
A PUBLISH/SUBSCRIBE MODEL FOR PERSONAL DATA ON THE
INTERNET

Mark Wallis, Frans Henskens, Michael Hannaford
Distributed Computing Research Group

School of Electrical Engineering and Computer Science, University of Newcastle, Callaghan, NSW, Australia
mark.wallis@studentmail.newcastle.edu.au

Keywords: Publish/Subscribe, Distributed, Storage, Personal data, Web 2.0

Abstract: With the recent increase in web application reliance on user-generated content, issues such as data duplication,
data age and data ownership are becoming an increasing problem. It is now common to have multiple distinct
web applications storing duplicate copies of a user’s personal information in distinct storage formats and
locations. This paper proposes a change in paradigm that places the ownership of a user’s personal data back
into their own hands by moving the storage of that data away from web applications and onto private storage
nodes exposed by 3rd party providers. Web applications can then subscribe to various pieces of data under
electronic contracts that govern the data’s usage.

1 INTRODUCTION

In recent years, the design of Internet applications has
seen a move away from owner-generated content to
user-generated content (O’Reilly, 2005). The Web 1.0
era was dominated by websites in which content was
generated by the website owner. Next-generation ap-
plications, such as Twitter (Twitter Inc, 2009) (gen-
erally viewed as Web 2.0), in comparison, rely heav-
ily on user-generated content (Vickery and Wunsch-
Vincent, 2007). With the increase in application de-
pendence on user-generated content numerous issues
are becoming prevalent in relation to the maintenance
of this data. Problems of data duplication, data age
and data ownership occur because it is now common-
place to have multiple websites storing copies of a
user’s personal information in distinct storage formats
and storage locations. This is especially common for
personal information such as postal address and credit
card number.

This paper proposes a change in paradigm that
places the ownership and responsibility for the stor-
age of a user’s personal data back into their own
hands. The change involves moving the storage of
that information onto a private data storage service.
The storage service is hosted either locally by the user
(perhaps on a device connected to their home LAN) or

externally by a data storage provider. A data storage
provider makes available storage capacity and soft-
ware to allow a user to publish and distribute access
to their information. 3rd party applications then sub-
scribe to various pieces of data under electronic con-
tracts that define the rules governing the data’s us-
age. Locating a specific user’s data storage provider is
addressed using extensions to existing Internet proto-
cols. Parallels are drawn showing how such a design
aligns with current advancements in Cloud Comput-
ing (Boss et al., 2007) and Service-Orientated Archi-
tectures (Bell, 2008).

2 PROBLEM DESCRIPTION

As explained below, three main issues were identified
with classic Web 2.0 applications in relation to per-
sonal data storage: data freshness, data duplication
and data ownership.

When the same piece of information is stored by
multiple distinct web applications the chance of data
becoming stale greatly increases. Take for example
a user’s postal address. When the user moves house
they must currently access each web application to
which they have provided their postal address, and
manually update it. Before they can complete this



task they need to recall and locate all the relevant web
applications. Such a task is increasingly non-trivial
because of the growing number of websites that re-
quest personal information during registration. Cur-
rently there is no system that allows a user to push
updates for such information to multiple web applica-
tions, so a user is required to remember, locate, access
and update for each application in turn.

In addition to the issue of data freshness there is
the issue of the amount of data storage wasted by the
duplication of information. While the duplication of
a small piece of information such as a user’s address
may appear trivial, when you considering the increas-
ing inclusion of photos and video the gravity of the
problem increases. The operators of web applications
currently spend considerable money and effort on data
storage technologies to store data that duplicates what
is stored by other 3rd party systems.

Arguably the most concerning issue is the prob-
lem of data ownership. When uploading user infor-
mation to a 3rd party web application a EULA (end
user licence agreement) is generally in-place to de-
scribe who owns the information once it has been
stored by the web application. It is common for the
web application owners themselves to take owner-
ship of the data, and it has been known for users to
fight back against such restrictions (AFP, 2009). Pass-
ing the responsibility of storage and access of per-
sonal data to a 3rd party provider exposes the user to
the possibility that 3rd parties could exert restrictions
over the usage of that data.

These three key issues can all be tied back to the
issue of a single piece of information, which logi-
cally belongs to the user, being stored by 3rd party
web applications. This paper describes a change in
paradigm which moves the storage responsibility to
the end-user, and in the process, addresses the above
three key issues.

3 RELATED WORK

Detailed below, multiple existing technologies at-
tempt to address a subset of the issues described
above by sourcing content from distributed data
repositories.

Web application developers are able to use such
HTML features as iframes (Raggett et al., 1999) to
build a single web page out of multiple components,
with each component being potentially provided from
a differing location. Such technologies do not scale to
large deployments due to the manual way in which
the web developer must link the various components.
iframe technology is limited to building pages from

static components that do not grow in number or relo-
cate dynamically over time.

Content Delivery Networks (CDN) (Hofmann,
2005) are able to address performance issues sur-
rounding centralised storage of information, but do
not address the data duplication, ownership or fresh-
ness issues identified by this research. While nodes
in a CDN may be viewed similarly to the concept de-
scribed below, they do not provide the capability for
direct end-user management outside of the specific
web application in which they are tied.

Content Management Systems (CMS) (Mauthe
and Thomas, 2004) are software packages designed
to store and present information from a variety of
sources under a unified interface. CMS are gener-
ally deployed in corporate environments where non-
technical users wish to have the ability to update con-
tent presented on the web without having to learn
markup languages, such as HTML. The CMS back-
end is capable of sourcing data from multiple loca-
tions, but the access method involves aggregating the
data on the server before presenting it to the user.
The links between various pieces of data are manu-
ally configured and the various data sources are non-
transparent to the data owner.

Single-signon systems such as OpenID (Founda-
tion, 2009) and Shibboleh (Cantor, 2005) attempt to
address data duplication issues in the user authenti-
cation space by providing a single repository for user
authentication information that can be used by multi-
ple 3rd party applications to authenticate users within
single, and across multiple organisations. OpenID
currently only focuses on user authentication infor-
mation. Shibboleh contains extensions to support a
subset of user attributes such as address information,
but does not scale to large dynamic environments in
which there are no concrete relationships established
between entities.

Distributed storage has long been important in
the distributed computing space, where multiple dis-
tributed entities required access to a shared storage so-
lution. Storage Area Networks (SAN) (Corporation,
2009) are capable of providing access for multiple en-
tities to a centralised data storage area and hence are
capable of addressing the data duplication and fresh-
ness issues. These deployments are currently stati-
cally tied to the applications that need to access the
SAN and no Internet-based protocol currently exists
to allow end users to dynamically locate distributed
storage over the Internet.

None of the systems presented above are capable
of addressing the three key issues identified in section
2 within a large Internet-scale deployment.



4 PROPOSED SYSTEM

The system proposed by this research plans to ad-
dress the identified problems by introducing addi-
tional technology that allows storage of personal in-
formation to be offloaded from the web application
and instead handled by 3rd party storage services.
These storage services will be leased by individual
data owners, and act as a ’single version of the truth’
for that users personal data. Enhancements to the
standard web browser design will allow this data to be
accessed seamlessly. An API will be established that
governs communication between the various actors in
the system. These web browser enhancements will
be a stepping stone between existing browser tech-
nologies and a complete Super-Browser implementa-
tion as presented in our parallel research (Henskens,
2007).

The first phase of unified personal information
storage involves the data owner subscribing to a pri-
vate storage service (PSS). This service is responsi-
ble for storing the data owner’s personal information
and is located either in-house or outsourced to a spe-
cialised data storage provider. The data owner then
publishes content to the storage service. Once the data
owner has stored shared information in their PSS the
next stage is to allow a web application to subscribe
to the information. Once a relationship is established
the data owner establishes a link between their per-
sonal data and the web application. This link is akin
to the data owner uploading content to the web ap-
plication in a standard Web 2.0 scenario, except that
in the PSS design the data owner purely provides the
unique identifier of the information as opposed to up-
loading the content itself. Once the link between a
piece of data referenced by the web application and
the storage location for that data in a PSS is estab-
lished, the web application is free to request that data
directly from the PSS. The final stage in the design is
the presentation stage. This will define how the infor-
mation is transparently presented to end users.

The PSS design addresses the issue of data fresh-
ness by ensuring that all web applications present the
latest information stored in the PSS. Only the latest
information would be made accessible to 3rd party
users and applications. Data duplication issues are ad-
dressed as the PSS becomes the only system required
to store a users personal information. This will take
the burden of data storage away from web application
hosts and reduce their overall costs.

The PSS design also aids in addressing issues of
data ownership by ensuring that the system storing the
users personal data has a direct contractual relation-
ship with the owner of the data. Users will be able to

dictate the terms of usage for their data before agree-
ing to use a specific PSS. At the moment, a user is
forced to accept the terms and conditions of a web ap-
plication if they wish to use that specific application.
In the PSS design, the user will be free to find another
PSS to use if they do not agree with the terms and con-
ditions of a specific provider. Web applications will
no longer have any sway over a users personal data
as they will not be responsible for collecting, storing
and presenting that data. Their responsibility will end
with providing a way of ’linking’ 3rd party users to
data stored in various PSS’s using a well-defined API.

5 FUTURE WORK

Work is currently underway to implement a proof-of-
concept PSS design and collect performance statistics
comparing the proposed solution and a classic Web
2.0 approach. These performance statistics will show
that such a solution can be designed with minimal
impact to the average user, while still providing so-
lutions to the three key issues presented. A detailed
comparison will also be presented comparing the PSS
design to the solutions described in section 3.

The initial PSS concept is targeted at informa-
tion stored by web applications for the purpose of
direct return on behalf of its users. For instance,
the initial prototype suits applications such as im-
age storage where the images are not altered by the
web application. This style of information has been
termed as ’inline’. Additional solutions are possible
to support ’cacheable’ data in addition to ’inline’ data.
Cacheable data is defined as data of which web ap-
plications store a local copy. The publish/subscribe
model proposed will allow for the PSS to ’push’ up-
dates of such data to the linked web applications
whenever updates are made. This will allow the is-
sues of data freshness to be addressed for cacheable
data, although it does not address the issue of data
duplication and data ownership.

6 CONCLUSION

This paper presents three concerns identified with the
growing popularity of Web 2.0 applications:

• Data freshness is addressed using a pub-
lish/subscribe model and single version of the
truth. The data presented to the end user is always
the freshest version because it is sourced directly
from the user’s PSS.



• Data duplication is addressed by removing the
need for data to be stored by the web application.
Appropriate web application registration and link-
ing reduces the number of copies of a piece of data
to a single instance stored on the PSS.

• Data ownership is addressed by ensuring that stor-
age is the responsibility of the personal storage
service directly engaged by the end user. PSS
providers are liable to users, not to web applica-
tions, and hence the user has control over use of
their data. Data ownership is clear-cut because the
user is responsible for both the storage of, and ac-
cess to, the data.

The presented solution ties directly into the realms
of Cloud Computing (Boss et al., 2007), Service-
Orientated architectures (Bell, 2008) and SAAS
(Software-as-a-service) (Bennett et al., 2000). In a
sense, a PSS can be seen as a SSP (Storage Ser-
vice Provider) in a Storage-as-a-service (Foley, 2009)
cloud component that allows other web applications
to publish and subscribe to data within the cloud. The
PSS system, however, will provide the necessary ad-
ditional access and presentation layers on-top of the
storage to ensure that the user experience is seamless.
It makes sense in a Cloud Computing landscape that
each application in the cloud is able to access a shared
storage repository rather than having to replicate the
same information for each web application deployed
in the cloud.

The primary output of the next stage of this re-
search will be a PSS API. A well defined API will al-
low multiple vendors to implement not only their own
PSS’s, but also the required web browser enhance-
ments that are key to providing a end-to-end seamless
solution.

REFERENCES

AFP (2009). About-facebook: backflip on data ownership
changes. The Sydney Morning Herald.

Amazon Web Services (2009). Amazon Elastic Compute
Cloud Technical Guide. Amazon.

Bell, M. (2008). Introduction to Service-Oriented Mod-
eling, Service-Oriented Modeling: Service Analysis,
Design, and Architecture. Wiley and Sons.

Bennett, K., Layzell, P., Budgen, D., Brereton, P.,
Macaulay, L., and Munro, M. (2000). Service-based
software: the future for flexible software. In Sev-
enth Asia-Pacific Software Engineering Conference
(APSEC’00), volume 17th, page 214.

Boss, G., Malladi, P., Quan, D., Legregni, L., and Hall, H.
(2007). Cloud computing. Technical report, IBM Cor-
poration.

Cantor, S. (2005). Shibboleth Protocol Specifications. in-
ternet2.

Cockburn, C. and Wilson, T. (1995). Business use of the
world-wide web. Information Research.

Corporation, E. (2009). Information Storage and Manage-
ment: Storing, Managing, and Protecting Digital In-
formation. EMC.

Feldt, K. (2007). Programming Firefox: Building Rich In-
ternet Applications with XUL (Paperback). O’Reilly
Media, Inc.

Foley, J. (2009). How to get started with storage-as-
a-service. InformationWeek Business Technology
Network, http://www.informationweek.com/cloud-
computing/blog/archives/2009/02/how to get -
star.html.

Foundation, O., Openid authentication 2.0 - final.
http://openid.net/specs/openid-authentication-2 -
0.html.

Henskens, F. (2007). Web service transaction management.
International Conference on Software and Data Tech-
nologies (ICSOFT).

Hofmann, M. (2005). Content Networking: Architecture,
Protocols and Practice. Morgan Kaufmann Publish-
ers.

Mauthe, A. and Thomas, P. (2004). Professional Content
Management Systems: Handling Digital Media As-
sets. Wiley.

OASIS (2007). Security assertion markup language (saml)
v2.0 technical overview. Technical report, Working
Group.

O’Reilly, T. (2005). What is web 2.0. O’Reilly Net.

Raggett, D., Hors, A. L., and Jacobs, I. (1999). HTML 4.01
Specification. W3C, w3c recommendation december
1999 edition.

Twitter Inc, Twitter. www.twitter.com.

Vickery, G. and Wunsch-Vincent, S. (2007). Participative
Web And User-Created Content: Web 2.0 Wikis and
Social Networking. Organization for Economic.


