(which corresponds to $\omega_s = 31.4, 94.3, 188.5, 565.5, 754.0$ and	
	1131.0 radians/s) and using the CLV spiral scanning mode for (g) - (i)	
	$v_s = 0.2, 0.6$ and 1.1 mm/s. The <i>number of curves</i> for these AFM images	
	was set to 512	94
5.7	Cross-section (solid) and reference (dash) curves of the AFM images	
	illustrated in Fig. 5.6 (a) to (i). The cross-section curves were taken about	
	the center of the AFM images and parallel to the square profile of the	
	calibration grating.	95
5.8	Probe deflection signals showing the profile of the calibration grating for	
	(a) $\omega_s = 31.4$ radians/s and (b) $\omega_s = 754.0$ radians/s.	96
5.9	AFM images of NT-MDT TGQ1 grating scanned in open-loop using the	
	CAV spiral for (a) - (c) $f_s = 5$, 30, and 90 Hz. The <i>number of curves</i> for	
	these AFM images was set to 512	97

List of Tables

3.1	Numerical quantification of hysteresis	46
3.2	RMS values of tracking error	49
~ 1		
5.1	RMS values of tracking error and total scanning time for CAV and CLV	
	spiral scans. Images have a resolution of 512×512 pixels	90
5.2	RMS values of spiral to raster points mapping error for CAV and CLV	
	spiral scans.	93