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The eyes are the window of the mind 

 

 

 

Young cat, if you keep your eyes open enough, oh, the stuff 

you would learn! The most wonderful stuff! 

Dr. Seuss 
 

 

 

Living is easy with eyes closed, misunderstanding all you see. 

John Lennon 
 

 

 

A major problem with AI research then was that Ph.D. 

dissertations were huge programs, and only the writer knew 

how they worked. 

Marvin Minsky 
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Abstract 
 

Vision is a fundamental ability for humans. It is essential to a wide range of 

activities. The ability to see underpins almost all tasks of our day to day life. 

It is also an ability exercised by people almost effortlessly. Yet, in spite of 

this it is an ability that is still poorly understood, and has been possible to 

reproduce in machines only to a very limited degree.  

 

This work grows out of a belief that substantial progress is currently being 

made in understanding visual recognition processes. Advances in algorithms 

and computer power have recently resulted in clear and measurable 

progress in recognition performance. Many of the key advances in 

recognizing objects have related to recognition of key points or interest 

points. Such image primitives now underpin a wide array of tasks in 

computer vision such as object recognition, structure from motion, 

navigation. The object of this thesis is to find ways to improve the 

performance of such interest point methods. 

 

The most popular interest point methods such as SIFT (Scale Invariant 

Feature Transform) consist of a descriptor, a feature detector and a 

standard distance metric. This thesis outlines methods whereby all of these 

elements can be varied to deliver higher performance in some situations. 

SIFT is a performance standard to which we often refer herein. 

 

Typically, the standard Euclidean distance metric is used as a distance 

measure with interest points. This metric fails to take account of the specific 

geometric nature of the information in the descriptor vector. By varying this 

distance measure in a way that accounts for its geometry we show that 

performance improvements can be obtained. We investigate whether this 

can be done in an effective and computationally efficient way. 

 

Use of sparse detectors or feature points is a mainstay of current interest 

point methods. Yet such an approach is questionable for class recognition 

since the most discriminative points may not be selected by the detector. 



 v

We therefore develop a dense interest point method, whereby interest 

points are calculated at every point. This requires a low dimensional 

descriptor to be computationally feasible. Also, we use aggressive 

approximate nearest neighbour methods. These dense features can be used 

for both point matching and class recognition, and we provide experimental 

results for each. These results show that it is competitive with, and in some 

cases superior to, traditional interest point methods. 

 

Having formed dense descriptors, we then have a multi-dimensional 

quantity at every point. Each of these can be regarded as a new image and 

descriptors can be applied to them again. Thus we have higher level 

descriptors – ‘descriptors upon descriptors’. Experimental results are 

obtained demonstrating that this provides an improvement to matching 

performance.  

 

Standard image databases are used for experiments. The application of 

these methods to several tasks, such as navigation (or structure from 

motion) and object class recognition is discussed.  
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Chapter 1  Introduction 
 
 

1.1 Motivation 
 
The urge to understand our environment is one if the most basic instincts 

we have. The primary information source we use for that is the visual 

information presented to our eyes. These images represent an extremely 

rich and complex source of information. We use them to recognize objects 

and people, know our location, navigate and perform tasks. We also use 

this visual information as the base on which higher level cognition tasks are 

built – such as interpreting events or intentions. 

 

In computer vision we seek to understand these visual recognition 

processes and replicate them on a computer. To do this has been the goal 

of researchers in computer vision for over a generation now; yet it is still a 

goal that is far from completion. Within computer vision there are a range 

of challenges that are generally treated with quite different methods. Some 

of these topics are 3-dimensional reconstruction, stereo matching and 

object recognition. Object recognition is thus considered one of the primary 

problems in computer vision and is the topic of this thesis. 

 

Automatic object recognition is gaining in importance as more and more 

information becomes available online and in other digital forums. The 

proliferation of digital cameras and camcorders ensures that this process 

will only increase. 

 

Object recognition tasks can be treated as falling into 2 separate parts – 

specific object recognition and object class recognition. Both types of 

recognition have proven to be very challenging to achieve, due to the 

viewing variations that may exist between images. Some of these variations 

include 

 

 scale changes from viewing distance change  
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 viewing perspective (this is sometimes approximated by an affine or 

projective transform) 

 changes within an object class, i.e. intra-class variation, such as 

changes in color or texture 

 occlusion or blocking from other objects 

 clutter from background or other objects 

 illumination or lighting variation 

 image resolution or blur inconsistency due to the image acquisition 

technology 

Some of these variations are illustrated in Figures 1-1 and 1-2. 

 

 

Figure 1-1: Examples of images of the same class. 

These images illustrate some of the range of shape and color 

variation that can occur for images of a class. 

 

The human vision system seems to possess complex methods to deal with 

such variations easily. However, reproducing such performance artificially 

has proved much more difficult. Computers vision still lags far behind 

human vision on most recognition tasks.  

 

Over the last 10 years interest point methods have become very popular in 

computer vision and have been widely applied to both specific object and 

class recognition. Interest points are currently the major method for non-

class object recognition, structure from motion and navigation. 

Improvement in basic image primitives has generally brought improvements 

to a wide array of tasks in computer vision. 
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For simple point-to-point matching, or object specific recognition, matching 

rates of up to 40% are now consistently achievable based on a single point-

region (point and connected region surrounding it). Thus very high object 

matching certainty (e.g. > 95%) can be achieved by a small group of 

points. Moreover this rate is achievable for hundreds or thousands of points 

in an image. For class recognition, the performance achieved depends 

greatly on the degree of variation in the class, and the amount of training 

information available. For relatively simple classes, such as faces, matching 

rates of ~90% are achievable under good conditions. For more complex 

classes matching rates of only 30-40% are possible, and this normally 

requires large numbers of points or the entire image information. The 

variability within object classes results in a great reduction in performance.  

 

    
 

Figure 1-2: Even for quite similar class images, corresponding 

image regions may be quite different 

 

The main goal of this thesis is to improve the performance of interest point 

recognition methods. We pursue 3 main strategies – finding new matching 

metrics, finding better points and finding new point descriptors. The 

purpose of these is to increase the robustness and flexibility of the final 

descriptor to give it a higher performance.  

 

Successful recognition need to strike a balance between specificity and 

flexibility – specificity to distinguish between points, and flexibility to allow 

for viewing and within class variation. The most popular interest point 

method for some time now is the SIFT descriptor [62, 63]. For a typical 

matching task on a standard dataset (e.g. the Oxford set) SIFT can obtain a 

point-to-point matching rate of ~ 30%. This is the benchmark against which 
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much of this thesis is measured. For low dimensional descriptors, steerable 

filters [36] can be used as a benchmark since they have achieved excellent 

performance. Gabor wavelet filters are similar to steerable filters and we 

use them extensively. For a review of interest point matching on this image 

set see [73]. 

 
 

 
 

What’s New in This Thesis? 
 
 

 A ‘geometric match’ descriptor distance which takes account of the 

geometric setting of an interest point descriptor in a way that the 

Euclidean metric does not. Experimental results show that this 

provides a clear improvement in matching performance for 

correlation and SIFT descriptors, compared to the Euclidean distance. 

 

 A dense detector that does not rely on Difference of Gaussian (DoG) 

or Laplace of Gaussian (LoG). It is therefore much more flexible and 

suitable for object class recognition. Experimental results show that 

this provides an interest point with good class recognition capability 

for some classes. It brings some of the power of the Viola-Jones 

method to a general interest point setting. It also gives a high 

performance, low dimensional descriptor that performs competitively 

with the best low dimensional point matching descriptors.  

 

 A multi-level descriptor or 'descriptor upon descriptor'. This differs 

from traditional descriptors which could be described as 'descriptor 

upon pixels'. Experimental results that this allows a substantial 

increase in matching rate compared to traditional single-level 

descriptors  

 

 Experimental results show that several of these methods outperform 

previously documented methods for some recognition tasks. 
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1.2 Thesis Outline 
 
After introductory comments the thesis begins by discussing previous object 

recognition methods and background ideas. This work builds on these 

previous ideas. Some key ones are that of a detector, a descriptor, scale 

space and scale invariance, class discrimination, Gabor wavelets and stereo 

matching methods. 

 

The main body of the thesis then begins with the introduction of the 

geometric match concept. This is then applied to several different 

descriptors and tested on standard image sets. We see an improvement in 

matching performance. 

 

We then introduce the dense detector concept. We choose a suitable flexible 

detector and discuss how it can be used for point-to-point or object specific 

matching. We test this on standard image sets and show its performance is 

superior to that of traditional detector methods while being more flexible.  

From this we move to the topic of class recognition which is the original 

purpose for which it is developed. The implementation for class recognition 

has some differences from that of point matching and we discuss this. 

Discussion of why and how it was designed is conducted.  We show its 

performance on standard databases and compare that to other class 

recognition methods. 

 

Then we discuss the concept of a 'descriptor on a descriptor' and how this 

improves point-to-point-matching. 

 

We then show example applications involving camera navigation and class 

determination. 

 

Finally we conclude with a discussion, noting its strengths and limitations, 

and future improvements that can be made to it. Thesis results and 

summary are available online at www.visionwurx.com/PhD . 
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1.3 Sketch of 3 Main Concepts 
 

 
 

 Concept 1: Geometric match distance: this differs from the standard 

Euclidean distance and takes more account of the geometric setting 

of the descriptor. In computer vision feature data is often provided as 

a vector of values. Instead of simply matching corresponding values 

in a feature vector, the geometric match tries matching to the spatial 

neighbors of each feature vector entry. This is similar to established 

stereo methods. These are generally not the sequential neighbors of 

the data in the vector. Thus, knowledge of the geometric layout of 

the data and vector arrangement is necessary for correct matching. 

See Chapter 3 for further information. 

 

 Concept 2: The dense point detector: This differs from DoG 

(Difference of Gaussian) and LoG (Laplace of Gaussian) and provides 

a more flexible point detection framework. DoG and LoG are scale-

space based detectors; we believe that only a descriptor-based point 

detector gives high performance for class recognition. Therefore for 

each image pixel we calculate the descriptor value, and perform a 

lookup into the database space of points. The key aspect is 

descriptors are calculated for all pixels, and that points can be 

enrolled in the database by any criteria. This increases flexibility and 

is asymmetric in the processes of point selection and recognition. The 

final detector is has some features of the traditional detector 

framework, and the Viola-Jones detector concept. See Chapter 7 for 

further information. 

 

 Concept 3: Multi-level descriptors: Although many different 

descriptors have been previously proposed, there is one thing that all 

these descriptors have in common: they are all applied directly to 

image pixel data. Here we present the idea of multi-level descriptors, 

where the lowest level is constructed from image pixels as usual, but 
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each successive level is constructed from the previous level of 

interest points. This has 2 objectives: to allow more robustness in the 

descriptor, and to form 'meta-descriptors' that are aggregations of 

normal descriptors. See Chapter 9 for further information. 
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Chapter 2  Background and Related Work 
 
 

2.1 Early Object Recognition Ideas 
 
Formal work in computer vision began in the 1960’s and developed slowly 

initially. Perhaps the earliest formal work, of which this thesis can be said to 

be descended, is the work of Marr [65] on edge extraction. This used 

‘Mexican hat’ wavelets (see Figure 2-1); thus the usage of wavelets in 

computer vision is already very old. This work was primarily concerned with 

edge detection rather than object recognition per se, but demonstrated the 

use of wavelet convolution to achieve vision tasks. 

 

         

(a) (b) 

 

Figure 2-1: Example of Gabor wavelet 

(a) a 1-D Gabor wavelet; (b) a 2-D Gabor wavelet. 

 

In the mid to late 1980’s the concept of alignment was proposed [47]. This 

is based on matching simple point sets e.g. triplets of points, or 3 line 

directions and a corner point (Figure 2-2). Such methods do not possess 

high robustness to changing viewing conditions. However, they do 

demonstrate the use of local features for recognition. 
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Figure 2-2: Example of line extraction on which typical ‘alignment’ 

methods worked. 

 

Other concepts that became popular at that time were indexing by hash 

tables and pose clustering. This consists of hypothesizing pose changes 

between a given object and a model object. For each hypothesis a vote for 

that pose is made, and the pose with the majority is adopted. In some 

sense, this idea has remained widely used in computer vision, e.g. in such 

algorithms as the Hough line detector and RANSAC. A practical difficulty is 

to identify robust image primitives to form the initial pose hypothesis. 

 

In the early 1990’s ideas of geometric invariance became prominent in 

vision [76]. These have their origin in mathematical invariants of geometric 

systems. For example, under affine transforms the ratio of distances 

between points is invariant; under projective transforms the cross ratio is 

preserved; under Lorentz transforms, the Minkowski metric remains 

invariant. After an initial burst of enthusiasm, such methods have been 

found to have only restricted usage. This is primarily because such 

invariants only exist in planar spaces, and in the difficulty in reliably 

identifying point sets and lines. 

 

It is also possible to perform matching using contours and contour chain 

approximations, as was illustrated in [35]. Around the same time it was 

shown that color histograms are also effective in some situations [100]. 

Such methods generally rely on good quality segmentation and are 

therefore not robust against occlusion; also they lack high invariance 

against viewing changes. 
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Another influential object recognition method is the eigenface or eigenobject 

method [105] (Figure 2-3). This method relies on the consistent correlation 

structure between pixels in an image window, and performs Principal 

Component Analysis (PCA) on that structure. It also depends on good global 

segmentation and therefore is not robust against occlusion. Also, principal 

components relate to variation, not discrimination; recognition is more 

closely related to discrimination. 

 

 

 

Figure 2-3: The first 10 ‘Eigenfaces’ extracted by using PCA on pixel 
correlation. 

(from Google Images) 

 
 

2.2 Scale Space 
 
Scale space is a concept that dates from the 1980’s [112], was developed 

by Lindeberg [60] and has remained of key importance. The scale space of 

an image is the representation of the image under convolution kernels of 

increasing size (see Figure 2-4). It can be shown from mathematical 

consistency (e.g. the semi-group property) that the only possible kernel is 

the Gaussian kernel. By decimating the images, the information to pixel 

ratio is maintained and a pyramid is obtained 
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Figure 2-4: Example of scale space.  

To maintain a proper information:pixel ratio at different sizes, 

Gaussian filtering and decimation must occur. 

 

For practical object recognition systems, the scale space concept 

determines that we must perform object recognition on all the images of 

the scale space pyramid. 

 
 

2.3 Interest Points 
 

If we could identify propitious points in the image to apply further 

recognition processing, this would have several benefits 

 

• Matching on subsets of image points is computationally more efficient 

than matching all points 

• Matching a subset reduces the false positive match number 

• A subset may have desirable properties e.g. be more stable or 

discriminating. 
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The challenge of this paradigm is to be able to identify points in a reliable 

and robust manner. Specifically we seek a means to identify the same 

points under the image transformations listed in Sec. 1.1.  

 

A method to identify keypoints or interest points was outlined by Harris [42] 

in the context of navigation. This was based on corner points and used a 

maxima function of the 2nd moment quantity (see Sec. 2.3.3). This point 

detector was not scale invariant and therefore did not perform well under 

practical situations which involve scale change. Nonetheless, it 

demonstrated that reliable point extraction was possible at modest 

computation (see Figure 2-5). 

 

 

Figure 2-5: Image corner points, such as those returned by the 

Harris operator. 

 

The next major advance that occurred was the concept of the interest point 

descriptor [88]. This descriptor was a ‘grayvalue’ vector of Gaussian 

convolution derivates around a point (see Sec. 2.3.3). This provided a point 

descriptor but did not present a means for reliable detection within scale 

space (under scale variations). The descriptor is given as a vector of values, 

which was adopted by later approaches- 

 

Descriptor =(u0, u2, u3, …, un) 
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2.3.1 Scale Invariant Feature Transform (SIFT) 
 
A breakthrough occurred in 1999 with Lowe’s [62, 63] conception of the 

Scale Invariant Image Transform (SIFT). This presented a simple method 

whereby points could be repeatably located within scale-space (space and 

scale). It also presented a descriptor for interest point matching which has 

been proven to be more robust to image transforms than almost any other 

descriptor. 

 

SIFT Detector: The SIFT scheme uses maxima of the Difference of 

Gaussians (DoG) as the point detector. Gaussian kernels of different sizes 

are convolved to obtain the image at different scales. These are then 

subtracted from one another. Those points that are maxima compared to 

their 3×3 image neighbors, and also to their neighbors in the adjacent 

scaled images are selected (see Figure 2.6). A quadratic fit through space 

and scale is used to find the maxima. Points of low contrast and near edges 

are rejected. 

 

In a typical 500×500 pixel image, this could extract of the order of 1000 

points. Whereas the Harris detector finds corner points, the DoG tends to 

find ‘blob’ like points. 

 

 

Figure 2-6: Multi-scale DoG scheme. 

The image is obtained at different scales, and those pixels 

selected which are maxima of differences in space and scale 

(from [63]). 
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SIFT Descriptor: The SIFT descriptor divides the pixel region around a point 

into 4×4 sub-regions. At each pixel a gradient direction and value is 

computed. Typically 8 orientations are used. Within each of the 16 regions, 

a histogram of these gradient orientations is formed (see Figure 2-7). Thus 

a histogram vector of 4×4×8 = 128 dimensions is obtained.   

 

 

Figure 2-7: SIFT descriptor.  

The SIFT descriptor divides the area around a point into a number 

of spatial regions, and then obtains orientation histograms for 

each bin. Although this diagram has 2×2 spatial regions, SIFT 

usually uses 4×4. 

 

Additionally the maximum value of a histogram of gradient directions 

around the keypoint is used to allocate an orientation for the point. 

 

Operation: In applications the detector is used to extract keypoints from an 

image, and descriptors are computed for each point. These are then stored 

in a database. Then for a new test image, the same detector and descriptor 

application is made i.e. there is a symmetry between point selection in the 

initial point enrolment stage, and in the image recognition stage. The 

selected point descriptors are then matched to the database by Euclidean 

nearest neighbour matching (L2 norm, see Sec. 2.7). This has been found to 

have excellent robustness and matching performance in [70].  

 

In recent years SIFT has become very widely used in computer vision, for 

tasks such as object recognition [33, 62], robot navigation [91], structure 

from motion [3], panorama stitching [17]. 
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2.3.2 Affine Invariant Interest Points 
 
The SIFT scheme provides for invariance to x-y translational motion, scale 

change (movement in z direction), rotation in the x-y plane but there are 

other possible viewing changes. In particular SIFT does not allow for affine 

deformation in the x-y plane. Such an affine transform corresponds to the 

transform of a plane under an affine projection model; it therefore 

approximates many local viewing changes. 

 

A method to adapt the detector/descriptor framework to allow for affine 

changes was demonstrated in [69], based on ideas of [61]. This involves 

repeated interest point detection and image affine adaption. It is not clear 

that affine covariance is worthwhile since it involves increased computation 

and delivers modest improvements in matching. For a typical application on 

standard images (Oxford database [2]) it could increase the matching 

performance from ~30% to ~37%.  

 

Other affine invariant methods are [9, 41, 56, 74, 85, 86]. More recent 

affine invariant ideas include [106, 101, 84]. 

 
2.3.3 Other and Recent Detectors & Descriptors 
 
Following the success of SIFT, a host of other invariant interest point 

schemes were proposed. These retain the dichotomy of first using a 

detector to select points, then applying a descriptor to the region around 

them. These detectors have received widespread use in object recognition. 

A key characteristic of them is that they select points without regard to 

class discriminative properties. 

 
Detectors: Some interest point detectors are- 

 

a) Difference of Gaussian (DoG) [62]. See Sec. 2.3.1 

 

b) Laplace of Gaussian (LoG) [68]. This identifies points which are maxima 

of the quantity ( ) ( )( )sxLsxLs yyxx ,,2 +   where s is scale.  
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Figure 2-8: The Laplacian of Gaussian (LoG) at a pixel. 

Taken at different scales provides the same profile or shape but 

multiplied by a relative scale factor. 

 

The LoG is a very stable detector and is similar to the DoG. For this reason 

we will refer to it. Figure 2-8 illustrates the key property of scale invariance 

– that the maxima are preserved under a scale change.  

 

c) Harris or Hessian matrix detector [42] 
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where g  is the Gaussian function. 

 

This is the 2nd moment matrix of a point region. The Harris detector seeks 

points that maximize the difference between the determinant and the trace2 

of this 2nd moment matrix. 

A similar detector can be made instead using the Hessian matrix which uses 

2nd derivatives 
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d) Harris-Affine or Hessian-Affine [69]. The Harris affine detector uses 

Harris points for initialization but then also uses the M matrix (above) 

for affine region normalization. This process is applied iteratively until 

convergence. The Hessian affine method is similar but uses the Hessian 

matrix instead. 

 

e) Entropy or salient based detector [52, 53] 

 

( ) ( ) ( )∑−=
I

sxpsxpsxH ,log,,                          (2.2) 

This detector is based on ideas from information theory. It calculates (2.2) 

at all points and some scales. This is then multiplied by the gradient of p, 

and maximum points are selected. Another entropy based method was 

described in [57]. 

 

f) FAST (Features from Accelerated Segment Test) [83]. This detector 

considers the distribution of pixel brightness in a circle around a point. 

If n contiguous pixels are sufficiently brighter or darker than the centre 

point it is considered an interest point. It is a fast detector and is useful 

for navigation. 

 

g) Maximally Stable Extremal Regions [67]. This detector looks for those 

point regions which are most stable when the image is thresholded at 

continuously increasing values.  

 
Descriptors: Some point descriptors are- 

 

a) SIFT [62]. See Sec. 2.3.1. 

 

b) Steerable filters [36], Differential Invariants [34], grayvalue [87]. These 

involve computing the local jet which is the set of local Gaussian 

derivatives up to a certain order. These are then can be made rotation 
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invariant or to vary in a predictable way with rotation change. See Figure 

2-9 (a). 

 

 

 

 

(2.3) 

 

 

 

 G is the Gaussian function. 

 
(a)                                      (b) 

Figure 2-9: Derivative based filters 

(a) Gaussian jet derivatives and (b) complex filters  

(from [70]). 

 

c) Histograms [59, 100]. Histograms are a simple statistical descriptor of a 

set of data. They have been found to be useful for recognition in many 

cases, particularly involving color or texture. 

 

d) Moment Invariants [107].  
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These give a signature of the shape and intensity around the point. They 

have been used are more effectively with color images. 

 

e) PCA SIFT [54]. This combines the SIFT descriptor with a subsequent 

application of Principal Component Analysis (PCA). This can reduce the 

dimensionality of the descriptor from 128 to ~30 dimensions; however it 

is not clear that it consistently improves matching performance. 
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f) Shape Context [11]. This creates a histogram of edge points in a log-

polar space around the point (Figure 2-10). It has been shown to be 

effective for OCR (optical character recognition). 

 

 

Figure 2-10: Example of shape context construction. 

 

g) GLOH (Gradient Location and Orientation Histogram) [70]. This is similar 

to SIFT but uses a log-polar space and is of higher dimension. 

 

h) SURF (Speeded Up Robust Features) [10]. This is a fast descriptor that 

uses Haar wavelets and gives high matching performance. This has 

become popular and has an OpenCV implementation. 

 

i) HoG (Histogram of Gradient) [24]. This calculates a histogram of 

gradients but does so using a dense grid of cells and some overlap. 

 

j) DAISY (Dense rapidly computed Gaussian scale variant gradients) [104].  

 

k) SUSAN (Smallest Univalue Segment Assimilating Nucleus) [98]. This 

forms a circle around a point and for every other point within the circle 

t
mImI

emc
6

0 ))()((

)(
−

=  (t is the radius) is calculated and summed. A 

further linear function of this is used to form the final descriptor. 
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l) Cross Correlation. This is the simplest descriptor, consisting of a 

Gaussian blur followed by a sub-sampling. This is very efficient since this 

will normally computed anyway for scale invariance.  

 

m)  Gabor wavelets [38]. See Sec. 2.3.4. 

 

Other notable interest point methods are explored in [13, 14, 55, 82, 84, 

24, 25, 31]. 

 

In general these methods only offer modest improvement, or only better in 

some situations, compared to SIFT. In the majority of cases they are 

inferior. Thus since SIFT was first described only incremental improvement 

in point-to-point matching capability has taken place. An example of point-

to-point matching is given in Figure 2-11. 

 

 

 

(a) 
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(b) 

Figure 2-11: Mismatching problem. 

(a) An example of interest point extraction or enrolment, from an 

image and (b) recognition or matching to another image. This 

example indicates that many enrolled points may not have a 

match or may be matched incorrectly. 

 
2.3.4 Gabor Wavelets 
  
Gabor wavelets are used extensively in this thesis therefore we will describe 

them separately. They have extensive uses in general signal processing and 

can also be used as a type of descriptor. 
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For image processing we are generally concerned with 2-dimensional Gabor 

wavelets. Such a 2-dimensional Gabor wavelet is a function described by 

the equation 
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where σ  is the Gaussian envelope sigma, γ  is the skew, θ  is the 

orientation and λ  is the wavelength. Normally we only use the real part of 

this.  

 

 

 
 

Figure 2-12: A set of 2-D Gabor wavelets.  

This example has 4 orientations and 2 phases. 

 

The Gabor wavelet has been adopted in this work for several reasons 

 It has been found to be used within the human visual system at a low 

level 

 It achieves the maximum resolution of both spatial and frequency 

information i.e it satisfies the Heisenberg condition  
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4
1≥ωσσ x  where xσ  is the spatial variance and ωσ  is the frequency 

variation [64]. 

 The Gabor kernel has been shown to optimize some information 

theoretic criteria related to the extraction of information from an image 

[80]. 

 Gabor wavelets have achieved excellent results in practice [95]. For 

example, in the Face Verification Competition FVC2004, the top 2 

methods used Gabor wavelets.  

 

For a practical descriptor, Gabor wavelets are applied as a filter bank, at 

different orientations, phase and frequencies. For example, in part of this 

work we use a bank of 16 Gabor wavelets at 4 orientations, 2 phases and 2 

frequencies. If the entire image is convolved with these, a 16 dimensional 

descriptor is obtained at each point. A set of Gabor wavelets is shown in 

Figure 2-12. 

 

One useful property of this function is that it is separable. This can be seen 

in that Eq. (2.5) can be written as f(U)g(V). Separability is useful in 

accelerating the numerical implementation of convolution, since it allows 

each dimension to be convolved separately. In practical image processing it 

can speed up the convolution by a factor of ~ 4-5. 

 
2.3.5 Interest Point Learning and Class Recognition 
Techniques 
 

Recently some learning techniques related to interest points have been 

shown to offer some substantial improvements in performance, at the cost 

of greater prior processing. These involve fitting a classifier to the points 

[45, 81]. In this thesis we are interested in methods that do not require 

extensive pre-training. 

 

Some interest point methods have explicitly used groups of points or meta-

descriptors rather than individual points as the matching object [18, 23, 20, 

40]. 
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There has also been a lot of work on adapting interest points for class 

recognition. These include [30, 32, 51, 58, 72, 71, 90, 96, 79, 114, 77, 

109, 103, 15]. 

 
 

2.4 The ‘Biological’ Model 
 
A variation to the standard Detector/Descriptor framework is the ‘biological’ 

model developed over 10 years at MIT [93]. It is so-called because it 

explicitly attempts to model visual processing in the primate visual cortex 

area of the brain. Since it has influenced this work we will describe it in 

some detail. 

 

This model involves 

 

 Applying a bank of Gabor wavelets of 4 different orientations and a 

range of different scales 

 2 adjacent scales are treated as a ‘band’ 

 In each band, the maximum of an 8×8 pixel region, and across each 

of the 2 images in the band, is selected. These are called the C1 

points. 

 Previously a set of k patches, Pi,  of varying sizes ni× ni  ki ...1=  has 

been selected from training images 

 For each of the C1 points, let X be the pixel region around it. We then 

calculate 
( )2exp iPXY −−= κ

 for each Pi .These then are the S2 

maps. 

 For each training patch Pi find the maximum over all positions and 

scales. We thereby obtain k C2 features, for a final k-dimensional 

feature vector. 

 

Compared to the descriptors described earlier this model has some 

advantages for class recognition has been shown to outperform SIFT points 

for this purpose. This is partially because the maxima operation allows the 

shape to vary over a greater region, and partially because it does not rely 

on scale space based detectors (e.g. DoG). As we will see in Chapter 9, this 
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can be considered to be a Level 2 descriptor. The first level is the Gabor 

descriptor, the second is the maxima operation.  

 

 

2.5 Viola-Jones Object Detection Framework 
 
A fast object detection framework was described by Viola and Jones [108] 

in 2001. This was proposed in the context of face detection although it can 

be generalized to a wide range of classes. For single object class detection 

applications it generally achieves faster, more accurate operation than any 

previously described methods. In particular, it differs fundamentally from 

the detector/descriptor framework and can outperform it for class 

recognition tasks. The detector method presented in Part III attempts to 

bridge some aspects of the gap between the Viola-Jones method and the 

detector/descriptor framework. 

 

The Viola-Jones method uses features similar to Haar wavelets as its 

geometric primitives (see Figure 2-13). 

 

 

 

Figure 2-13: An example of face detection using Viola-Jones 

filters. 

 

Using these primitives of different sizes and positions within a window of 

24×24 pixels provides for 45,396 possible features. A learning algorithm, 

Adaboost is used to select the most discriminative ones for a given object 

class. Using these discriminative features, a linear threshold is used as the 

classifier function i.e. a lookup into a 1-dimensional space is performed for 

discrimination. This process is applied efficiently by using a cascading 

structure, with the most discriminative features being applied first. 
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Such a detector applies a descriptor, then ‘looksup’ its value into a space to 

determine acceptance or rejection. It does so for every point in the image. 

Thus it is a dense point method, unlike DoG or LoG methods (such as SIFT) 

which use sparse points in the image. We will call such a method a ‘dense 

point detector’. It is a descriptor-based detector, unlike DoG or LoG for 

example, which use a quantity extraneous to the descriptor as detector. 

 
 

2.6 Testing and Performance Measurement 
 
To determine how effective an object recognition method is, it is critical to 

have clear, relevant and objective standards of performance assessment. 

For interest points, some assessment methodologies were developed very 

soon after they were conceived. We use similar criteria to those developed 

in [21], [70] and [73]. These relate to interest point performance between 

2 images that have a known relationship e.g. a homography, H.  

 

The 2 main indices used are repeatability, which is a measure of detector 

consistency, and the matching score, which is a measure of descriptor 

performance. Herein we will make more use of the matching score since we 

are concerned with descriptor performance. We will also use ROC graphs, 

and recall-precision graphs. These are also measures of descriptor matching 

performance.  

 

Suppose interest point detectors have been applied to 2 images with a 

known homography H between the 2 images. Thus a set of interest points 

exist for each image. Figure 2.12 provides an example of a pair of images 

with known homography that have interest points extracted. Then- 

 

a) 
image2)  points int.# image1,  points int.min(#

points ingcorrespond#ityrepeatabil =              (2.6) 

 

The repeatability is a measure of detector consistency or reliability. It is the 

proportion of points from the 1st image that are in the corresponding 
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position in the 2nd. We regard points from each image as corresponding if, 

for positions a and b, 4<− Hba . 

 

b) image2) points int.# image1, points int.min(#
matchescorrect  #  score matching =      (2.7) 

 

The simplest matching measure between the 2 image sets of interest points 

is by the Euclidean nearest neighbour. A correct match is one for which 

4<− Hba . Note that this measure relates matches to the minimum 

number of interest points in the images, rather than the number in the 

original image. Thus in some sense it gives a misleadingly positive 

indication of matching.  

 

c) points ingcorrespond #
matchescorrect  #  recall =                                               (2.8) 

 

This is another measure of matching performance. It compares matches to 

the number of correspondences and therefore gives a descriptor matching 

indicator more independent of the detector. 

 

d) 
matchesfalse#matchescorrect #

matches false # precision  - 1
+

=                     (2.10) 

 

The precision is a measure of how likely a descriptor match is to be correct, 

compared to all matches.  

 

Recall is generally graphed against 1-precision. In this case, rather than use 

the nearest neighbour, a match is defined as  

(desca-descb)< d. d is allowed to vary to generate the graph. 

 

e) Receiver Operating Characteristic (ROC) is a graph of the true positive 

rate vs. the false positive rate. The true positive rate is the same as the 

recall. It is more easily used as a metric for class recognition, rather than 

point-to-point matching, and this is how we use it here.  
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f) image1 points int.#
matchescorrect  #  rate matching =                                        (2.11) 

 

Compared to the matching score, the matching rate gives a more complete 

measure of the matching system. It encompasses not only the effect of the 

descriptor matching, but also the effect of the detector. It is therefore more 

a measure of the whole system, rather than the descriptor per se. 

 

2.6.1 Image Data Sets 
 
The main datasets used in this work are – 

 

 the Oxford affine features dataset [2] at 

http://www.robots.ox.ac.uk/~vgg/research/affine/index.html  

 

 the Caltech classes dataset [1] at 

http://www.vision.caltech.edu/Image_Datasets 

 

We make considerable use of these since they facilitate comparison with 

other published work. Several examples of these images are given in 

Figures 2-14 and 2-15, more complete examples are given in Appendix I.  

 

The Oxford set is well established to compare performance of point-to-point 

matching. Some Matlab scripts and homography calculation tools are 

available for it. It has sequences of image variation by viewpoint change, 

scale, blur, illumination, and JPEG compression. It draws a distinction 

between more ‘textured’ images and more ‘structured’ images. The Caltech 

databases consist of collections of images of various object classes; it is 

widely used to assess class recognition performance. It includes the ‘Caltech 

101’ dataset of 101 object classes, and other individual class collections. We 

also obtained a small number of images from other sources, such as Google 

Images. These are ascribed where used. 
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Figure 2-14: Oxford graffiti wall sequence – structured viewpoint 

change.  

These are 2 examples from this sequence of 6 images which show 

a graffiti wall from differing viewpoint positions. This is considered 

to be a ‘structured’ type of image, rather than a ‘textured’ one. 

The matching rate is the number of correct interest points 

detected in the 2nd image relative to the 1st. Correctness is 

determined by the homography between the images. 

 

 

   

 

Figure 2-15: Caltech Cars Collection. 

These are 2 examples from the ‘cars_markus’ collection. Although 

to human eyes these images look very similar, even such small 

changes can present problems for matching algorithms. 
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2.7 Distance Measures 
 
When features are obtained from the image, we need to compare these to 

database or enrolled features. Normally the feature information exists as an 

n-dimensional vector, and we are determining the distance between 2 

vectors. That is, we are calculating a distance metric or norm. 

 

There are a variety of standard mathematical metrics for doing this- 

In general,  

Lp Norm:  for ( )pp
n

pp

p
xxxxp

1

211 +++=≥ ΚΚ                        (2.12) 

Specifically, 

 

L1 or Manhattan metric: ( )nxxxx +++= Κ211
                       (2.13) 

L2 or Euclidean metric: ( )2122
2

2
12 nxxxx +++= Κ                    (2.14)  

 

Sometimes variations of these are used [49], [113]. Other metrics, such as 

the Mahalanobis, Hausdorrf [48], or Chamfer distances [102] are used in 

computer vision, but not used in this thesis. In Part II we will develop 

further metrics which are particularly suitable for interest point descriptor 

vectors. 

 
 

2.8 Machine Learning Techniques 
 
Ideas from statistics or machine learning are now used throughout 

computer vision.  

 

Linear Discrimination: 

In this work we make use of linear discrimination algorithms. The object of 

linear discrimination is to separate 2 classes of data points using linear 

functions (see Figure 2-16). 
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Figure 2-16:  Example of 2D linear discrimination.  

The 2 datasets in this image are separated by a linear function. 

We use the same idea with higher dimensional data. 

 

There are a variety of algorithms for this such as conjugate gradient 

descent, least squares, etc. Here we have used linear Support Vector 

Machines (SVM’s) [22, 50, 111, 113] for this purpose, using a Matlab 

statistical library [5]. Linear SVM’s will maximize the distance between 

nearest points of different classes on convex, separable data sets. 

 

Clustering: 

Another function widely used in visual recognition is clustering. The purpose 

of this is to separate data points into groups that are close to one another 

by some metric (see Figure 2-17). In class recognition tasks, it is presumed 

that such points will be of the same class. There are a variety of popular 

algorithms for this such as k-means and agglomerative methods. 
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Figure 2-17: Example of clustering.  

The 2D data in this image begins unlabelled, but has been 

clustered into 5 groups that have been colored differently. 

 

 

2.9 Problems with Existing Approaches 
 
Although the methods described in this chapter have constituted a 

significant step forward for computer vision, they still retain clear limits.  

 

Lack of a general theory:   

In so far as SIFT has achieved good recognition performance, this has been 

established empirically. No general theory exists to predict the performance 

of a detector/descriptor combination. Such a theory could illustrate better 

descriptors or show that better descriptors do not exist. This thesis does not 

present such a theory, but its absence motivates this work. 

 

Matching performance:   

The detector/descriptor framework has clear limits to its matching 

performance. For example, for the modest matching task involving scale 

and rotation change in images of Figure 2.12, SIFT achieves matching of < 

40%. It may be that methods exist with substantially higher matching 

ability. Also, descriptors generally increase their performance as their 

dimensionality increases (since this provides a more detailed descriptor). 

However, a limit is reached beyond which performance will degrade. For 
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example, for the GLOH descriptor (which is very similar to SIFT) 

performance degrades after ~ 200 dimensions [70]. Thus, an ultimate limit 

to descriptor performance has been reached. 

 

Detector Limitations:   

The most established detectors such as DoG (Difference of Gaussian) or LoG 

(Laplace of Gaussian) select points without regard to their descriptor’s 

discriminative properties. For example, the LoG selects points that are at a 

repeatable position within scale-space based on gradient. However, the 

descriptor at that point may a very weak response, or one that is very 

unstable. Also, for class recognition, DoG or LoG points may have little or 

no discriminative power.  

 

For example, Figure 2.18 shows DoG points overlaid for these images. 

These points do not correspond to what other methods would identify as the 

key points of the face for recognition. For example, in Figure 2.16(b), the 

eyes are almost completely ignored by interest points (other methods have 

identified the eyes as among the most discriminative). 

 

        

 

Figure 2-18: Example of DoG interest point extraction.  

DoG points are selected for scale space repeatability – they do 

not necessarily correspond to the most class-discriminative 

regions of the image. 
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Points selected by the ‘biological’ model are an improvement since they are 

based on descriptor properties. However, such points are still selected by 

criteria only loosely related to class discriminative power (they are selected 

primarily by length, see Sec. 2.14). Also selecting 1 point from a fixed 

window size may be too inflexible for some classes. The Viola-Jones method 

is better in this regard, since it allows any point to be potential match, and 

selection of points for further processing is done by descriptor properties 

not by extraneous quantities such as DoG or LoG. 

 

Viola-Jones Limitations: 

The Viola-Jones method is substantially better for class recognition since the 

descriptor is the detector. However it has severe limitations in that a 

specifically selected sequence of descriptors must be used for each object 

class. Humans are thought to be able to distinguish between 1000’s of 

object classes. Although the Viola-Jones method is real time for a single 

class, it is not fast enough to simultaneously detect a large number of 

classes. In this sense a DoG detector is superior, since it can be applied 

unchanged to all points or classes. Also, often it requires a very large 

number of training examples, which may not always be available, and 

training is often very slow. 

 

Inflexible Descriptors: 

Although the Viola-Jones method has demonstrated good performance for 

face recognition, this is related to the fact that faces have a more consistent 

shape than many other classes. For example, to recognize a dog in images 

would probably require a method that could deal with greater variation. A 

more capable method would allow this greater flexibility, and would 

probably incorporate situation or scene specific information. Issues of scene 

understanding are however not the subject of this thesis. 

 

Limits to Point-based Matching 

Point based matching is the subject of this thesis and has been shown to be 

effective for many tasks. However, simple point regions may not be ideal 

for all tasks and may be unsuitable for some. Although we do not explore 

alternative 2D geometries hereafter, in most cases it is straightforward to 
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do so. The basic descriptor operation remains the same with some shape 

change. For example, line descriptors could be formed along the line by 

elongating the descriptor to fit the line region- 

 

    

Figure 2-19: Example of descriptors stretched (compare Fig 2-12) to fit a 

line along the longer axis. 

 

For some objects, recognition by 2D descriptors may be inherently unsuited. 

For example, recognizing a chair by 2D descriptors is very difficult due to 

the wide variety of possible appearances. However, 3D descriptors may be 

more suited. In many cases the descriptors detailed in this thesis could be 

extended to 3D, although to do so would be much more computationally 

demanding. For example, 3D Gabor wavelets are easy to conceive but are 

likely to be very slow to apply. 3D descriptors will likely be a feature of 

computer vision in the future. 
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Part II The Geometric Match 
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Chapter 3  Geometric Matching for 
Correlation 
 
 

3.1 Introduction 
 
In this chapter we introduce the concept of geometric matching, and use 

the correlation descriptor to illustrate it, since that is the simplest example. 

 

Most popular point matching techniques rely on a ‘descriptor’ formed in 

relation to a specific point (see Sec. 2.3). This is generally represented as a 

vector data structure; the number of vector dimensions depends on the 

specific type of descriptor. Matching is performed by obtaining the distance 

between 2 vectors, and for this we need to choose a distance measure (see 

Figure 3-1). In this chapter we introduce a new distance measure as an 

alternative to current popular measures. The primary motivation for this is 

to increase the flexibility of interest point matching. 

 

Various distance measures are commonly used in computer vision (as 

described in Sec. 2.7). Of these, the simplest and most commonly used one 

is the Euclidean distance, or L2.  

 

The Euclidean distance finds the distance between 2 vectors in a ‘flat’ space 

(e.g. unlike a Riemannian metric, or a metric on a set). It is a generic 

distance measure in that it does not take account of the specific properties 

of the data vector. It can be used to find the distance between any 2 

arbitrary vectors. It treats all dimensions of the vector as being equal and 

independent dimensions. Since it does not take account of the particular 

characteristics of the data on hand, it may not be the optimal performing 

distance measure for a particular application.  

 

 

 

 

 



 

Part IV Applications and Conclusions 44

 

 

 

 Descriptor1 = (u0, u2, u3, …, un)  

                                Descriptor2 = (v0, v2, v3, …, vn)  

 

Figure 3-1: Descriptors relate to an image patch and are 

represented by vectors.  

Patches are compared by differencing the vectors. 

 

A region descriptor is a data vector that is designed for a particular purpose. 

Ideally, it very efficiently characterizes data that has a specific geometric 

meaning. It typically encodes information including spatial, orientation and 

frequency information. Since it has a specific and consistent geometric 

meaning it is reasonable that we could find a better distance metric for it 

than the Euclidean metric. 

 

In matching descriptors obtained from interest points, often the underlying 

image has been distorted by viewpoint change, occlusion, etc. Also, the 

point the descriptor is centered on may not be perfectly located due to 

detector limitations. For these reasons the Euclidean distance may not be 

the best distance measure available. 

 

3.2 Correlation Descriptor 
 
The correlation descriptor is perhaps the simplest descriptor. It is simply the 

image region around a point smoothed with a Gaussian kernel and sub-

sampled. If the Gaussian smoothing and sub-sampling are in proportion, it 

is simply the image patch at a higher scale (ignoring edge effects). This can 

be an efficient descriptor to use because higher scale representation of an 

image must normally be obtained anyway for scale invariance. The 

correlation descriptor only encodes spatial information, not frequency or 

orientation information. For this reason it is particularly suitable for 

geometric matching, and we begin by treating it. 
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Figure 3-2: Geometric correlation descriptors. 

For the correlation descriptor, each element of the descriptor 

vector has a simple spatial geometric meaning 

 

It can be seen in Figure 3-2 that the individual dimensions of the vector are 

not completely independent – a geometric relationship or metric exists 

relating them together. For example, pixel n in the diagram is a neighbour 

of pixel n+1 and therefore the value if pixel n is likely to be similar to that 

of pixel n+1. More generally, the positions of the pixels in the descriptor are 

related by a Euclidean metric 22 ji + . The values of the pixels are related 

in some way by this metric. Treating such data as a vector of independent 

dimensions ignores this metric and is inappropriate. 

 

3.3 Geometric Distance Metrics 
 
The Euclidean distance, as applied to 2 such a correlation descriptors, gives 

a distance between  

j 

patch of image 1: 

     i 

 

 

patch of image 2: 

 

 

 

 

i

j

n n+1n-1 
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j 

patch of image 1: 

                     i 

 

 

patch of image 2: 

 

Figure 3-3: Euclidean correlation descriptors. 

In Euclidean differencing for the correlation descriptor, each 

spatial region is only compared to its corresponding region in the 

other patch 

 

In Figure 3.3 it can be seen that by the Euclidean vector distance the match 

is between exactly corresponding pixels in the descriptor patch. This 

distance is an approximation to the difference between the 2 descriptors. 

However, it can be seen that it does not take full account of the geometric 

setting of the data. What we seek is a distance measure that takes account 

of this fact - that nearby descriptor pixels are closely related, and that 

distant descriptor pixels are less related.  

 

One way to do this is to allow the match to vary over an area of the 

descriptor patch. For example, the match of Figure 3.3 can be generalized 

somewhat to- 

 

      j 

 

patch of image 1:  i 

 

patch of  image 2: 

 

 

Figure 3-4: Simple geometric matching. 

One form of simple geometric matching is to compare each pixel to the 4-

connected region around it 
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      j 

patch of image 1: 

   i 

 

 

 

patch of image 2: 

 

Figure 3-5: Localized geometric matching. 

A slightly more complex form of geometric matching is to 

compare each pixel to the 8-connected region around it 

 

This match distance allows matching to the immediate neighbors of a given 

pixel. This can be done in a variety of different ways such as 4-connected or 

8-connected regions (see Figures 3.4 & 3.5). 

 

This is an improvement over the Euclidean match but it opens up new 

questions. Should the match to neighbor points in Figure 3.5 be treated 

equally to the match to the corresponding centre point? If not, how should 

we make the distinction between the centre point and the neighbors? 

Effectively we want to encourage the match to the centre point, but still 

allow the match to neighbors. One simple way to do this is with the 

matching function 
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i, j represent the spatial dimensions of the descriptor, as per Figure 3.3 

above. 

 

The parameter k is the penalty term for neighbour matching. It expresses 

our prior belief that matching is most likely to occur to the centre point. We 
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therefore only accept the match to the neighbour if it is markedly closer. 

Using this penalty is a Bayesian concept, since it is weighting the choice in 

favor of the centre point (see Figure 3-11 for the smoothed case). The 

match selects values for m, n which are the matching disparity. 

 

In the formulas (3.1) we have used the indices i,j to denote positions over 

the descriptor area. This is not appropriate for a practical formula since the 

data structure is a vector i.e. we need to map i, j positions to positions in a 

vector. So we end up with a match of the form of Figure 3-6. 

 

 

 

 

Figure 3-6: The geometric match results in matching to certain 

specific components in the descriptor vector, depending on the 

type of matching and the descriptor. 

 

This is slightly more complicated to implement numerically. The optimal 

value of the penalty parameter k must be determined empirically. 

 

 

Definition 3.1:  A geometric match is a matching between descriptor 

vectors which allows matching not only between corresponding 

components of the vector, but also to neighbors in space, orientation, 

frequency, etc. 

 

 

 

 
3.3.1 Geometric Arrangements 
 
If we allow a more general geometric match, rather than a straight 

Euclidean match, there are a variety of spatial arrangements we could use.   
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(a) Simple neighbour points: as described above in Figs. 3.4 and 3.5, with a 

penalty factor for immediate neighbors compared to the corresponding 

central point. 

 

(b) Higher scale points: This idea is where, for every pixel, we also obtain a 

higher scale value. This is slightly different from a standard higher scale 

image, since we have a value at every pixel of the lower scale (rather than 

at sub-sampled points). We allow a match to this higher scale pixel, and 

also a normal match to the corresponding same scale pixel (see Figure 3-7). 

Again we have a penalty factor k but now it weighs towards the same scale 

pixel. 

 

            J 

patch of image 1: 

                      i 

 

 

patch of image 2: 

 

 

 

patch of image 2 

at higher scale: 

 

Figure 3-7: Geometric matching can be used to match to other 

scale levels. 

 

(c) Overlapping higher scale points: this is similar to the simple neighboring 

pixel case but it is done at a higher scale, and we allow some pixel 

overlapping 

 

Again we have a penalty factor k to weight towards the central pixel. 

 

(d) Multiple radii neighbour points: in this formulation we have 2 penalty 

parameters k1 and k2, and 2 levels of neighbors. These levels correspond to 
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different distances from the centre point as shown in Figure 3-8. Effectively, 

we are allowing the point to vary even more widely and therefore can offer 

improved performance. The potential problem with this approach is that it 

can be very computationally demanding – each point must be checked 

against a large number of neighbors. 

 

 

 

patch of image 1:    j 

   i 

 

  

 

patch of image 2: 

 

Figure 3-8: Geometric matching can be generalized in many 

ways. Here we are matching to an extended region around each 

pixel. 

 

This concept can be generalized to matching to all neighbors within a radius 

r, with a penalty function of r, e.g. a quadratic penalty function. 

 
3.3.2 Patch or Descriptor Size 
 
A correlation descriptor performs a blurring and a sub-sampling. Thus an 

image patch is extracted, reduced to a smaller size, and then vectorised. In 

our testing we have used image patch sizes of 41×41 since this gives good 

results and is consistent for comparison with [54].  

 

The size of the sub-sampled or decimated patch is a tradeoff. If it is too 

small (too few dimensions) the original patch has flexibility to be distorted, 

but the match loses specificity and discrimination power. If the patch is too 

big, it is very specific which improves specificity and discrimination, but the 

patch is not flexible to geometric transforms or distortion. 
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With a simple Euclidean match we have found that maximum performance 

occurs for a descriptor size of 12×12, decimated from a 41×41 patch. When 

we use a geometric match with simple neighbour points, we find that the 

optimum occurs at 18×18 (see Figure 3-9). Thus usage of geometric 

matching allows us to be more specific with our descriptor, and this 

improves matching performance. 

 

Matching by Patch Size with Smoothing 
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Figure 3-9: The variation of matching rate (with smoothing) with 

the patch size in pixels 

 
3.3.3 Edge Weightings 
 
When we are decimating an image patch we must blur it or apply a filter 

first. This is to prevent anti-aliasing (by Nyquist’s Theorem). For this we 

apply a discretized, finite approximation to a Gaussian filter. For each point 

a convolution must be performed centered on that point; however, for edge 

points a full convolution is impossible, since many of these points do not 

exist in the patch.  

 

Thus edge points in the decimated image are not determined as reliably as 

more central points. For this reason we can weight points according to how 

much of their convolution region exists. In general image decimation this is 

not such a problem since most points are not near edges. In our application 

however, the patches are 41×41 so many points in the convolution are near 

edges. A weighting factor can therefore be applied in the correlation match. 
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Where wi,j is a position based weighting factor. 

 
 

3.4 Implementation Issues 
 
3.4.1 Energy Minimization or ‘Stereo’ Smoothing 
 
Using geometric matching to find the best match simply using Eq. (3.1) 

above does not give very good performance. This is because the matching 

simply selects the closest weighted matching pixel among the neighborhood 

region of the corresponding pixel in the other patch. This means that 

multiple pixels can match to a single pixel or some pixels may not match to 

any others at all. Effectively we have given too many degrees of freedom to 

the matching process, which results in a somewhat random match. This can 

be seen in Figure 3.10 (a). Traditional correlation matching only compares 

corresponding pixels in the patch and this imposes a certain discipline or 

constraint.  

 

This problem exists because we have allowed each pixel to be matched 

independently of others. If we can synchronize or maintain some continuity 

between pixels we can address this problem.  
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                               (a)                                       (b) 

Figure 3-10: Geometric matching. 

(a) Without smoothing geometric matching gives a somewhat 

random matching. (b) We can use some disparity smoothing 

methods similar to stereo methods to apply a gentle smooth and 

improve the match 

 

This is very similar to the problem of stereo matching, where pixels are 

matched along epipolar lines and continuity should be respected. The 

difference in this case is that the matching can occur in 2 dimensions – 

points do not lie on a known line, they in an area around a known point. We 

can then adopt a stereo matching technique and adapt it to this situation. A 

common stereo method is to apply a penalty term to a pixel match, based 

on how different that match is from its neighbors.  

 

Suppose the offsets, or 2-dimensional disparities are m, n (see Eq. 3.1) and 

N is the neighborhood region of the pixel (e.g. 4-connected or 8-

connected). Let Nm and Nn be the disparities of the neighbors, then we have 

a penalty function 
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This is a variation of the Potts penalty model of stereo matching (see [16]). 

The parameter Φ determines how strongly we impose the disparity penalty. 

Figure 3.9 (b) shows a moderate application of this.  

 

Then the final descriptor patch matching function becomes  
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The function d in Eq. (3.3) can be considered an energy function and 

matching finds the minimum energy. This approach can be considered as 

applying stereo matching ideas to the task of interest point matching.  
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Figure 3-11: Matching with smoothing penalty. 

The variation of matching rate (with smoothing) with the penalty 

factor of Eq. (3.3) for geometric matching 
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3.4.2 Cascaded Implementation  
 
Most of the geometric match schemes in Sec. 3.2.1 above are substantially 

more computationally demanding than simple Euclidean matching. One way 

to overcome this is to implement them in a cascaded fashion.  

 

Euclidean nearest neighbour correlation matching is first performed on all 

points. Then for the best p matches we perform a geometric match. Thus it 

is a 2 stage process. In practice p = 15 has given good performance and 

the computational demands are comparable to ordinary Euclidean matching. 

 
3.4.3 Commutative Operation 
 

The standard Euclidean match is a commutative operation between its 2 

arguments. The introduction of geometric flexibility breaks this 

commutativity. This is not necessarily a problem (e.g. if it provides overall 

performance improvements) but the lack of symmetry may suggest the 

method is not perfect. 

 
 

 
 
 
 
 

 
Figure 3-12: Lack of symmetry in matching 

 
In Figure 3.12 we can see that for 1 of the arguments (the top image) 

every value (pixel) is matched, whereas in the 2nd argument (bottom 

image) some pixels are not used in the match and others are used several 

times.  

 

There are several simple ways that symmetry between the 2 vectors in the 

match could be restored. One way would simply be to take the average of 

the 2 operations: ½(difference(vec1, vec2) + difference(vec2, vec1)). 

Another is to take the minimum: min(difference(vec1, vec2), 

difference(vec2, vec1)). We use this minimum as comparison in Table 3.1. 
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Table 3.1: Commutative vs Standard Matching Rate (structured image1-
>image4) 

 Viewpoint Scale Blur Average 

Standard 

Matching (%) 
10 39 47 32 

Commutative 

Matching (%) 
11 42 49 35 

 
  
3.4.4 Range of Transforms 
 

The geometric match allows us to better deal with geometric transforms 

that the images may have undergone. For example, it improves 

performance under affine transforms. However it does not provide 

invariance against all possible transforms. When used with a smoothing 

term (Sec. 3.4.1) geometric matching provides good performance against 

smooth or diffeomorphic geometric transforms. These include affine and 

projective transforms. Some examples of non-diffeomorphic image 

transforms are- 

 Image transforms that include occlusion 

 Photometric transforms (changes in brightness or color) 

 

Geometric matching will be of reduced performance in such cases. 

 

3.4.5 Comparison to Elastic Bunch Matching 
 
Elastic Bunch Graph Matching (EBGM) is a recognition method that has 

found success in face recognition and Optical Character Recognition (OCR). 

It requires manual location of ‘fiducial’ points in the image and Gabor jets (a 

set of convolution filters) are applied at these points. The ‘fiducial’ points 

are allowed to move with some flexibility over an area. A matching metric is 

constructed based on the similarity of the position of the points and the 

values of the Gabor jet. 

 



 

Part IV Applications and Conclusions 57

 
Figure 3-13: Elastic Bunch Graph Matching 

 [95] 
 
EBGM has a point of similarity to geometric matching in that it allows some 

degrees of freedom in the matching process. It is different in that the 

flexibility for EBGM relates to point positions whereas in this scheme 

interest point position is not flexible; the flexibility pertains to the matching 

metric. In EBGM point position is determined for a class, whereas we are 

here using scale-space points (e.g. LoG). This relates to the fundamental 

difference between the methods – EBGM is used for class recognition 

whereas geometric matching is a point matching scheme. Thus they are 

used for different purposes or tasks. 

 
3.4.6 Complexity and Timing 
 

The complexity and timings are important for a practical descriptor method. 

Table 3.1 shows a summary of the computation required in forming and 

matching the descriptor. The first column relates to the interest point 

detector, the second shows the main operations on the image to detect 

these points. The third and fourth relate to the main operations on the 

descriptor patch and individual pixels respectively. We use 4 different scales 

to detect the points. It can be seen that the matching time is much greater 

than the point extraction time. Note that we do not use any acceleration 

such as approximate matching or GPU acceleration. In Table 3.2 below, G(I) 

denotes Gaussian smoothing over the whole image, G(P) denotes Gaussian 

smoothing of the descriptor patch, and Comp. denotes a comparison 

(subtraction and minimum operation). 

As expected, there is a substantial increase in matching time as geometric 

matching is increased.  
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Table 3.2: Geometric Correlation Timings 

Descriptor 

Matching 
Image 

Operations 
Descriptor 
Operations 

Pixel 
Operations 

Point 
Extraction 
Time (s) 

Matching 
Time (s) 

Number 
of 

Points 
Geometric 
Matching 

4-
Connected #4G(I) G(P) 4 Comp.  2.4 92 1000 

Geometric 
Matching 

8-
Connected #4G(I) G(P) 8 Comp.  2.4 173 1000 

 

 

 

3.5 Experimental Results for Correlation Matching 
 
In this section we present experimental results on the Oxford image sets. 

See appendix I for examples of the image sequences. Since are only 

interested in descriptor performance here, the points used for testing were 

DoG points in all cases. 

 

We present data sequences results for  

 correlation descriptors with Euclidean matching – ‘corr’ 

 correlation descriptors with geometric matching – ‘geom corr’ 

 SIFT descriptors with Euclidean matching – ‘SIFT’ 

 

The ‘correlation’ and the ‘correlation with geometric matching’ illustrate the 

improvement that results from using geometric matching. The SIFT data is 

presented for comparison since SIFT has been the ‘gold standard’ of point 

matching for some years. These data sequences assess the performance of 

descriptors against change in scale, viewpoint, blur, illumination, and JPEG 

compression. For scale, viewpoint and blur, a distinction is drawn between 

‘structured’ and ‘textured’ images. For example, the ‘Boat’ sequence is a 

series of images of a boat at increasing scale and rotation. It is considered a 

‘structured’ sequence. The ‘Bark’ sequence also presents scale change, but 

it is considered a textured sequence. Data presented is the matching score 

for the sequence images, and also the precision-recall performance for 
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matching image1->image 2 of the series. See Sec. 2.6 for discussion of 

what these testing parameters mean.  

 

Table 3.3: Parameters of the experiments 

Experimental Parameters  

Number of initial DoG 

points 
1000 

Dimensions 

(1st level) 
12×12 

Dimensions 

(2nd level) 
18×18 

Geometric match type 
Simple neighbors 

(8-connected) 

K Central weighting 2.0 

Φ Energy smoothing 

factor 
0.3 

  

Timing for interest 

point and descriptor 

extraction 

2.4s 
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(a) Structured scale change 
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(b) Textured scale change 
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(c) Structured blur change 
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(d) Textured blur change 
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(e) Structured viewpoint change 
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(f) Textured viewpoint change 
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(g) Illumination change 
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(h) JPEG compression change 
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(i) Structured scale change precision-recall graph 
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(j) Textured scale change precision-recall graph 

Figure 3-14: Various changes to the matching rate in correlation 

matching. 
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Table 3.4: Summary Statistics 

 Textured Structured Viewpoint Scale Blur All
       
Corr 8.89 29.43 6.69 19.79 33.46 23.14
SIFT 17.96 29.81 18.93 19.90 34.48 32.67
Geom Corr 12.32 34.90 10.69 26.36 36.17 26.59

 
 
3.5.1 Discussion of Results 
 
The experimental results above show that use of geometric matching 

improves performance in almost all cases. Figs 3-14 (a) and (b) show that 

under scale change geometric matching generally delivers a clear 

improvement in matching.  

 

For blur change, Figures 3-14 (c) and (d) the geometric match makes less 

of a difference, although there is a small improvement. This is reasonable 

since blur is less of a geometric distortion that the geometric match would 

respond to. Also, the blur change matching rates are already high.  

 

For viewpoint change Figures 3-14 (e) and (f) we again see that the 

geometric match gives a significant improvement. This is as expected since 

a viewpoint change creates a geometric deformation of the local patch or 

area. The geometric match is similar to stereo matching which is usually 

applied to a viewpoint change; therefore we expect it to be effective in this 

case.  

 

In these results we do not see a significant difference between structured 

and textured image performance. 

 

For illumination change the correlation descriptor has much lower matching 

performance than the SIFT descriptor and the geometric match delivers a 

small improvement. The low performance here is related to the fact that we 

have used unnormalized correlation descriptors. For JPEG compression, 

Figure 3-14 (h), we see no effect from geometric matching. This is again 

somewhat expected since JPEG distortion is not a smooth geometric 

distortion. 
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Figures 3-14 (i) and (j) show that the improvement in performance is not 

just for nearest neighbour matching, but also for precision-recall profiles. 

 

In some cases the improvement for geometric matching gets larger for 

successive images in a sequence. This is typical of affine invariant methods, 

and suggests that geometric matching can be regarded as a form of affine 

invariance. 

 

Overall the correlation results have recorded a clear improvement and are 

competitive with SIFT. This has not previously been demonstrated for 

correlation descriptors. 

 

 



 

Part IV Applications and Conclusions 65
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Chapter 4  Geometric Match for SIFT 
 
 

4.1 Introduction 
 
In this chapter we extend the concept of geometric matching to SIFT 

descriptors. Manly of the concepts from Chapter 3 remain valid and we only 

emphasize those that are different. 

 

The SIFT descriptor is described in Sec. 2.3.1 It is most commonly a 

descriptor of 4×4×8 dimensions which is composed from 4×4 spatial 

regions, and 8 orientations. It has become the most widely used of all point 

descriptors for point recognition. 

 

The main difference between the SIFT descriptor and the convolution 

descriptor is the inclusion of orientation information. This motivates some 

changes to our approach but the fundamental concept is unchanged. 

 

In Figure 2.7 it can be seen that the SIFT descriptor has a precise geometric 

meaning and that therefore its dimensions are not independent. A 2-d 

Euclidean metric 22 ji +  exists between its spatial components, and a 

similar 1-d metric u exists between its orientation components (although 

globally the topology of orientation is different, this need not concern us). 

 

4.2 Geometric Distance Metrics 
 
The Euclidean distance metric on the SIFT descriptor differences as in 

Figure 4-1. 
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Figure 4-1: Standard Euclidean matching on the SIFT descriptor 

matches corresponding components of space and orientation 

 

Applying the concept of the geometric match, where we allow matching to 

neighbors dimensions in space and orientation, gives a distance between 

descriptors as in Figure 4-2. 

 

    

                (a)        (b)        (c) 

Figure 4-2: Geometric matching can be used to match to the 

neighboring descriptor components in both space and orientation 

 

This corresponds to a distance measure of 
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            (4.1) 

 

Here i, j correspond to spatial position and o is the position in orientation. k1 

and k2 are the penalty terms for spatial and orientation movement 

respectively. This is the simplest form of geometric matching and 

corresponds to (a) of Sec. 3.2.1. Other geometric match distances similar to 

(b) – (d) of Sec. 3.2.1 are possible, however we will restrict ourselves to 

the simplest formulation in this case. 

 
 

4.3 Size, Weightings, Cascading, Smoothing 
 
As in the case of a convolution descriptor, applying a geometric match 

allows a size increase for the descriptor. For Euclidean matching, the 

optimum SIFT descriptor size is 4×4×8. Use of geometric matching allows 

this to increase to 6×6×10 and provides a commensurate increase in 

performance.  

 

We have not applied edge based weightings (as per Sec. 3.2.3) for the SIFT 

in this implementation. This is because SIFT has a standard definition and 

we want to facilitate comparison with this, and we have found the weighting 

factor does not have a great effect. 

 

Since the geometric match descriptor has more dimensions, it is 

computationally more demanding. Therefore we implement it in a cascading 

approach, as per Sec. 3.4. Thus, we use the standard 128-dimensional 

descriptor matching to identify the best 15 matches, then use 360-

dimensional SIFT geometric matching for the final match. 
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As per Sec. 3.3 we employ energy smoothing to make the matching more 

consistent. Again this is similar to stereo matching, and we do it for both 

the spatial and orientation dimensions. 

 
4.3.1 Complexity and Timing 
 

Table 4.1 shows a summary of the computation required in forming and 

matching the descriptor (see Sec 3.46). In Table 4.1 below, G(I) denotes 

Gaussian smoothing over the whole image, G(subP) denotes Gaussian 

smoothing on a subset of the descriptor, Grad. denotes taking of gradients, 

and Comp. denotes a comparison (subtraction and minimum operation). 

As expected, there is a substantial increase in matching time as geometric 

matching is increased.  

 

Table 4.1: Geometric SIFT Timings 

Descriptor 

Matching 
Image 

Operations 
Descriptor 
Operations 

Pixel 
Operations 

Point 
Extraction 
Time (s) 

Matching 
Time (s) 

Number 
of 

Points 
Geometric 
Matching 
4-Spacial 4G(I) 

8 Grad, 
8*16G(SubP) 4 Comp.  1.9 83 1000 

Geometric 
Matching 
4-Spatial, 

2 -
Frequency 4G(I) 

8 Grad, 
8*16G(SubP) 8 Comp. 1.9 161 1000 

 

 
 

4.4 Experimental Results for SIFT Matching 
 
In this section we present experimental results on the same Oxford image 

sets and using the same DoG points as previously. 

 

We present data sequences results for  

 SIFT descriptors with Euclidean matching – ‘SIFT’ 

 SIFT descriptors with geometric matching – ‘Geom SIFT’ 
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Table 4.2: Parameters of the experiments 

Experimental Parameters 

Number of initial DoG 

points 
1000 

Dimensions 

(1st level) 
4×4×8 

Dimensions 

(2nd level) 
6×6×10 

Geometric match type 

Simple neighbors 

(space and 

orientation) 

K1 Central weighting 

(spatial) 
2.5 

K2 Central weighting 

(orientation) 
1.5 

Φ Energy smoothing 

factor 
0.3 

  

Timing for interest 

point and descriptor 

extraction 

1.9s 
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(a) Structured scale change  
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(b) Textured scale change  
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(c) Structured blur change  
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(d) Textured blur change  
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(e) Structured viewpoint change  
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(f) Textured viewpoint change  
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(g) Illumination change 
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(h) JPEG compression change 

Figure 4-3: Various changes to matching rate in SIFT matching. 

 

Table 4.3: Summary Statistics 

 Textured Structured Viewpoint Scale Blur All
       
SIFT 17.96 29.81 18.93 19.90 34.48 32.67
Geom SIFT 21.94 33.51 23.48 246.30 36.51 35.28

 
 
 
4.4.1 Discussion of Results 
 
The experimental results above show that use of geometric matching for 

SIFT also improves performance in most cases. Under scale change Figures 

4-3 (a) and (b) show that geometric matching generally delivers some 
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improvement in matching. For blur change, Figures 4-3 (c) and (d) the 

geometric match again makes less of a difference (this may be because blur 

already has a high matching performance). For viewpoint change Figures 4-

3 (e) and (f) we again see that the geometric match gives a significant 

improvement.  

 

Again, no significant difference between structured and textured images is 

observed. The improvement in performance occurs for both textured and 

structured images. 

 

For Figures 4-3 (e) and (f), illumination and JPEG, we see no improvement 

from the geometric match. This is reasonable since they do not distort the 

image in spatial manner that the geometric match can respond to.  

 

As previously, the geometric improvement seems to generally be smaller for 

the first image in a sequence and grows larger for successive ones. This 

again suggests that geometric matching has similarity to affine invariant 

methods. 

 

These results demonstrate that the geometric matching concept is not 

restricted to spatial dimensions, and can also be applied to orientation. 

However, the performance improvement here depends on increasing the 

dimensionality of the descriptor to 6×6×10 for the second level matching. 

Overall, the improvement in performance seems to be similar or slightly 

lower than for the correlation descriptor.  

 

The results here recorded relate to fairly gentle ‘stereo’ smoothing. Superior 

performance could be obtained by applying this more aggressively, at a cost 

of greater compute time. 

 

It is noteworthy that it is able to improve SIFT performance since SIFT has 

been a standard for interest point matching for some years. SIFT 

performance has only previously been clearly bettered by methods that 

include a prior learning stage (e.g. [45]) or by some formal affine invariant 

methods (e.g. [73]). 
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Chapter 5 Geometric Match for Gabor 
 
 

5.1 Introduction 
 
In this chapter we extend the concept of geometric matching to Gabor 

descriptors. Again, many of the concepts from previous chapters remain 

valid and we only discuss those that are different. 

 

The Gabor descriptor is described in Sec. 2.3.4. We have used a basic 

descriptor of 4×2×2 dimensions which is composed from 4 orientations, 2 

phases, and 2 frequencies. It is therefore a low dimensional descriptor of 16 

dimensions. 

 

Thus the Gabor descriptor includes frequency, phase and orientation 

parameters. The main difference between the Gabor descriptor and the 

previous descriptors is that it has a specific localization in frequency space. 

Also, it lacks the finer gradation of spatial regions that the others possess. 

 

 
 

Figure 5-1: Four components in wavelet transform. 

We can use the same diagram as for SIFT to represent the Gabor wavelet. 

However, here the horizontal and vertical dimensions do not simply 

represent spatial geometry, they represent phase and frequency. 

 

In Figure 5-1 and from consideration of the nature of these parameters, it 

can be seen that frequency admits a 1-d Euclidean metric, phase admits a 

1-d Euclidean metric, and orientation admits a 1-d Euclidean metric (at 

least locally). Thus geometric matching for the Gabor descriptor occurs in 3 

different linear dimensions. 

frequency 

phase 
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5.2 Geometric Distance Metrics 
 
The Euclidean distance metric on the Gabor descriptor can be seen in Figure 

5-2 (or in the form of Figure 4-1). 

 

 

 

 

Figure 5-2: The standard Euclidean difference on the Gabor 

wavelet simply differences corresponding components 

 

Applying the concept of the geometric match, where we allow matching to 

neighbour dimensions in frequency, phase and orientation, gives a distance 

between descriptors as in Figures 5-3 and 5-4. 

 

     

 

Figure 5-3: Geometric Gabor matching differences the neighbors 

in space, frequency and phase 

 

 

 

 

frequency 

phase 

frequency 

phase 
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Figure 5-4: The neighbors in space, frequency and phase 

corresponds to these components of the descriptor vector 

 

Applying these differences, and maintaining a weighting for the Euclidean 

corresponding point, gives a difference metric of- 
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 (5.1) 

 

As previously, the parameters k1, k2, k3 must be determined empirically for 

best performance. 

 
5.2.1 Affine Invariance 
 

The parameter k1 allows the wavelet convolution in a given direction to 

vary in frequency space. This corresponds to a scale change in that 

direction, which is an affine transform. By allowing unequal scale changes in 

different directions, together with rotation invariance, we have an 

approximation to an affine transform. Effectively we are estimating 3 of the 

4 non-translation parameters of an affine transform. Geometric matching 

for correlation and SIFT descriptors also allows some kind of affine 

invariance, but in a less explicit manner (although it maybe more effective).  
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5.3 Size, Weightings, Cascading, Smoothing 
 
As previously, applying a geometric match allows a size increase for the 

descriptor. For Euclidean matching, the optimum Gabor descriptor size is 

4×2×2 (orientation, phase, frequency). Use of geometric matching allows 

this to increase to 6×2×2 and provides a commensurate increase in 

performance.  

 

For simplicity, edge based weightings (as per Sec. 3.2.3) are not used in 

this implementation. However a cascading operation, as per Sec. 3.4 is 

used. We first match with the lower 16-dimensional descriptor, then do 

geometric matching with the 24-dimensional descriptor. 

 

Similarly we can use an energy smoothing factor, as per Sec. 3.3, to 

smooth the matches and make them more consistent with one another. 

 
5.3.1 Complexity and Timing 
 

Table 5.1 shows a summary of the computation required in forming and 

matching the descriptor (see Sec 3.46). In Table 5.1 below, G(I) denotes 

Gaussian smoothing over the whole image, Gabor denotes Gabor filter 

application, Grad. denotes taking of gradients, and Comp. denotes a 

comparison (subtraction and minimum operation). 

As expected, there is a substantial increase in matching time as geometric 

matching is increased.  

 

Table 5.1: Geometric Gabor Timings 

Descriptor 

Matching 
Image 

Operations 
Descriptor 
Operations 

Pixel 
Operations 

Point 
Extraction 
Time (s) 

Matching 
Time (s) 

Number 
of 

Points 
Geometric 
Matching 

2-
Orientation 4G(I) 16*Gabor 2 Comp.  1.9 18 1000 

Geometric 
Matching 

2-
Orientation, 

2 -
Frequency 4G(I) 16*Gabor 4 Comp. 1.9 33 1000 
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5.4 Experimental Results for Gabor Matching 
 
In this section we present experimental results on the same Oxford image 

sets and using the same DoG points as previously. 

 

We present data sequences results for  

 Gabor descriptors with Euclidean matching – ‘Gabor’ 

 Gabor descriptors with geometric matching – ‘Geom Gabor’ 
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Table 5.2: Parameters of the experiments 

 

Experimental Parameters 

Number of initial DoG 

points 
1000 

Dimensions 

(1st level) 

16 

(4ori×2freq×2phase) 

Dimensions 

(2nd level) 

24 

(6ori×2freq×2phase) 

Geometric match type 
Simple neighbors 

(orientation linear) 

Gabor wavelet λ 25.0 

Gabor wavelet σ 10.5 

γ 1 

K Central weighting 

(orientation) 
1.8 

  

Timing for interest 

point and descriptor 

extraction 

7.60s 
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(a) Structured scale change 
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(b) Textured scale change 
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(c) Structured blur change 
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(d) Textured blur change 
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(e) Structured viewpoint change 
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(f) Textured viewpoint change 

 

Leuven Sequence Matching Rate - Geom Gabor
Image 1-> Others (illuminatin change)

0

10

20

30

40

50

60

1 3 5 7

Image in Sequence

M
at

ch
in

g 
Ra

te
 %

Gabor
Geom Gabor

 
(g) Illumination change 
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(h) JPEG compression change 

Figure 5-5: Various changes to matching rate in Gabor matching. 

 

Table 5.3: Summary Statistics 

 Textured Structured Viewpoint Scale Blur All 
       
Gabor 8.76 15.60 10.82 5.38 21.62 20.05 
Geom Gabor 10.12 17.12 12.61 6.59 22.94 21.08 

 
 
 
5.4.1 Discussion of Results 
 
From Figures 5-5 (a) – (f) above we can see that geometric matching 

provides a much smaller improvement for Gabor descriptors. Also, since 

Gabor descriptors are a low dimensional descriptor they have an overall 

lower performance than SIFT or correlation. Nonetheless, some small 

improvement is evident for scale, blur and viewpoint change. Also, the 

distinction between structured and textured again makes no significant 

performance difference. 

 

For illumination and JPEG we see no improvement from the geometric 

match.  

 

These results demonstrate that geometric matching can provide a small 

improvement for this Gabor descriptor. However, it is much less than that 

recorded for SIFT and correlation descriptors. This seems to be because the 

Gabor descriptor is primarily an orientation based descriptor, while 
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geometric matching responds most strongly to spatial information. Better 

performance may be achievable if we had more frequency values rather 

than just 2, and also more orientations. The smaller improvement in 

performance is also related to this being a 16-dimensional descriptor, while 

correlation and SIFT have > 100 dimensions. Geometric matching seems to 

respond most effectively to higher dimensional descriptors. 

 

The standard Gabor results here are also higher than other authors have 

reported for low-dimensional descriptors. The geometrically matched Gabor 

descriptor therefore outperforms other popular low-dimensional methods 

such as steerable filters [36, 70].   
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Part III    Dense Point Detectors 
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Chapter 6  Dense Point Detectors  
 
 
 

6.1 Introduction 
 
In this chapter we give a general introduction to the ideas that will be used 

in the following 3 chapters. 

 

In Sec. 2.9 some of the limits of current detector based methods were 

discussed. Ideally, we seek a detector method that combines discriminative 

power with the ability to deal with many different classes or points 

simultaneously. The primary motivation for this is that current detectors 

such as DoG or LoG points do not necessarily correspond to class 

discriminative points. DoG and LoG are non-descriptor, or gradient/scale-

space based detectors, and are largely independent of descriptor properties. 

An example of a descriptor-based detector is the Viola-Jones detection 

scheme. We would like to combine some properties of the Viola-Jones 

model, with some of those of the standard detector method.  

 

To perform effectively in the problem of class recognition we believe that 

descriptor based detectors (such as Viola-Jones templates) are critical. 

Unlike the Viola-Jones method however, we do not want to use descriptors 

that are specifically selected for each individual class. Rather we seek a 

method that uses standard descriptors but that can deal with many classes 

simultaneously. A key aspect of this is that we must use dense detectors 

i.e. descriptors need to be calculated at every image point, and point 

selection is based on the descriptor. 
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Figure 6-1: Dense interest point descriptors. 

 

 

Figure 6-2: Sparse interest point descriptors. 

 

Sparse point detectors have been the most popular in computer vision for 

the last 10 years [62, 68]. Dense detectors have tended to be avoided 

partially due to the computational cost of constructing and matching them. 

They have however been used in [104, 99]. For illustration see Figures 6-2 

and 6-2. 

 

 

Definition 6.1:  A dense detector is one that calculates a descriptor at 

every image point. A sparse detector is one that calculates a descriptor 

at only a subset of points. 

 

For the reasons outlined in Sec. 2.3.4 we believe that Gabor wavelets are 

very suitable for this task. The Viola-Jones primitives themselves are similar 

to a discretization of Gabor wavelets. A principle here is to generalize parts 

of the Viola-Jones concept to a general interest point setting. If we are 

using Gabor wavelets, what is the best way to do this? The Viola-Jones 

templates are carefully selected in a sequence specific for a particular class. 
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A large number of templates are needed to achieve reliable single class 

recognition. How then can we generalize this to many classes?  

 

If we examine the Viola-Jones scheme, it applies a filter at each step, and 

then compares this to a binary threshold. This is a lookup into a 1-

dimensional space (see Figure 6-3). Thus a specific sequence of 1-

dimensional lookups is required to obtain discriminative power for a single 

class.  

 

  

Figure 6-3: Viola-Jones recognition performs a 1-dimensional 

lookup at each point. 

 

If we are using general 1-dimensional templates, not optimized for a 

particular class, such a sequence is unlikely to be discriminative. One 

obvious generalization of this is to change it from a lookup into a 1-

dimensional space to a lookup into a higher dimensional space. By using 

general templates, such as Gabor wavelets, we lose discriminative power 

for a class, compared to using specifically selected templates. However, by 

using higher dimensional templates and lookup into a higher dimensional 

space we gain discriminative power. Thus there is a tradeoff between 

generality and dimensionality. Using more dimensions for the lookup, 

compared to Viola-Jones, allows us to use more general templates while 

maintaining discrimination. Such higher dimensional templates can be 

formed by using a set of Gabor wavelet filters, each filter providing 1-

dimension. In such a way, a set of Gabor wavelets can provide an n-

dimensional descriptor at each point. We then perform lookup into an n-

dimensional space to determine the object at that point. Effectively we are 

doing interest point descriptor matching at every point. 
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Aspects of the Viola-Jones scheme that we have not emulated are the 

cascading operation or the use of Adaboost, which many consider are its 

main features. Cascading operation is something we may introduce in future 

but is not currently a part of our algorithm. We do not use Adaboost since 

we want generic descriptors suitable for many simultaneous classes. Here 

the aspect of the Viola-Jones scheme that we are interested is that the 

descriptor is the detector, and it performs a recognition lookup on every 

point.  

 

6.2 The Point Descriptor 
 
Since we are looking to compute a descriptor for each point in the image we 

seek a descriptor that is computationally efficient. For the class recognition 

case it is also critical to be of low dimensionality. A popular descriptor such 

as SIFT is not suitable there since it is of high dimension. The main reason 

is that high dimensionality adversely affects computing the nearest 

neighbour by approximate methods [12]; it also increases the storage 

requirements (see Figure 6-8). Similarly we dispense with affine invariant or 

other special descriptors for reasons of computational complexity. Gabor 

wavelets are able to form a low dimensional descriptor and also provide 

good matching performance.   

 

Various studies (e.g. [63, 93]) have shown that orientation is a critical 

property for point descriptors. Even for a low dimensional descriptor we will 

therefore apply Gabor filters of at least several different orientations. Being 

a frequency localized function, Gabor wavelets also have a phase (see Eq. 

2.5). To be phase independent we will use a Hilbert transform couplet, i.e. 

pairs of wavelets with a phase difference of 
2
π

. We have found frequency is 

not as critical as orientation for descriptor matching, so we will generally 

only have a small number of frequencies. Our default basic descriptor is a 

16-dimensional vector – 4 dimensions for orientation × 2 for phase × 2 for 

frequency (Figure 6-4). Thus we are applying a Gabor wavelet filter bank to 

the image. 
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Figure 6-4: The Gabor descriptor we calculate at every pixel. 

 

Although we are using a Gabor wavelet descriptor here, it is possible to use 

many different descriptors with dense descriptor detection. To some degree, 

performance depends on how the dense descriptor is implemented not the 

descriptor itself. However, one key condition for class recognition is that it is 

a low-dimensional descriptor to allow accurate approximate nearest 

neighbour matching (see Sec. 6.3.1). For point-to-point matching higher 

dimensional descriptors may be better.  

 

Other Descriptors 

 

The dense descriptor concept does not intrinsically depend on any particular 

descriptor. We use Gabor wavelets simply because they have demonstrated 

good performance on structure matching tasks. We believe color and 

texture dense descriptors could also be superior in some situations. This is 

because some classes are intrinsically more easily discriminated by color or 

texture than by structure. We will later be using an example of a dense 

histogram application. 

 
 

6.3 Dense Descriptor Matching 
 
Having calculated a descriptor at each point we then perform a lookup into 

the space of enrolled descriptors. This is effectively standard interest point 

matching, but requires some changes in this case. 

 

In the Viola-Jones scheme the lookup is a 1-dimensional threshold 

comparison (see Figure 6-3). This is possible because a 1-dimensional 

space can be completely divided into two parts. A higher dimensional 

Euclidean space does not afford this topological possibility. In such a space 

we will use the Euclidean distance as our decision function. Straight nearest 

neighbour matching is not appropriate since not every point has a match in 
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the database. Therefore we perform Euclidean nearest neighbour matching 

with an additional threshold distance as 

( ) thresholdyxyxyx nn <−++−+− 2
1

22
22

2
11 Κ   where x  is an image point, 

and y  is an enrolled database point (Figure 6-5). 

 

 

Figure 6-5: Dense matching in 2D. 

Performing a 2-D lookup at each point, as compared to Viola-

Jones 1-D lookup of Figure 6-4. 

 
6.3.1 Approximate nearest neighbour 
 
Since we are not doing database point matching for a small set of points (as 

per sparse descriptors) but potentially for every image point, we want to 

accelerate this as much as possible. Thus approximate nearest neighbour 

matching is critical for dense descriptors [8, 12]. 

 

The method we have developed for this involves partitioning the descriptor 

space into a number of bins and then restricting our search to a certain bin 

or bins. The way this has been done differs from other well-known 

algorithms. This allows a substantial speed up in matching performance, 

and obtains the correct match a high proportion of the time. 

 

We give an example assuming we are using a Gabor wavelet of 8-

dimensions e.g. 8 orientations, or 4 orientations & 2 phases. Since the 

wavelets are set to zero mean, we can partition each dimension into 2 

sections or bins, [-∞, 0], [0, ∞] (see Figure 6-6). Then we have partitioned 
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the descriptor space into 256 bins. Empirically, we have found this partition 

gives good performance.  

 

   

 

Figure 6-6: Approximation in space. 

Dividing up the descriptor space into binary bins, then searching 

with in those. Here we illustrate the 2D and 3D case. In practice 

our descriptor space is of higher dimension 

 

This can be implemented in C++ using a vector in a high-dimensional data 

structure. 

 
Enrolment 

 

For each image point, the 8-dimensional descriptor values are used to place 

this point into one of the 256 bins. In the simplest implementation, that is 

the end of the enrolment process. In recognition on a new image, we then 

simply iterate through the points in that bin to find L2 matches below the 

threshold value. 

       

Figure 6-7: Principles of approximation methods. 

Approximation methods speed up matching by restricting the 

search to 1 bin, but introduce errors if the nearest neighbor is 

outside the bin. In high dimensions this has an increased chance. 
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This simple algorithm gives poor results in practice because under viewing 

changes the descriptor values of a matched point will always have changed 

slightly, and this may have tipped the point over into an adjacent bin (see 

Figure 6-7). During point enrolment we therefore enroll the point not only in 

the bin in to which its descriptor corresponds (its native bin), but also to 

any other bins within a descriptor radius d of the point. We are therefore 

enrolling the point in any bins that intersect the hypersphere of radius d 

around the point (Figure 6-8). d can be set appropriately for the particular 

data we are dealing with. The optimal value of d is a statistical property of 

the data and the application on hand. For points that lie deep within their 

bin (i.e. have large values for all dimensions) it may be that no other bins 

are within d of the point. In such a case the point is still only enrolled in one 

bin. However, for a point whose descriptor values are close to the origin, it 

could conceivably be enrolled in all 256 bins. 

 

   

 

Figure 6-8: High dimensional similarity search. 

Searching in nearby cells produces a circle in 2D, a sphere in 3D, 

and we use a hypersphere in high dimensions. Higher 

dimensionality dramatically increases the number of bins that 

must be searched within the hypersphere. 

 

Recognition 

 

During the recognition of a new point we iterate through the bin to find the 

minimum L2 match, recording the current minimum. Practically, this means 

iterating through the vector data structure for that bin. We do this for all 
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bins within a hypersphere of radius f of the point, if the distance to that bin 

is less than the current minimum. In this way, the hypersphere is effectively 

used twice – when points are enrolled in the bins, and in determining 

nearby bins during recognition (Figure 6-9). This adds complexity to the 

algorithm – the enrolment process is somewhat slow - but it speeds up 

recognition. This is a deliberate choice we have made, since enrolment only 

occurs once and we can accept some slowness in this process. It is more 

important that recognition thereafter occurs quickly. 

 

 

Figure 6-9: Common area in hypersphere. 

Enrolling in a hypersphere around a point and then searching in 

another hypersphere around the other point, allows smaller 

hyperspheres to be used. 

 

It can be seen from Figure 6-8 that increasing the dimensionality 

dramatically increases the total number of bins, and also the number that 

intersect the hypersphere. The total number of bins determines storage 

requirements; the number that intersects the hypersphere determines 

computation time of a match. This provides a good demonstration of the 

‘curse of dimensionality’. 

 

A popular alternative algorithm for approximate nearest neighbour 

calculation is Best Bin First [12]. Like our algorithm this uses the concept of 

the hypersphere. However, it only uses it once, during recognition lookup. It 

does not use it during point enrolment. In that way we believe our 

algorithm makes more efficient use of the data. The cost of this is that our 

algorithm is slower during enrolment and has more elaborate storage 

requirements. Both the BBF and our algorithm are based on approximating 

the hypersphere with n-cubes (n-dimensional ‘cubes’) but our algorithm 
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shifts more of the computation to the initial enrolment, rather than each 

recognition lookup. Figure 6-10 illustrates the main idea. Nearest neighbour 

matching is not the main object of this thesis, therefore we have not 

conducted a rigorous study comparing it to BBF.  

 

  

 

Figure 6-10: High dimensional search. 

We can see that the area of the 2 smaller circles together is 

smaller than the area of the single circle. Thus both enrolling and 

searching in a hypersphere is more efficient than just searching in 

a hypersphere. In high dimensions the effect has a much greater 

difference. This corresponds to a smaller number of bins to search 

and matches to perform. 

 

6.4 Further Aspects 
 
For the most common matching tasks we have found that strong descriptor 

points are consistently more reliable or useful for matching. Strong 

descriptors are indicative of clear or strong structure in the image. Weak 

descriptor points are indicative of an absence of clear structure in the image 

at that point e.g background, clutter, walls, sky, etc. Weak descriptor points 

tend to give more random measurements when re-imaged with viewing 

changes. 

 

For this reason we select only those points in the top p% of all points by 

descriptor length. Descriptor size is taken as the Euclidean length, L2. We 

can vary p according to the given task. For simple point matching p can be 

quite small, e.g. we could choose only those points in the top 5% of length. 

For class matching, we should allow a greater p. This is because we need to 
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find those points that are class discriminative and these points may not 

necessarily be very strong. i.e. it is possible to have class discriminative 

points based on image structure of medium strength. 

 

  

One of the key features of this approach is that points can be enrolled in the 

database by any criteria. Points could be enrolled in the database for their 

stability, distinctiveness, class discrimination, etc. Every point in the new 

image is tested for a Euclidean distance match, without regard to the 

criteria by which points were entered in the database space. This is different 

from the SIFT approach, for example, whereby points are enrolled and 

detection according to the same criteria like maximum of DoG. Inherent in 

our approach is a fundamental asymmetry between enrolment and 

recognition (which SIFT, for example, does not make). This allows more 

flexibility in recognition tasks. 

 

 

 

How is this approach different from  

traditional interest point usage? 

 

 Points are first enrolled in a database according to any criteria, such 

as class discrimination power, rather than DoG or LoG 

 

 A multi-dimensional descriptor is calculated for each image pixel and 

matching can be done for each point i.e. it is a dense method. 

Generally, however, we only do matching for the strongest p% of 

points. 

 

 Matching is done according to a Euclidean matching distance < 

threshold, rather than simply nearest neighbour. This is since not 

every point in the database will have a corresponding image point. 

 

 Matching requires a fast approximate nearest neighbour algorithm 
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There is some limited similarity between our approach and the ‘Biological’ 

model (Sec. 2.4, or [93]) since both use Gabor wavelets. However the 

‘Biological’ model is less flexible in that it always selects the maximum point 

from an 8×8 pixel window, and that it extracts a fixed number of interest 

points from the image. Enrolment and recognition of points are also 

symmetric, so it can only recognize similar points (maxima in 8×8 window). 
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Chapter 7  Dense Point-to-Point Matching 
 
 

7.1 Introduction 
 

In this chapter we will use the ideas of the previous chapter to implement a 

practical recognition system for point-to-point matching. Having developed 

a plausible recognition framework in the previous chapter, we now want to 

see if it can give good results in practice. Specifically, we are interested to 

see if dense methods can give results competitive with detector/descriptors 

such as DoG and SIFT. 

 
 

7.2 Point Selection for Point-to-Point Matching 
 
The previous chapter outlines a recognition scheme but some key issues 

were not addressed. One of the main ones was, by what criteria should 

points be initially selected? i.e. how do we select points in the first place to 

enroll in the database?  

 

 

In enrolling or selecting points for point-to-point matching our main aim is 

to achieve high point recognition under image viewing transformations. For 

example, if we select points from an image we want to be able to accurately 

locate them under a perspective or scale change. Ideally we want points 

that are robust under all the image variations listed in Sec. 1.1.  

 

If we have calculated descriptors for all image points, what points are the 

most repeatable? If we were to match descriptors for all image points 

against one another, what characterizes those points that we can locate 

again most reliably? Since we are matching by distance to descriptor points 

in a database, what we seek are descriptors that are stable. Are there some 

properties of the descriptor that indicate stability? 
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Descriptor Length 

 

An obvious one to try is descriptor length which is determined by the 

presence of structure in the image. A simple measure of length is the 

descriptor L2 (the descriptor is an n-dimensional vector).  Indeed, when we 

have tested this we do find that it is a good predictor of descriptor stability. 

Those points with strong descriptors tend to remain of reasonably 

consistent value after viewing changes (see Figure 7-1). Moreover, the 

strongest points exist in sparse regions of the descriptor space and are 

therefore robust against matching to other points (Figure 7-2). However, 

length is a very simple parameter; there may be more sophisticated ones 

that are even more stable. 

  

   (a)      (b) 

 

 

 

Figure 7-1: Strong and weak features. 

Here an image undergoes a small rotational transform (a), (b). 

Stronger image features have longer descriptors which change 

less proportionately compared to weaker features. This makes 

strong features better for recognition. 



 

Part IV Applications and Conclusions 103

 

 

 

(a) 

 

 

 

         (b) 

Figure 7-2: Histogram of descriptor length. 

If descriptors calculated at every pixel for a typical image (a) we 

obtain a histogram as per (b). As the length increases the number 

of points tapers off. This results in a dramatic reduction in 

descriptor space density for strong points. 

 

Descriptor Space Density Measurement 

 

Another idea is to look for point descriptors that are in sparse or low-density 

regions of descriptor space. These might be less likely to get mistaken for 

other points, compared to points in dense regions. In dense regions there 

are many other points with similar descriptor vectors which, under re-

imaging, could be mistaken for the correct point (see Figure 7-3). 

  

Number of 
points 

Point length 
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Figure 7-3: Descriptor point strength related to density in descriptor space 

 

Measurement of the density of regions of descriptor space is non-trivial. 

Since we are already partitioning the descriptor space into a number of 

bins, e.g. 256, we could just look at the number of points in each bin and 

take this as a density measure (Figure 7-4). In experiments we have found 

this to offer poor performance. The descriptor bins are too coarse a scale 

over which to measure density. 

 

 

 

Figure 7-4: Measuring density by using feature bin. 

One way to measure the descriptor space density around a point 

is to measure it for its bin, i.e. count the number of points in its 

bin. 

 

Strong points tend to exist in 
sparse regions of descriptor 
space, therefore are better 
for recognition

Weaker points tend to exist 
in denser regions of 
descriptor space, therefore 
are poorer for recognition
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Another way to determine density is to look at the local region around a 

point in descriptor space. As shown in Figure 7-5, by looking at the distance 

to the nearest neighbour in the enrolment image, or the number of such 

neighbors within a certain radius, we can measure density. Such 

calculations are more computationally complex to make, but we have found 

they do indicate matching performance to some degree. i.e. local density 

does give some matching performance information, but larger scale density 

measures do not. However, the density effect is not very strong. The length 

of a descriptor is a much better indicator of its matching performance than 

the descriptor region density. 

 

 

 

Figure 7-5: Measuring density by using radius. 

Another way to measure the descriptor space density around a 

point is to calculate the number of points in a certain radius. This 

is more computationally demanding but gives better results. 

 

 

Transformed Image Descriptor Stability 

 

Another idea is to apply a small synthetic transform to the image and see 

how the descriptor changes. For example, we could apply a small affine 

transform or a Gaussian blur, and examine how much the descriptor 

changes. A point descriptor that changes only a little is stable and therefore 

that point is propitious for further usage.  
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       (7.1) 

H is the homography between the 2 images. 

 

For example, in Figures 7.1 (a) and (b) above a small rotation is applied 

between the images. We then test corresponding points to identify those 

points whose descriptors that have a minimum change. 

 

In general we have found this quantity gives good results i.e. small 

descriptor changes under an applied image transform are indicative of a 

stable point, and give good matching performance. In testing we have 

found this approach to give best results when it is used in conjunction with 

descriptor length. This has excellent performance, better than descriptor 

length alone, or any other parameters we tried. We first select those points 

with a strong descriptor response, then sort these by the change in the 

descriptor under a small transform. The transform we have generally used 

is a small rotation and blur, but a general affine transform would give better 

results. We have used a rotation and blur only for computation speed. We 

then select those points with minimum descriptor change in the number we 

need for a given application. One other benefit of this method is that we can 

choose however many points we need, unlike traditional detector methods. 

 

Effectiveness of Dense Point 

Selection Quantities 

Descriptor space low density 

measurement 

Descriptor stability under image 

transform  

Descriptor length 

Descriptor length & stability under 

image transform 
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Summary of Dense Point Matching Method 

 

Point enrolment- 

 Descriptors are calculated for every point. 

 The longest p% of points are selected for further processing 

 Those points with the minimum descriptor change under an applied 

image transform Eq. (7.1) are enrolled 

 

Point recognition- 

 Descriptors are calculated for every point. 

 The longest p% of points are subject to approximate nearest 

neighbour matching 

 

 

 

Table 7.1: Comparison of dense and sparse interest point matching 

Dense Interest Point Method Sparse Interest Point Method  

Descriptors at every point Descriptors at sparse points 

Points selected by descriptor length, 

and stability under 

 image transform 

Points selected by image scale 

space properties (e.g. DoG, LoG) 

 

 

The main advantages of this method, compared to traditional point 

matching are 

 

 Higher matching or recognition rate 

 Achieves good matching rate with low dimensional descriptor 

 The number of points in the image can be controlled 

 The image density of points can be controlled 
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Having selected the points we then enroll them in the descriptor space for 

approximate nearest neighbour lookup, as per 6.3.1.  

 

7.3 Point-to-Point Matching System 
 
We now discuss the implementation and performance of a point-to-point 

matching system in more detail. We have seen that the length and stability 

of a point descriptor under an image transform gives a good indication of its 

usefulness; we therefore develop this approach. 

 

  

(a)          (b) 

Figure 7-6: Descriptor changes. 

For (a) and (b) the rotation angle is 13.9° and the scale reduction 

is 12%. We look at the size of the descriptor change for image 

points. 

 

In the example of Figure 7-6 we have applied a small rotation and a scale 

reduction. Ideally we would like an infinitesimal change in both, since we 

want to determine the descriptor stability at exactly that point.  Descriptors 

are then calculated for every point in the original and transformed image. 

Since the transform is synthetically applied, we can exactly calculate 

corresponding points.  
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(a)          (b) 

 

  

(c)                                                    (d) 

Figure 7-7: Stable and strong points. 

(a) An image and (b) a color map of its descriptor lengths. The 

strongest responses indicate the strongest structure in the image. 

(c) We select the strongest points for further processing. Here we 

have taken the longest ~10%. From the strongest points we 

apply a small rotation and blur. (d) Those points with minimum 

descriptor change are considered the most stable. They are our 

final points selected. 

 

Points are selected by- 

1) descriptor length > pth percentile or threshold 

2) minimum ∆descriptor by Eq. (7.1) 

 

Points selected are then enrolled in the descriptor space. The number of 

points can be chosen for a given task. 
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Figure 7-7 (b) shows the boat image from Figure 7-7 (a) colored with a heat 

map according to the length of the descriptor. We can see in that strong 

points tend to be in connected regions that follow image structure. In some 

cases these are characterized by the presence of edges, in other cases by 

the coincidence of groups of edges or structure. Those plain or background 

areas produce few strong points as expected. From this the strongest 10% 

of points are extracted and these are shown in Figure 7-7 (c). These also 

are related to the main image structure. From these strongest 10% we then 

identify the most stable descriptor points by use of the applied synthetic 

transform Eq. (7.1), and these are shown in Figure 7-7 (d). It can be seen 

that it tends to identify the perimeter of the regions and structure from (b).  

 

These stable points are our final selection. We can then subject them to 

experiment testing to determine how effective they are for recognition 

purposes. 

 
7.3.1 Complexity and Timing 
 

Table 7.1 shows a summary of the computation required in forming and 

matching the descriptor (see Sec 3.46). In Table 7.1 below, G(I) denotes 

Gaussian smoothing over the whole image, Gabor(I) denotes Gabor filter 

application, and Comp. denotes a comparison (subtraction operation). 

 

Table 7.2: Dense Point Timings 

Descriptor 

Matching 
Image 

Operations 
Pixel 

Operations 

Point 
Extraction 
Time (s) 

Matching 
Time (s) 

Number 
of 

Points 

Euclidean 
 

4G(I), 16 * 
Gabor(I) 1 Comp.  6.54 12 1000 

 
 

7.4 Experimental Results for Dense Point Matching 
 
In this section we present experimental results on the same Oxford image 

sets as previously used. We use sparse low dimensional Gabor results as a 

benchmark. 
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We present data sequences results for  

 Dense Gabor descriptors – ‘Dense Gabor’ 

 Traditional or sparse Gabor descriptors. These are of the same 16 

dimensions for comparison – ‘Sparse Gabor’ 
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Table 7.3: Parameters of the experiments 
 

Experimental Parameters 

Number of initial 

points selected by 

length 

2000 

Number of final points 

selected for stability & 

length 

1000 

Dimensions 

 

16 

(4ori×2freq×2phase) 

Descriptor space bins 256 

Descriptor space 

enrolment radius 
0.1 

Gabor wavelet λ 28.0 

σ 8.4 

γ 1 

Synthetic rotation 0.1 rad 

Synthetic blur 0.1 

  

Timing for interest 

point and descriptor 

extraction 

6.54s 

 

One fundamental question is how many dimensions the descriptor should 

be. Figure 7-8 shows a maxima ~ 16 dimensions and we adopt that for 

further usage. 
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Figure 7-8: Descriptor matching rate vs number of dimensions. 

For dense Gabor points matching performance reaches a 

maximum ~ 16 dimensions. The addition of more dimensions 

(e.g. more frequencies) does not improve performance. 

 

Another important question is whether matching performance depends 

strongly on the number of points selected from the image. In Figure 7-9 we 

see that this is not so. 
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Figure 7-9: Descriptor matching rate vs number of points. 

Matching performance does not strongly depend on the number of 

interest points selected. 

 

It is also interesting to see how the matching rate varies as we allow the 

pixel localization error to increase. This error is the difference in pixel 

location from the exact homography calculation between the corresponding 
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images. Increasing this means we are allowing more generous definition of 

a successful match. We can see in Figure 7-10 that this does have a 

reasonable effect. 
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Figure 7-10: Matching rate vs pixel localization error. 
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(a) Structured scale change 
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Bark Sequence Matching Rate - Dense Match
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(b) Textured scale change 

 

Bike Sequence Matching Rate - Dense Match
(structured blur change)
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(c) Structured blur change 

 

Trees Sequence Matching Rate - Dense Match
(textured blur change)
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(d) Textured blur change 
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Graffitti Sequence Matching Rate - Dense Match
(structured viewpoint change)
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(e) Structured viewpoint change 

 

Wall Sequence Matching Rate - Dense Match
(textured viewpoint change)
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(f) Textured viewpoint change 
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(g) Illumination change 
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UBC Sequence Matching Rate - Dense Match
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(h) JPEG compression change 

Figure 7-11: Dense and traditional Gabor matching rates for various image 

variations 

  
Table 7.4: Summary Statistics 

 Textured Structured Viewpoint Scale Blur All
       
Sparse Gabor 7.57 9.55 9.08 3.71 13.50 15.33
Dense Gabor 8.78 13.76 10.06 5.37 19.44 18.76

 
 

 
7.4.1 Discussion of Results 
 
From Figures 7-11 (a) – (h) we can see that dense matching generally 

delivers higher matching than sparse Gabor matching. For most sequences 

the improvement is modest. However, for textured scale change (b), 

structured blur results (c) and the illumination sequence (g), it delivers a 

large improvement. The improvement seems to be bigger for scale and blur 

change than viewpoint variation. Again, no significant difference between 

structured and textured series is observed. 

 

These results are interesting since effective point matching using dense 

descriptors has not been demonstrated previously – the most successful 

methods have all been sparse methods. This indicates that dense methods 

could become a competitive tool for point-to-point matching.  
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The standard Gabor results here are also higher than other authors have 

reported for low-dimensional descriptors. We suspect that is because we 

have spent some time optimizing our Gabor wavelet kernels. The matching 

results for the dense descriptor outperform all previously documented low 

dimensional methods. Dense point matching is more suitable for low 

dimensional descriptors. For example this descriptor markedly outperforms 

steerable filter performance in [70] which has the highest performance of 

the low-dimensional methods tested therein.  
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Chapter 8  Dense Object Class 
Discrimination 
 
 

8.1 Point Selection for Object Class Discrimination 
 
In the previous chapter we selected points for point-to-point matching. In 

this chapter we have a similar framework but we select points for 

discrimination between classes of objects. 

 

In selecting points for class discrimination we seek those points that 

effective for determining the presence or absence of a given class. In 

general, such points correspond to structure that is consistent for the class, 

but does not occur for non-class members. To select such points we need 

some way to quantify this discriminative ability.  

 

We begin with a set of images for some class and a set of non-class images. 

Since we are using dense methods, we then calculate descriptors for every 

pixel in every image, and populate these into a descriptor space data 

structure (see Figure 8-1). This will generally be a high-dimensional bin 

structure suitable for approximate nearest neighbour matching, as 

described in Sec. 6.3.1. 

 

How then can we determine what points are the most discriminative? We 

seek a simple metric that can indicate discriminative ability. 

 

Formal Classifiers such as SVMs 

 

A formal classifier, such as a linear Support Vector Machine (SVM) is 

normally used to test points or images. In principle it could also be used to 

select new points. However it is inefficient when used for point selection on 

thousands of points such as entire image sets (since it involves numeric 

optimization of quadratic equations). What we want in enrolment is a simple 

measure that can easily calculate discriminative power for large numbers of 
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points. What is such a simple measure which gives an indication of class 

discriminative power and can be used for point selection? 

 

As with the point-to-point matching case we have found that points with 

small descriptors tend to give less reliable response. Therefore we first of all 

subsample by those points with a descriptor in the strongest p%. However, 

we take a larger proportion of points in the class matching case compared 

to point matching. This is because the most discriminative points may not 

be the strongest i.e. some weaker points may still be discriminative. Thus 

descriptor length is not as important an indicator in class discrimination as it 

is in point matching. As previously, the point descriptors are then 

partitioned into bins to approximate the position in descriptor space. Since 

we are selecting more points by length, approximate nearest neighbour 

methods are even more important. Also, in this case we have a class label 

for each point. 

 

 

 

 

 

 

Figure 8-1: Two classes of 2-D data 

 

Clustering methods 

 

Those points that are propitious for class recognition tend to exist in class 

clusters within the descriptor space. Those clusters of points constitute class 

‘purer’ regions of descriptor space. As in the point-to-point case larger scale 

measures of class purity (such as entire bins) do not give good results. We 

Points in the mixed region are less 
propitious for discrimination 

Points in the region of class purity offer 
better prospects for discrimination 
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therefore seek to determine class purity based on local neighbors of a point. 

Unfortunately, formal clustering methods such as k-means are 

computationally expensive, may have other drawbacks, and are unsuitable 

for fast enrolment. If we dispense with such more exact methods, 

remaining simpler methods include 

 

 The proportion of same class points within a certain distance 

 The number of same class points within, say, 10 nearest neighbors 

 The distance to neighbors of same and different classes 

 

These are all quite similar measures and we choose to use the last of these. 

 

Distance to Class and Non-Class Neighbors 

 

A simple index can be obtained by looking at the distance from a point to 

neighbors of the same class, and non-class neighbors. This is an 

approximate measure of the local purity of the descriptor region as per 

Figure 8-2. 

 

 

Figure 8-2: The distance to nearest neighbors indicates class 

purity,  

Looking at the distance to nearest within class and out of class 

neighbors within a spatial bin, gives a simple and quick measure 

of the local class purity. We do this in high dimensions for interest 

point class recognition. 
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For every point (descriptor length > pth percentile or threshold) we calculate 

the ratio  

classdifferent neighbour nearest   todistance
class sameneighbour nearest todistance tion discrimina =      (8.1) 

 

After sorting, those points with a low value are selected as being 

discriminative for this class. Determination of discrimination by 

characterizing the local neighbors is an alternative to popular methods like 

SVM’s or clustering. Compared to standard SVM or clustering methods, this 

parameter is simple to calculate for all points. This parameter is sufficiently 

simple to calculate that it is suitable for use with dense methods, where 

descriptors are calculated for all image points. Nonetheless to perform such 

calculations for large numbers of points is still intensive and so approximate 

nearest neighbour techniques are critical to determine the distances. 

 

Having selected the points we then enroll them in the descriptor space 

database for approximate nearest neighbour lookup. 

 

 

Summary of Dense Class Discrimination Method 

 

Point enrolment- 

 Descriptors are calculated for every point. 

 The longest p% of points are selected for further processing 

 Those points with the lowest ratio of neighbor class distance to non-

class distance are selected 

 

Point recognition- 

 Descriptors are calculated for every point. 

 The longest p% of points are subject to approximate nearest 

neighbour matching 
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Dense Interest Point Class 

Method 

Sparse Interest Point Class 

Method  

Descriptors at every point Descriptors at sparse points 

Points selected by purity of local 

region in descriptor space, as 

determined by class and non-class 

distance ratio 

Points initially selected by image 

scale space properties (e.g. DoG), 

then subsampled 

 

 

The main advantages of this method, compared to traditional point based 

class recognition [26, 44] are 

 

 Achieves higher recognition rate for some object classes 

 Uses a low dimensional descriptor 

 The number of points can be selected 

 The density of points can be selected 

 Greater positional flexibility 

 
 

8.2 Class Discrimination System  
 
 

 
Class discrimination selection criteria:  Points are selected for class 

discrimination by length and the minimum of 

 

classdifferent neighbour nearest   todistance
classsameneighbour nearest  todistance tion discrimina =  

 

 

In this section we discuss in more detail the implementation and 

performance of a class recognition system. We have seen that the ratio of 
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the descriptor distance of class members to non-class members gives a 

simple but effective indication of discrimination ability.  

 

  

Figure 8-3: Examples of leaves from Caltech leaves image set 

 

In class (e.g. Figure 8-3) and non-class images descriptors are calculated 

for every point. Every descriptor (descriptor length > pth percentile) is then 

enrolled into a descriptor space data structure (Figure 8-4). We set the 

threshold low to increase the chance of capturing discriminative points.  

 

  

(a)               (b) 

Figure 8-4: Descriptor is strongest around edge regions.  

(a) an example of leaf image, (b) a color map of its descriptor 

length.  
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(a)             (b) 

Figure 8-5: Discriminative class points 

(a) The colors of this image are a measure of the discriminative 

power of the points. (b) Final selection of points based on 

descriptor length and discriminative power. 

 

Then for every point in the descriptor space, we calculate a profile of its 

nearest neighbors. Specifically, we calculate the distance to its nearest 

neighbour of each of the same class images, and the distance to the nearest 

non-class points. We ensure that these distances come from points of 

different class and non-class images as this adds robustness; if all of the 

nearest same class or non-class points come from the same image it makes 

the selection less robust. Since this is done for every point it represents a 

slow part of the algorithm. 

 

These nearest neighbour calculations are performed using the approximate 

nearest neighbour. We only search within the points’ descriptor space bin; 

thus for a descriptor space divided into 256 bins we obtain a speedup of 

256-fold. Finally we obtain a discriminative index, the discrimination ratio, 

based on the ratio of distances for every point as per Eq. (8.1). After sorting 

all points by the discrimination ratio we select the number of maximally 

discriminatory points we want. This is shown in Figure 8-5. 

 

We are left with a set of points that are discriminative for a given class. In 

the leaves example it selects points in the ‘sections’ of the leaves, strong 

edge points and points where ‘sections’ intersect. For other image sets, 

such as the cougar set, it selects eyes, ears and mouth points. 
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Low dimensionality is more critical for class recognition than point-to-point 

matching for a number of reasons 

 

 Since class discriminatory points may have weaker descriptor 

responses, we select more points by descriptor length. Since we are 

processing more points, approximate nearest neighbour methods are 

more important. Such methods are much more efficient at low 

dimension 

 

 In point-to-point matching nearest neighbour matching is performed 

only in one place – in recognition on a new image that is being 

processed. In class recognition nearest neighbour matching is 

performed in 2 places - in recognition on a new image, and also in 

enrolling new points (where it is used in calculating the ratio of 

nearest neighbour points). 

 

 Low dimensional descriptors have less specificity and therefore may 

be better able to generalize to classes 

 

SVM Testing 

 

One of the main practical tasks for class discrimination is image 

classification – given an image, a binary classification positive or negative 

for the presence of a given class. This is also necessary as a form of testing 

to determine the effectiveness of the method. 

 

Having selected our discriminative points above, we then calculate the 

distance to the nearest match in the image. For n points we therefore 

obtain an n-dimensional vector. Positive class images should provide 

vectors with small values or differences, closer to the origin; negative class 

images should provide larger positive values (since we take a positive 

distance metric). Thus linear separability is reasonable, and we then apply a 

linear SVM to determine class. A linear SVM is simple to utilize and 

conforms to the testing framework of [93]. Training for this SVM is provided 



 

Part IV Applications and Conclusions 128

by the same images we used to select the discriminative points i.e. images 

from the Caltech 101 database. For SVM operation we have used the Matlab 

implementation of [5]. 

 

8.3 Experimental Results for Dense Class 
Discrimination 
 
For these experiments we have used various sets from Caltech - the Caltech 

101 database and some non-101 sets. Due to limited time we have only 

obtained experimental results for a small number of classes. Nonetheless 

they illustrate the class discrimination ability of this method. 

 

We present data sequences results for  

 Dense class selected Gabor descriptors 

 The biological descriptor [93] is used for comparison, since it is 

considered one of the most successful class recognition frameworks. 

Table 8.1: Parameters of the experiments 

Experimental Parameters 

Number of initial 

points selected by 

length 

5000 

Number of final points 

selected for stability & 

length 

100 

Dimensions  

 

16 

(4ori×2freq×2phase) 

Descriptor space bins 256 

Descriptor space 

enrolment radius  
0.1 

Gabor wavelet λ varied for class 

e.g. 21.0 

σ varied for class 

e.g. 14.0 

γ 1 
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(a) Caltech image sets 

 

Performance on Several Caltech 101 Databases

50
55
60
65
70
75
80
85
90
95

0 5 10 15 20

Number of Training Examples

Pe
rf

or
m

an
ce

 (R
O

C
 a

re
a)

Cougar (Biological)
Crocodile (Biological)
Mayfly (Biological)
Cougar (Dense)
Crocodile (Dense)
Mayfly (Dense)

  
(b) Examples from Caltech 101 datasets 

Figure 8-6: Class recognition performance on Caltech image sets. 
 

8.3.1 Discussion of Results 
 
For these experimental results we have obtained the distance to the nearest 

match for the enrolled points of each class, and then used a SVM to classify 

an image. We have divided these into 2 separate graphs according to the 

data sets. The Caltech image sets in the top graph Figure 8.6 (a) tends to 

encompass less variation and are less challenging. The Caltech 101 datasets 

in Figure 8.6 (b) are more difficult, with classes that vary considerably in 

shape, color, etc. 
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It can be seen that on the Caltech image sets the performance slightly 

exceeds the biological model for cars and faces, and is slightly inferior for 

leaves. These images have a high degree of regularity and this dense 

method seems to respond well to this. For example, this car database only 

pictures the cars from behind, and recognition is therefore high. In such 

situations of limited variation, the dense method performs very well. 

 

For the Caltech 101 dataset the performance is below that of the biological 

method. This seems to be due to the higher variability of this data set. The 

biological descriptor has more flexibility (probably due to the maxima 

operation) than the dense descriptor we have used here; this seems to 

increase its recognition performance on these sets.  

 

Overall the performance of the dense method seems to be slightly below 

that of the biological model. However, the biological model has been under 

development for ~10 years, and its more flexible descriptor could also be 

adopted in future for our dense matching model. 
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Chapter 9  Multi-Level Descriptors  
 
 

9.1 Introduction 
 
In point-to-point tasks our overall aim is to maximize the point matching 

performance. For a given descriptor type, one general way to increase 

performance is to increase dimensionality. If we form a low dimensional 

descriptor and steadily increase dimensions (e.g. more orientations, 

locations, frequencies) performance will generally improve. Can we keep 

doing this without limit? In fact we cannot - matching performance will 

maximize or saturate at a limit. Beyond this limit additional dimensions will 

actually reduce performance. A typical profile is shown in Figure 9-1, was 

seen in Figure 7.8 and it is also true for well known descriptors such as 

GLOH [70]. 

 

Matching Rate vs No. of Dimensions

Dimensions

M
tc
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ng

 R
at

e 
%

 
Figure 9-1: Typical profile of descriptor performance with 

increasing dimensions. 

 

Thus, simple image descriptors seem to reach an inherent limit on their 

ability to extract information regarding a point region. If we cannot increase 

the performance of point descriptors by increasing dimensions in a linear 

manner - can we increase dimensionality and performance in another way?  

 

This leads us to consider a fundamental question – why do descriptors 

work? The application of a descriptor increases the dimensional information 
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available at a point from 1 to the dimensionality of the descriptor. i.e. at 

any single pixel, the descriptive information goes from 1 scalar pixel value 

to an n-dimensional vector, typically of 16 to 128 dimensions. Such an 

increase in dimensionality is generally based on the neighbors of a point. 

We form such descriptors since they dramatically increase matching 

performance; point matching based simply on pixel value is effectively 

impossible. This is particularly so when such descriptors draw on nearby 

pixels and orientation information. Forming descriptors generally achieves 2 

main results 

 

 an increase in dimensionality based on nearby points 

 increased emphasis to some geometric property such as orientation, 

or frequency 

 

We then ask if such a process of descriptor formation could be applied 

repeatedly, and whether performance benefits are offered thereby. 

 

9.2 Multi-Level Descriptors 
 
We have seen that it is possible to obtain good matching results with a low-

dimensional descriptor of 16 dimensions. Moreover, our dense method 

calculates this descriptor at every image point. Inherent in these dense 

descriptors is an interesting possibility – that since every descriptor 

dimension exists at every pixel, we can treat every descriptor dimension as 

a new image. Thus taking descriptors is a transform from 1 image to 16 as 

per Figure 9-2 (a). 

 

(a)  
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(b) 

Figure 9-2: Single and multi-level image descriptors 

(a) Dense single level descriptors. Since descriptors exist at every 

point, we can treat every index as another image 

(b) We can then take descriptors again on those images 

 

Then, regarding the descriptors as a set of new images, we can again apply 

descriptors to this set of descriptor images as in Figure 9-2 (b). Thus we 

obtain ‘descriptors upon descriptors’; traditional interest point methods 

could be described as ‘descriptors upon pixels’. In the SIFT descriptor 

framework such a construction is unlikely since the basic descriptor is 128 

dimensions, making the final point descriptor to be of > 10,000 dimensions. 

This concept becomes viable because we have achieved good matching 

performance using few dimensions. 

 

Definition 9.1:  A multi-level descriptor is one in which descriptors are 

applied to an image in a dense manner, the results are treated as new 

images, and descriptors are applied again, in repetition.   
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9.2.1 Multi-Level Gabor Wavelets 
 
A multi-level Gabor descriptor applies a filter bank of Gabor wavelets to an 

image, then another Gabor filter bank to each descriptor index image. If 

each descriptor is of 16 dimensions, the final descriptor is of 256 

dimensions. The Gabor wavelet parameters may be different at each level. 

It takes the properties that make the Gabor wavelet successful and apply it 

again. So we have 2 levels of dimensionality expansion, and 2 levels of 

extracting orientation and frequency information.  

 

 

(a) 

 

          (b) 

   

(c) 

Figure 9-3: The 2nd level Gabor wavelets 

In (a), (b) we see Gabor wavelets convolved on Gabor wavelets 

of different orientation and the result is a different form. 

However, when the orientation is the same, (c), the result is 

another Gabor wavelet. 
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Convolving Gabor kernels 

 

In the 1D case: 
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(9.1) 

 

Thus, in 1 dimension, a Gabor kernel convolved upon a Gabor kernel 

produces another Gabor kernel. 
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In the 2D case: 

For 0° direction wavelets- 
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(9.2) 

 

Here L2 Gabor is the 2nd Level Gabor wavelet. 

 

Thus in the 2D case where the 2 wavelets are in the same direction, the 

result is another Gabor wavelet. This calculation was for the 0° direction, 

but is valid for any direction by symmetry (i.e. a change of variable). See 

Figure 9.3 (c).  
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Where the wavelets are in different directions we must treat it separately. 

For 0° and 45° direction wavelets- 
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In this case the final integral cannot be evaluated or simplified in a standard 
form. Thus in the case that the wavelets are in different directions, the 
convolution result does not correspond to any standard analytical functions. 
See Figure 9.3 (a), (b).  
 

We have ignored constant factors throughout. 

 

Associativity and Separability 

 

In applying descriptors to descriptors we are performing convolution 

successively. This allows us to use the associative rule for convolution 

 

( ) ( ) hgfhgf ∗∗=∗∗                              (9.4) 

 

This means that convolution needs only to be applied once, but the full set 

of 2nd level kernels must be kept in memory. This is an acceleration 

technique, but at a cost of increased memory usage. Figure 9.3 shows 



 

Part IV Applications and Conclusions 139

typical examples of such kernels formed from convolution of Gabor 

wavelets.  

 

It can be seen from Eq. (9.3) that in general, separability is not preserved 

for 2nd level Gabor kernels. Thus we cannot accelerate the numerical 

implementation of the convolution in this case as usual. 

 

It can be seen that a Gabor wavelet convolved upon a Gabor wavelet either 

produces another Gabor wavelet, or something like another Gabor wavelet, 

except with a ‘twist’ applied. 

 
 
9.2.2 Other Multi-Level Descriptors 
 
The concept of ‘descriptors on descriptors’, or multi-level descriptors is not 

restricted to Gabor wavelets and in principle can be applied to any other 

descriptor. Practically, there is a requirement that the descriptors be low 

dimensional. 

 

Histogram Descriptors 

 

A potentially useful multi-level descriptor is a ‘histogram of histograms’. 

This is because histograms are very efficient and can be used to represent a 

wide range of image information. 

 

A multi-level histogram is different from a multi-dimensional histogram. A 

multi-dimensional histogram can be used to characterize an image by, say, 

2 different quantities e.g. gradient and Laplacian [87]. However a multi-

level histogram still uses 1 image quantity.  

 

For example, suppose we histogram a region by intensity I, using 4 bins. 

Each bin spans an intensity range which together covers the possible values 

(0-255). For each pixel, the bin is incremented by 1 within whose range 

that pixel lies.  
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For each region we then have a 4-dimensional vector. If we then histogram 

these 4-dimensional vectors, e.g. by dividing each dimension into 2 parts 

around the median, we get a final vector of 24 or 16 dimensions. Each of 

the 4-dimensional histogram vectors constitutes 1 point in the final 

histogram (see Figure 9-4).  

 

 

(a) 

                

       (b)       (c) 

 

 

(d) 

Figure 9-4: The 2nd Level Histograms.   

From the image (a), histograms of color or intensity of a small 

area are produced (b), (c). These histograms are then combined 

to form another histogram by dividing each bin into 2 around the 

median. 

 

We make use of multi-level histograms in an application example in Chapter 

10. This shows the applicability of these for object class recognition. 
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Correlation Descriptors 

 

A Gaussian convolution descriptor characterizes a point by blurring and sub-

sampling the region around it. Effectively it performs a correlation match 

between regions. 

 

Likewise we can perform Gaussian convolution upon Gaussian convolution in 

a similar way to multi-level Gabor wavelet convolution. i.e. each dimension 

could be treated as another image and subject to another convolution. 

Indeed a Gaussian kernel could be considered a special case of a Gabor 

wavelet (apart from mean normalization). 

 

An interesting possibility is to combine different types of descriptors at 

different levels. For example, we could have a correlation descriptor as the 

first descriptor, then a Gabor wavelet as the 2nd level descriptor.  

 

We will not be pursuing such descriptors any further in this thesis. 

 

Higher Level Descriptors 

 

Taking ‘descriptors on descriptors’ could be carried on to the 3rd level, or an 

arbitrary level. However, it is likely that the increased dimensionality will 

eventually dilute the discriminative power of the descriptor. Also, Gabor 

wavelet descriptors tend to naturally respond to edges or the absence of 

edges. Going to higher levels produces descriptors that naturally respond to 

edges of edges, etc. Such structures are likely to contain gradually less 

information. Again, distinctiveness will likely gradually reduce with 

arbitrarily more levels. Nonetheless we intend to investigate this in future. 
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9.2.3 Point Selection Criteria 
 
Point selection is done using the same basic criteria as used in Sec. 7.3.  

That is, we use points that are maximally stable, using the stability criteria 

of  

1) descriptor length > pth percentile or threshold 
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(9.5) 

 

under a small synthetic transform (H is the homography between the image 

and its transform). As previously the synthetic transform we apply is a small 

rotation and a blurring.  

 

We take the minimum k points by 2) as required. The steps are shown in 

Figure 9-5. 

 

A fundamental difference between this and the descriptor of Sec. 7.3 is that 

that one was 16 dimensions while this one is of 16×16 = 256 dimensions.  

 

  

(a)         (b) 
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(c)          (d) 

Figure 9-5: Multi-level descriptor points 

(a) the image and (b) the color map of descriptor length. (c) The 

strongest points are determined. (d) The final points are selected 

from the strong points based on stability under an applied 

transform. 

 
 

9.3 Experimental Results for Multi-level Gabor 
Wavelet Matching 
 
In this section we present experimental results for multilevel Gabor 

wavelets, using the same Oxford image sets as previously. Again, we use 

SIFT for reference performance. 

 

We present data sequences results for  

 Multilevel dense Gabor descriptors, 256 dimensions – ‘Dense 

Multilevel Gabor’ 

 Single level dense Gabor descriptors, 16 dimensions – ‘Dense Gabor’ 

 SIFT descriptors. This is another high-dimension descriptor for 

comparison – ‘SIFT’ 
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Table 9.1: Parameters of the experiments 

Experimental Parameters 

Number of initial 

points selected by 

length 

2000 

Number of final points 

selected for stability & 

length 

1000 

Dimensions 

 

16 

(4ori×2freq×2phase) 

× 16 

(4ori×2freq×2phase) 

Descriptor space bins 256 

Descriptor space 

enrolment radius 
0.05 

1st level Gabor wavelet 

λ 
28.0 

σ 7.0 

γ 1 

2nd level Gabor 

wavelet λ 
20.0 

σ 4.0 

γ 1 

Timing for interest 

point and descriptor 

extraction 

15.87s 
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(a) Structured scale change 
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(b) Textured scale change 
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(c) Structured blur change 
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(d) Textured blur change 
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(e) Structured viewpoint change 
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(f) Textured viewpoint change 

 



 

Part IV Applications and Conclusions 147

Leuven Sequence Matching Rate - 
Dense Multilevel Match

Image 1-> Others (illumination change)

0

20

40

60

80

100

0 2 4 6

Image in Sequence

M
at

ch
in

g 
R

at
e 

% SIFT

Dense Multilevel
Gabor
Dense Gabor

 
(g) Illumination change 
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(h) JPEG compression change 

Figure 9-6: Dense single level, multi-level and SIFT matching rates for 

various image variations 

 
Table 9.2: Summary Statistics 

 Textured Structured Viewpoint Scale Blur All
       
SIFT 16.22 16.55 16.58 11.82 21.26 22.83
Dense Multilevel 
Gabor 16.97 25.69 18.80 14.11 32.64 30.85
Dense Gabor 8.77 13.75 10.06 5.37 19.43 18.75

 
 
9.3.1 Discussion of Results 
 

It can be seen Figures 9.6 (a) – (h) that applying a 2nd level of descriptor 

makes substantial improvements in almost all cases. This is true for scale, 
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viewpoint, blur, and illumination change. The improvement is for both 

structured and textures sequences. Only JPEG compression (h) didn’t show 

any real improvement (which is not unexpected since it is not a 

geometrically smooth transform). In many cases the improvement is an 

almost doubling of matching performance from the 1st level. 

 

In all cases the 2nd level Gabor descriptor also outperforms SIFT, albeit by a 

modest margin in most cases. SIFT has only rarely been outperformed by 

other interest point methods [70]. These results suggest that the concept of 

taking descriptors to a higher level has considerable potential. It is possible 

that these results apply generally to other descriptors, and also apply to 

class recognition. 

 

It may be that 3rd or 4th level descriptors will also offer good performance. It 

is interesting to note that the performance of the 2nd level Gabor descriptor 

is somewhat similar to SIFT. This may be because it is possible to regard 

SIFT itself as an approximation to a 2nd level Gabor descriptor – the 

gradient operator is the first level approximation, the Gaussian smoothing is 

the 2nd level. 
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Chapter 10  Applications 
 
 

10.1 Introduction 
 
In this section we demonstrate some practical applications of the ideas in 

this thesis. Our purpose here is just to give some indication of the uses that 

these ideas could be put to. These applications are far from complete or 

comprehensive in illustrating the use of these concepts. 

 

Hereafter we demonstrate 2 simple applications, navigation and class 

recognition. We do not go deeply into either one here – either of these 

could form a large body of research in itself. 

 

10.2 Navigation and Structure from Motion 
 
Navigation is potentially one of the most useful tasks in computer vision. It 

is likely to be a fundamental function of any future robotic vision systems, 

and goes hand-in-hand with 3D reconstruction techniques. 

 

More specifically, navigation is also a major application of interest point 

methods. In [42, 91] interest point matching is used as one of the key 

steps in autonomous navigation. Here, false point matching results in errors 

in navigation position and 3D point reconstruction. 

 

Here we define navigation as the determination of the 3-dimensional 

position of the camera at every given frame. In that sense we are defining 

navigation as camera external calibration. This calibration determines a 

sequence of decompositions of projections matrices- 
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Where A is the internal parameters, of which αu, αv are the focal length, γ is 

the skew, and u0, v0 are the coordinates of the principal point. Ri is the 

rotation matrix and ti is the translation of the camera centre in Euclidean 

space for camera i. See [28, 43] for details of these. An illustration of this is 

given in Figure 10-1. 

 

A typical camera calibration system has several main aspects 

 

 Interest point extraction and matching 

 Robust methods such as RANSAC, to remove false matches 

 Calibration algorithm, such as 5-point algorithm [78] 

 Numerical method, such as the sparse Levenberg-Marquardt   [43] 

 

It is not the purpose of this work to examine any of these aspects in detail 

except the first one. We will therefore use a publicly available 

implementation, Bundler [3], for all other steps. Bundler is the engine 

underlying the Photosynth project from Microsoft (http://photosynth.net/).  

 

 

 

 

Figure 10-1: Structure from motion.  

Determining the 3D structure of a scene and camera position 

from a sequence of images and corresponding points 
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10.2.1 Setup 
 
A series of photographs (Figure 10-2) were taken from measured positions 

for which we know the ground truth. This ground truth was obtained by 

taking the photographs from known 3D positions. To this end we used 

points on a tennis court. Images were taken from the 10 positions marked 

in Figure 10-3. 

 

 

 

(a) 

 

 

(b) 
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(c) 

 

Figure 10-2: Tennis court images used with Bundler. 

(a) the original image from a tennis court corner. (b) the same 

image with interest points extracted. (c) the adjacent corner 

image with interest points extracted 

 

The Bundler program extracts interest points and matches them. 

Part of Bundler was adapted to allow geometric point matching. We used 

SIFT matching, and SIFT with geometric matching. After this matching step, 

Bundler applies the 5-point algorithm and does bundle adjustment using the 

sparse Levenberg-Marquardt method. It finally outputs the 3D interest point 

positions and camera positions for each photograph. 

 

Although Bundler calculates the 3D positions of the camera it does so with a 

coordinate frame that may be rotated, scaled and translated compared to 

the true one that we want. We therefore must apply a transformation to 

each point  
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(10.2) 
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This transform determines the ambiguous parameters in the Euclidean 

reconstruction. These 7 parameters are the 3 Euler angles, 3 translation 

components and a scale factor. To determine the values of the 7 

parameters we minimize the distance to the ground truth position again 

using Levenberg-Marquardt optimization, this time in Matlab. This is similar 

to least-squares plane fitting through the points, except that the plane fitted 

also has a normalized canonical coordinate frame. 

 

 

 

Figure 10-3: Tennis court and positions from which images were 

taken. Tennis court with dimensions and the points marked from 

which the images were taken (tennis court image from Wikipedia) 
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10.2.2 Results 

 

(a) 

 

(b) 
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(c) 

Figure 10-4: Bundler reconstruction results with points and 

cameras from 3 different viewing positions. 

 

Results of the raw Bundler reconstruction from 3 different viewpoints are 

shown in Figure 10-4. Bundler determines the 3D position of cameras (blue 

cones) and scene points (in scene color). Most of the points are on 

background trees. The scale and coordinates of the raw reconstruction are 

arbitrary; they must be converted to real world scale and coordinates by Eq. 

(10.2). 
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Table 10.1: Bundler point position reconstruction 

 

Point 

Point Ground 

Truth Position 

(m) 

Point SIFT 

Position 
Error 

Point Geom 

SIFT 

Position (m) 

Error 

1 (0,0,0) 
(5.94, 0.20,   -

0.95) 
6.02 

(0.46, 0. 01, 

-0. 25) 
0.52 

2 (1.37,0,0) 
(4.55, 0.19,   -

0.86) 
4.64 

(1. 37, 0.00, 

-0.00) 
0.00 

3 (3.43,0,0) 
(2.41, 0.17,   -

0.73) 
2.53 

(2.94, -0.02, 

0.54) 
0.73 

4 (5.49,0,0) 
(-5.05, -0.74,   

-2.66) 
5.75 

(9.11, -0.20, 

-1.14) 
3.80 

5 (7.54,0,0) 
(-1.29, 0.23,   

-0.76) 
1.52 

(3.39, 0.20, 

-4.43) 
6.06 

6 (9.6,0,0) 
(-3.85, 0.17,   

-0.68) 
3.92 

(4.35, -0.04, 

0.80) 
5.30 

7 (10.97,0,0) 
(-8.02, -0.27,   

-1.93) 
8.25 

(8.05, -0.12, 

-1.20) 
3.15 

8 (9.6,0, -5.49) 
(-4.27, 0.15,   

4.37) 
6.11 

(9.59, -0.00, 

-5.49) 
0.00 

9 (5.49,0, -5.49) 
(0.18, 0.18,    

4.77) 
4.77 

(5.95, -0.07, 

1.24) 
6.74 

10 (1.37,0, -5.49) 
(1.57, -0.27,   

3.55) 
3.90 

(5.98, 0.16, 

-3.20) 
5.15 

Total Error (m) 47.41  31.45 

 

Thus the usage of geometric matching has delivered a more accurate 

reconstruction of the camera positions. It has reduced the total error in the 

positional measurements by ~30%. It is interesting to note that although 

Bundler uses leading algorithms, the error is still quite large. 
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10.3 Object Class Recognition – ASIRRA CAPTCHA 
 
 
In this section we describe an object class recognition application. Class 

recognition is another major computer vision area which is still a vigorous 

area of ongoing research. The particular application here is the ASIRRA 

CAPTCHA [4] (Completely Automated Public Turing test to tell Computers 

and Humans Apart) http://research.microsoft.com/en-

us/um/redmond/projects/asirra/ 

CAPTCHAs are uses by websites to distinguish between humans and 

automatic bots. This CAPTCHA requires the user to distinguish between 

pictures of dogs and cats. Although easy for humans, this is an extremely 

challenging task for computers. This work is not intended as a definitive 

attack on this CAPTCHA; rather is indicative of the type applications that are 

possible with the descriptors of this thesis. Example images from ASIRRA 

are shown in Figure 10-5. 

 

 

Figure 10-5: ASIRRA dog and cat images 

 

When it was announced, it was claimed that the best machine learning 

techniques would be unlikely to achieve a success of > 60% per image. The 
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CAPTCHA requires that the user select all the cats in a 12 image series, 

giving an expected correct response of 0.2% (at 60% per image). A 

published success rate, as given in [27] is 56.7%; the best reported to date 

is 82% in [39]. CAPTCHA methods are also discussed in [75, 110].  

 

Herein, we will use the method of Sec. 9.2.2 to attempt to solve this 

problem. Histograms are plausible as a primitive for problems of this type 

since can deal with wide variations in geometry. Following [39], we will use 

color as the discriminating quantity. Our objective here is not to achieve the 

maximum headline matching rate, per se, since we are limited by time. 

Rather, our purpose is to demonstrate that discriminative histograms can 

achieve credible matching rates, and that this is improved by using multi-

level histograms. 

 

A large number of binary features are used in [39], and accepts weak 

discrimination power from them individually. We adopt a somewhat 

different approach in that we use smaller numbers of higher dimensional 

features. It is claimed that histograms give poorer performance than binary 

features, therefore we modify our histograms somewhat. Rather than 

histogram the number of pixels in a color range, we will histogram  

 

( )
10

_____
<< k

rangecolorinpixelsofnumber k

               (10.3) 

 

For values of k<1 this parameter increases robustness to image variation 

(particularly scale).  

 

From Figure 10.5 it can be seen that the images present dogs and cats at a 

range of sizes or scales.  

 
 
10.3.1 Setup 
 
All images are subject to pre-processing to scale them to 250*250 pixels. 

The descriptor we are using is a histogram of histograms. This allows 
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greater positional flexibility than a histogram, but does not abandon 

position information entirely. 

 

 

 

Figure 10-6: Multi-level color histogram structure. 

 

1st level Descriptor: The first level descriptor operates directly on image 

pixel color. For each of the 3 channels R, G, B we divide into 3 bins. The 

histogram is of the combination of the R, G, B values. Thus for 3 bins for 

each channel, there are a total of 27 histogram bins. Each pixel is allocated 

to one of these bins. The histogram is made over a smaller area e.g. 50*50 

pixels. 

 

The 2nd level Descriptor: The 2nd level histogram treats each of the 1st 

level descriptors as a single point. That is, each of the 27-dimensional 

vectors from the 1st level is a single entry in the 2nd level histogram. This 

is achieved by grouping the 27-dimensional vector into 6 groups of 4 

components and 1 group of 3 components. Thus 7 groupings are attained 

and in each group the values are added together. Each of the 7 values is 

binary divided into 2 ranges around the median. Thus a 2nd level descriptor 

of 128-dimensions is obtained. Each level 1 histogram adds 1 value to one 

of the 128 histogram dimensions. 

 

These are illustrated in Figures 10-6 and 10-7. 

 

A 27-dimension 1st level 
color histogram is used to 
describe the smaller regions. 

A 128-dimension 2nd level 
histogram is used to describe 
the larger regions. There 
could be 1 or 4 of these for 
the image. 
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Figure 10-7: Relationship between 1st and 2nd level descriptor formation.  

Every 4 components of the 1st level descriptor are grouped and added, then 

allocated a binary value. There are 7 such groups resulting in a final 

descriptor of 27 = 128 dimensions. We do it in this way to get the right 

dimensional balance. 

 

A large number of training images are used to provide feature points to 

train an SVM. For the final discriminant function we use an exponential 

kernel function 

( )2exp),( vuvuK −−= γ                           (10.4) 

 
10.3.2 Results 
 

Table 10.2: Parameters for ASIRRA testing 

Experimental Parameters 

Size of 1st level 

histogram window 
35 pixels 

Size of 2nd level 

histogram window 
100 pixels 

Dimensions of level 1 

descriptor 
27 

Dimensions of level 2 

descriptor 
128 

γ  0.01 

k 0.25 

No. of testing images 

in 1 run 
16 
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Table 10.3: ASIRRA classification rate performance by dimensions 

Correct Classification 

Rate 
1 Level Descriptor 2 Level Descriptor 

 mean stdev mean stdev 

128 dimensions 53.1 2.0 58.2 2.3 

 512 dimensions 54.6  2.1 60.9 2.3 
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Figure 10-8: ASIRRA classification rates by training images 

 

It can be seen in Figure 10-8 that the matching rates with a 2-level 

histogram descriptor deliver an improvement compared to a standard 1-

level histogram. The correct matching rate exceeds that of [27], but is 

inferior to [39]. We believe this is due partly to the very large number of 

features and training images used in [39]; and also to the use of other 

information, such as using texture descriptors.  

 

We believe the approach of using 2-level histograms has the potential to 

achieve considerable further improvement in performance, and we look 

forward to pursuing this in future. 
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Chapter 11  Discussion and Conclusions 
 
 
In this chapter we review the main results of this work and draw some 

conclusions from them. We also look at some future development of ideas 

that are motivated by this work.  

 

11.1 What We Have Tried to Do 
 
The main objective of this thesis has been to improve interest point 

operation. After quick advances in the early 2000’s, slower progress has 

since been recorded. Herein we have looked at alternate metrics, point 

selection and point descriptors to achieve better performance 

 

11.2 What has been achieved in this thesis 
 
A range of ideas have been implemented in previous chapters. An 

experimental regime has been used to evaluate the effectiveness of these 

ideas. Some of these have been seen to be more significant and offer more 

improvement than others. 

 

The ideas of geometric matching provided an improvement to matching 

performance for correlation and SIFT descriptors, with a much smaller 

improvement for low-dimensional Gabor descriptors. This performance 

improvement was similar to affine invariant methods.  

 

Dense descriptors were shown to be capable of point matching and class 

recognition. For dense point matching, performance competitive or better 

than the best low dimensional descriptors was achieved.  

 

The concept of multi-level descriptors was introduced and shown to provide 

performance improvements compared to single-level descriptors. 
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Main Overall New Results 

 

 This thesis has presented 3 different, new methods by which SIFT 

matching performance can be exceeded. Performance exceeding SIFT 

has only rarely been achieved by other interest point methods. 

 

 The concept of geometric match has been shown to deliver matching 

improvements compared to the Euclidean distance. For the 

correlation and SIFT descriptors these are marked. The geometric 

match brings stereo matching methods into the realm of interest 

point matching. 

 

 That dense point matching has been shown to deliver results superior 

to traditional sparse methods, and uses few dimensions. High 

performance point matching has previously only been demonstrated 

with sparse point detectors. The results obtained outperform other 

low-dimensional methods. 

 

 High performance for recognition of some object classes using dense 

detectors. Overall the class recognition results are somewhat below 

the ‘Biological’ model, however on some specific classes superior 

performance was achieved.  

 

 The concept of the multi-level descriptor is new. It has been shown to 

deliver clear matching improvements compared to standard single 

level descriptors. The multi-level Gabor descriptor outperforms the 

SIFT descriptor. 

 
 
  

11.3   Limitations and Future Work 
  
All the methods in this thesis have limitations and areas where future 

development could be made. 
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Geometric Matching: 

The geometric method depends on a stereo-like smoothing method. This is 

an area of intense research in itself. Herein we have just used a simple 

Potts model derivative (see [16]). More sophisticated stereo methods such 

as belief propagation could improve results. The results reported herein for 

geometric matching represent a tradeoff with processing time. Faster CPU’s 

would increase matching performance by allowing higher dimensional 

descriptor matching (this is unlike SIFT, for example, where a performance 

plateau has been reached). 

 

Dense Matching: 

In this study we have examined dense matching only for Gabor descriptors. 

A more comprehensive study would look at other descriptors also. 

 

For point matching we have selected points by stability, using the change 

under a small rotation and blur. Better performance would be achieved by a 

more general transform e.g. a full affine transform and blur. This is similar 

to the idea of Hinterstoisser [45] but we are using it to select points, not 

just describe them. 

 

For class discrimination we have used a fixed Gabor descriptor. There would 

probably be benefit in adopting a more flexible Gabor descriptor, such as 

that of [93]. This involves taking of maxima over a window, which increases 

flexibility. We believe this is the reason the ‘biological’ outperformed our 

descriptor for some difficult classes. Also, our testing for class discrimination 

involves only a small number of classes. A larger number would provide 

more certain results. 

 

Multi-Level Descriptor: 

The multi-level descriptor in this thesis is slow to compute since it involves 

2 levels of 16 convolutions each. For it to be practical it will need to be 

accelerated. We believe methods can exist to achieve this, and they may be 

looked at in future.  
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The multi-level framework is complex and leaves many questions 

remaining. In this thesis we have only examined descriptors to the 2nd level 

– more levels may further improve performance. For multiple levels it is not 

clear what the right dimensionality breakdown between levels is. It is also 

possible to combine different descriptors at different levels and this could be 

examined in future. 

Also, the multi-level descriptors tend to be very high dimensional. These 

may benefit from the application of dimensionality reduction, such as by 

PCA [54]. 

 

Other Future Improvements: 

The methods of this thesis have been presented largely separately. 

However, performance improvements could be obtained by combining some 

or all of these methods. For example, geometric matching could be used 

together with dense descriptors to improve performance. 

 

Also, following another idea of Hinterstoisser [45], very substantial 

increases in matching performance can be achieved by combining SIFT and 

correlation descriptors successively. We intend to develop this in future. 

 
 

11.4   Conclusion 
 
Interest point matching is a subject which is still undergoing evolutionary 

improvement. After very rapid advances at the beginning of this decade, 

gradual improvements are now being achieved. 

 

This thesis has presented a variety of methods whereby current interest 

point matching performance can be improved or expanded. These include 

both point matching and class discrimination techniques. None of the ideas 

in this thesis constitute a revolutionary advancement in this topic, and all of 

them have limitations. Nonetheless they do have usefulness in some 

situations, and do contribute to steady advancement in the understanding 

and practice of interest point matching. 

 
 



 

Part IV Applications and Conclusions 170

Author’s Publications 
 
Published or Accepted for Publication 
 
S. Werkhoven, J. S. Jin, ’Projective Invariant and Non-Planar Interest 

Points’, Proceedings of 2005 Asia-Pacific Workshop on Visual Information 

Processing, Hong Kong, pp.200-205 (2005) 

 

S. Werkhoven and S. Luo. Improving Interest Point Object Recognition and 

Its Applications in Multimedia. Book chapter in Computer Vision for 

Multimedia Applications - Methods and Solution. IGI Global, accepted on 

01/09/2009, (2009) 

 
Intention to Publish 
 
S. Werkhoven and J. S. Jin. Multi-level interest point descriptors for point 

matching. 

 

S. Werkhoven and J. S. Jin. Dense interest point matching. 

 

S. Werkhoven and J. S. Jin. Geometric matched interest points. 

 



 

Part IV Applications and Conclusions 171

 
 
 



 

Part IV Applications and Conclusions 172

Bibliography 
 
[1] Caltech image datasets 

http://www.vision.caltech.edu/Image_Datasets,  

(retrieved 6/6/2006) 

[2] Oxford image set 

http://www.robots.ox.ac.uk/~vgg/research/affine/index.html, 

(retrieved 10/7/2005) 

[3] Bundler http://phototour.cs.washington.edu/bundler/,  

(retrieved 16/11/2008) 

[4] The Asirra CAPTCHA project  

http://research.microsoft.com/en-us/um/redmond/projects/asirra/, 

(retrieved 6/2/2009) 

[5] Statistical Matlab Package for Matlab 

http://cmp.felk.cvut.cz/cmp/software/stprtool/ 

[6] OpenCV http://sourceforge.net/projects/opencvlibrary/ 

[7] Matlab http://www.mathworks.com/ 

[8] S. Arya, D.M. Mount, N.S. Netanyahu, R. Silverman, and A.Y. Wu. 

An optimal algorithm for approximate nearest neighbor searching. 

Journal of the ACM, 45:891–923, 1998.  

[9] A. Baumberg. Reliable feature matching across widely separated 

views. In Proceedings of the Conference on Computer Vision and 

Pattern Recognition, Hilton Head Island, South Carolina, USA, pages 

774–781, 2000.  

[10] H. Bay, T. Tuytelaars, and L. Van Gool. SURF: Speeded up robust 

features. In ECCV, 2006.  

[11] S. Belongie, J. Malik, and J. Puzicha. Matching shapes. The 8th 

International Conference on Computer Vision, Vancouver, Canada, 

pages 454–461, 2001.  

[12] J. Beis and D. Lowe. Shape Indexing using Approximate Nearest-

Neighbour Search in High-Dimensional Spaces. In Conference on 

Computer Vision and Pattern Recognition, pages 1000–1006, Puerto 

Rico, 1997.  

[13] A. C. Berg and J. Malik. Geometric blur for template matching. In 

CVPR, pages 607–614, 2001.  



 

Part IV Applications and Conclusions 173

[14] A. Berg, T. Berg, and J. Malik. Shape matching and object 

recognition using low distortion correspondences. In Proc. CVPR, 

volume 1, pages 26–33, 2005. 

[15] G. Bouchard and B. Triggs. Hierarchical part-based visual object 

categorization. In CVPR, 2005.  

[16] Y. Boykov, O. Veksler, and R. Zabih. Fast Approximate Energy 

Minimization via Graph Cuts. PAMI, 23(11), 2001.  

[17] M. Brown and D. Lowe. Recognising panoramas. In Proceedings of 

the 9th International Conference on Computer Vision, Nice, France. 

IEEE Computer Society Press, October 2003.  

[18] M. Brown and D. G. Lowe. Invariant features from interest point 

groups. In The 13th British Machine Vision Conference, Cardiff 

University, UK, pp. 253-262, 2002. 

[19] J. Canny. A computational approach to edge detection. IEEE 

Transactions on Pattern Analysis and Machine Intelligence, 

8(6):679–698, 1986.  

[20] G. Carneiro and A. Jepson. Flexible spatial models for grouping local 

image features. In CVPR, 2004.  

[21] G. Carneiro and A.Jepson. The distinctiveness, detectability, and 

robustness of local image features. In CVPR, 2005.  

[22] C. Cortes and V. Vapnik. Support vector network. Machine Learning 

20, 273-297, 1995. 

[23] G. Csurka, C. Bray, and C. Dance L. Fan. Visual categorization with 

bags of keypoints. In ECCV Workshop on Statistical Learning in 

Computer Vision, 2004.  

[24] N. Dalal and B.Triggs. Histogram of oriented gradients for human 

detection. Computer Vision and Pattern Recognition, vol 1, pp 886-

893, June 2005.  

[25] G. Dorko and C. Schmid. Selection of scale-invariant parts for object 

class recognition. In Proceedings of the 9th International Conference 

on Computer Vision, Nice, France, 2003.  

[26] G. Dorko and C. Schmid. Object Class Recognition Using 

Discriminative Local features. Technical Report RR-5497, INRIA 

Rhone-Alps, 2005.  

[27] J. Elson, J. Douceur, J. Saul. Asirra: a CAPTCHA that exploits 



 

Part IV Applications and Conclusions 174

interest-aligned manual image categorization. Proc. of the 14th ACM 

conference on Computer and communications security. pp 366-374, 

2007. 

[28] O.Faugeras and Q.T. Luong. The Geometry of Multiple Images. MIT 

Press, 2001.  

[29] P. Felzenszwalb and D. Huttenlocher. Efficient matching of pictorial 

structures. CVPR, Hilton Head Island, South Carolina, USA, pages 

66–75, 2000.  

[30] L. Fei-Fei, R. Fergus, and P. Perona. One-shot learning of object 

categories. IEEE Transactions on Pattern Analysis and Machine 

Intelligence, 28(4):594–611, 2006.  

[31] L. Fei-Fei and P. Perona. A Bayesian Hierarchical Model for Learning 

Natural Scene Categories. In CVPR, 2005.  

[32] R. Fergus, P. Perona, and A. Zisserman. Object class recognition by 

unsupervised scale-invariant learning. In CVPR, 2003.  

[33] V. Ferrari, T. Tuytelaars, and Luc Van Gool. Simultaneous object 

recognition and segmentation by image exploration. In ECCV, 2004 

[34] L. Florack, B. Haar Romeny, J. Koenderink and M. Viergever. 

General intensity transformations and differential invariants. In JMIV 

4: 171–187, 1994. 

[35] H. Freeman. On the encoding of arbitrary geometric configuration. 

IRE transactions on electronic computers, EC-10(2):260-268, 1961. 

[36] W. Freeman and E. Adelson. The design and use of steerable filters. 

IEEE Transactions on Pattern Analysis and Machine Intelligence, 

13(9):891–906, 1991.  

[37] A. Frome, D. Huber, R. Kolluri, T. Bulow, and J. Malik. Recognizing 

objects in range data using regional point descriptors. In Proc. 8th 

Europ. Conf. Comput. Vision, vol. 3, pp. 224–237, 2004. 

[38] D. Gabor. Theory of communication. Journal I.E.E., 3(93):429 – 

457, 1946.  

[39] P. Golle. Machine learning attacks against the Asirra captcha. Proc. 

of the 15th ACM conference on Computer and communications 

security. pp 535-542. 2008.+  

[40] K. Grauman and T. Darrell. Pyramid match kernels: Discriminative 

classification with sets of image features. In Proc. ICCV, 2006. 



 

Part IV Applications and Conclusions 175

[41] T. Goedeme, T. Tuytelaars, and L. Van Gool. Fast wide baseline 

matching for visual navigation. vol. 1, pp.24-29, Conference on 

Computer Vision and Pattern Recognition (CVPR 04), 2004. 

[42] C. Harris and M. Stephens. A combined corner and edge detector. In 

Alvey Vision Conference, pages 147–151, 1988.  

[43] R. Hartley and A. Zisserman. Multiple View Geometry in Computer 

Vision. Cambridge University Press, 2nd Edition, 2003.  

[44] S. Helmer, and D. Lowe. Object class recognition with many local 

features. In Proc. CVPRW'04, Vol. 12, pp 187, 2004. 

[45] S. Hinterstoisser, S. Benhimane, V. Lepetit, P. Fua, and N. Navab. 

Simultaneous recognition and homography extraction of local 

patches with a simple linear classifier. BMVC, Leeds, September, 

2008. 

[46] D. Hoiem, R. Sukthankar, H. Schneiderman, and L. Huston. Object-

based image retrieval using the statistical structure of images. 

Conference on Computer Vision and Pattern Recognition, 02:490–

497, 2004.  

[47] D. Huttenlocher, and S. Ullman. Object recognition using alignment. 

In Proc. International Conference on Computer Vision, pp 102-111, 

1987. 

[48] D. Huttenlocher, R. Lilien, and C. Olson. View-based recognition 

using an eigenspace approximation to the Hausdorff measure. PAMI, 

vol. +21, no. 9, pp. 951–955, Sept. 1999.  

[49] P. Indyk and R. Motwani. Approximate nearest neighbors: Towards 

removing the curse of dimensionality. In ACM Symposium on Theory 

of Computing, pp. 604–613, 1998. 

[50] T. Joachims. Making large-scale svm learning practical. In B. 

Schlkopf, C. Burges, and A. Smola, editors, Advances in Kernel 

Methods - Support Vector Learning. The MIT Press, Cambridge, MA, 

USA, 1999.  

[51] Jurie, F., Schmid, C.: Scale-invariant shape features for recognition 

of object categories. In: CVPR. Vol. 2, 90 – 96, 2004. 

[52] T. Kadir, M. Brady, and A. Zisserman. An affine invariant method for 

selecting salient regions in images. In Proceedings of the 8th 

European Conference on Computer Vision, Prague, Czech Republic, 



 

Part IV Applications and Conclusions 176

2004.  

[53] T. Kadir and M. Brady. Scale, Saliency and Image Description. 

International Journal of Computer Vision, 45 (2):83-105, 2001. 

[54] Y. Ke and R. Sukthankar. PCA-sift: A more distinctive representation 

for local image descriptors. CVPR, Washington, DC, USA, pages 66–

75, 2004. 

[55] S. Lazebnik, C. Schmid, and J. Ponce. Beyond Bags of Features: 

Spatial Pyramid Matching for Recognizing Natural Scene Categories. 

In CVPR, 2006.  

[56] S. Lazebnik, C. Schmid, and J. Ponce. Sparse texture representation 

using affine-invariant neighborhoods. In Proceedings of the 

Conference on Computer Vision and Pattern Recognition, Madison, 

Wisconsin, USA, 2003.  

[57] S. Lazebnik, C. Schmid, and J. Ponce. A maximum entropy 

framework for part-based texture and object recognition. In Proc. 

ICCV, 2005. 

[58] B. Liebe and B. Schiele. Interleaved object categorization and 

segmentation. In BMVC, 2003.  

[59] B. Leibe and B. Schiele. Analyzing appearance and contour based 

methods for object categorization. In Proceedings of the Conference 

on Computer Vision and Pattern Recognition, Madison, Wisconsin, 

USA, June 2003.  

[60] T. Lindeberg. Feature detection with automatic scale selection. 

International Journal of Computer Vision, 30(2):79–116, 1998.  

[61] T. Lindeberg and J. Garding. Shape-adapted smoothing in 

estimation of 3-D shape cues from af ne deformations of local 2-D 

brightness structure. Image and Vision Computing, 15(6):415–434, 

1997.  

[62] D. G. Lowe. Object recognition from local scale-invariant features. 

In Proceedings of the 7th International Conference on Computer 

Vision, Kerkyra, Greece, pages 1150–1157, 1999.  

[63] D. Lowe. Distinctive Image Features from Scale-Invariant Keypoints. 

International Journal of Computer Vision, 20(2):91–110, 2004.  

[64] S. Mallat. A wavelet tour of signal processing. Academic Press, 2nd 

Edition, 1999.  



 

Part IV Applications and Conclusions 177

[65] Marr, D. Vision. Freeman. 1982 

[66] D. Martin, C. Fowlkes, and J. Malik. Learning to find brightness and 

texture boundaries in natural images. NIPS, 2002.  

[67] J. Matas, O. Chum, M. Urban, and T. Pajdla. Robust wide baseline 

stereo from maximally stable extremal regions. In Proceedings of 

the 13th British Machine Vision Conference, Cardiff, England, pages 

384–393, 2002.  

[68] K. Mikolajczyk and C. Schmid. Indexing based on scale invariant 

interest points. In Proceedings of the 8th International Conference 

on Computer Vision, Vancouver, Canada, pages 525–531, 2001.  

[69] K. Mikolajczyk and C. Schmid. Scale and affine invariant interest 

point detectors. IJCV, 60(1):63–86, 2004.  

[70] K. Mikolajczyk and C. Schmid. A Performance Evaluation of Local 

Descriptors. PAMI, 27(10):1615–1630, 2004.  

[71] K. Mikolajczyk, C. Schmid, and A. Zisserman. Human detection 

based on a probabilistic assembly of robust part detectors. The 8th 

ECCV, Prague, Czech Republic, volume I, pages 69–81, 2004.  

[72] K. Mikolajczyk, B. Liebe and B. Schiele. Local features for object 

class recognition. In Proc. ICCV, 2005. 

[73] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas, F. 

Schaffalitzky, T. Kadir, and L. Van Gool. A comparison of affine 

region detectors. International Journal of Computer Vision, 

65(1):43–72, 2005.  

[74] Mindru, F., Tuytelaars, T., Van Gool, L., Moons, T.: Moment 

invariants for recognition under changing viewpoint and illumination. 

CVIU 94 3–27, 2004. 

[75] G. Mori and J. Malik, “Recognizing objects in adversarial clutter: 

Breaking a visual captcha,” in Proc. IEEE Comput. Soc. Conf. 

Comput. Vision and Pattern Recognition, vol. 1, pp. 134–141, 2003. 

[76] J. Mundy and A. Zisserman. Geometric invariance in computer 

vision. MIT Press. 1992. 

[77] J. Mutch and D.Lowe. Multiclass Object Recognition with Sparse, 

Localized Features. In CVPR, Vol 1, pp 11-18, 2006.  

[78] D. Nister. An efficient solution to the 5-point relative pose problem. 

IEEE Conference on Computer Vision and Pattern Recognition. Vol 2, 



 

Part IV Applications and Conclusions 178

pp195-202, 2003. 

[79] S. Obdrzˇalek´ and J. Matas. Toward Category-Level Object 

Recognition, chapter 2, pages 85–108. J. Ponce, M. Herbert, C. 

Schmid, and A. Zisserman (Editors). Springer-Verlag, Berlin 

Heidelberg, Germany, 2006. 

[80] K. Okajima. Two-dimensional Gabor-type receptive field as derived 

by mutual information maximization. Neural networks 11(3):441-

447, 1998. 

[81] M. Ozuysal, P. Fua, and V. Lepetit. Fast Keypoint Recognition in Ten 

Lines of Code. Computer Vision and Pattern Recognition, CVPR '07, 

pp. 1-8, June 2007. 

[82] F. Porikli. Integral histogram: a fast way to extract histograms in 

cartesian spaces. In CVPR, pages 829–836, 2005.  

[83] E. Rosten and T. Drummond. Machine learning for high-speed corner 

detection, European Conference on Computer Vision, May 2006. 

[84] F. Rothganger, S. Lazebnik, C. Schmid, and J. Ponce. Object 

modeling and recognition using local affine invariant image 

descriptors and multi-view spatial constraints. International Journal 

of Computer Vision, 66(3):231–259, 2006.  

[85] F. Rothganger, S. Lazebnik, C. Schmid, and J. Ponce. 3D Object 

modeling and recognition using affine-invariant patches and multi-

view spatial constraints. In Proceedings of the Conference on 

Computer Vision and Pattern Recognition, Madison, Wisconsin, USA, 

pages 272-277, June 2003. 

[86] F. Schaffalitzky and A. Zisserman. Multi-view matching for 

unordered image sets. In Proceedings of the 7th European 

Conference on Computer Vision, Copenhagen, Denmark, 2002.  

[87] B. Schiele and J. Crowley. Recognition without correspondence using 

multidimensional receptive field histograms. IJCV, 36(1):31–50, 

2000. 

[88] C. Schmid and R. Mohr. Local Grayvalue Invariants for Image 

Retrieval. IEEE Transactions on Pattern Analysis and Machine 

Intelligence, 19(5):530–534, May 1997.  

[89] C. Schmid, R. Mohr, and C. Bauckhage. Evaluation of interest point 

detectors. International Journal of Computer Vision, 37(2):151–172, 



 

Part IV Applications and Conclusions 179

2000.  

[90] Henry Schneiderman and Takeo Kanade. Object detection using the 

statistics of parts. IJCV, 56(3):151–177, 2004.  

[91] S. Se, D. Lowe, and J. Little. Global localization using distinctive 

visual features. In International Conference on Intelligent Robots 

and Systems, IROS 2002, Lausanne, Switzerland, October 2002.  

[92] T. Sebastian, P. N. Klein, and B. B. Kimia. Shock-based indexing 

into large shape databases. In European Conference on Computer 

Vision, vol. 3, pp. 731–746, 2002. 

[93] T. Serre, L. Wolf, and T. Poggio. Object Recognition with features 

inspired by visual cortex. In CVPR, San Diego, June 2005. 

[94] G. Shakhnarovich, P. Viola, and T. Darrell. Fast pose estimation with 

parameter sensitive hashing. In Proc. 9th Int. Conf. Computer 

Vision, vol. 2, pp. 750–757, 2003. 

[95] L. Shen, and L. Bai. A review on Gabor wavelets for face 

recognition. In Pattern Analysis & Applications, vol. 9, Issue 2, pp. 

273-292, 2006.  

[96] J. Sivic and A. Zisserman. Video Google: Efficient visual search of 

videos. In Toward Category-Level Object Recognition, volume 4170 

of LNCS, pages 127–144. Springer, 2006.  

[97] J. Sivic, B. Russell, A. Efros, A. Zisserman, and W. Freeman. 

Discovering objects and their location in images. In Proc. ICCV, 

2005. 

[98] S. M. Smith and J. M. Brady. SUSAN - a new approach to low level 

image processing. International Journal of Computer Vision, 23 (1): 

45–78. May 1997. 

[99] C. Strecha, T. Tuytelaars, and L. Van Gool. Dense Matching of 

Multiple Wide-Baseline Views. In ICCV, 2003.  

[100] M. Swain and D. Ballard. Color indexing. IJCV, 7(1):11–32, 1991. 

[101] D. Tell and S. Carlsson. Combining appearance and topology for 

wide baseline matching. In Proceedings of the 7th European 

Conference on Computer Vision, Copenhagen, Denmark, pages 814-

828, 2002. 

[102] A. Thayananthan, B. Stenger, P. H. S. Torr, and R. Cipolla. Shape 

context and chamfer matching in cluttered scenes. In Proc. Conf. 



 

Part IV Applications and Conclusions 180

Compute Vision and Pattern Recognition, vol. I, Madison, USA, pp. 

127–133, 2003. 

[103] A. Torralba, K. P. Murphy, and W. T. Freeman. Sharing features: 

efficient boosting procedures for multiclass object detection. In 

CVPR, pages 762–769, 2004.  

[104] E. Tola, V. Lepetit and P. Fua. A fast local descriptor for dense 

matching. In Proc of IEEE International Conference on Computer 

Vision and Pattern Recognition, June 2008. 

[105] M. Turk and A. Pentland. Eigenfaces for recognition, J. Cognitive 

Neuroscience, vol. 3, no. 1, pp. 71–96, 1991.  

[106] T. Tuytelaars and L. Van Gool. Wide Baseline Stereo Matching based 

on Local, Affinely Invariant Regions. In BMVC, pages 412–422, 

2000.  

[107] L. Van Gool, T. Moons, and D. Ungureanu. Affine / photometric 

invariants for planar intensity patterns. In Proceedings of the 4th 

European Conference on Computer Vision, Cambridge, England, 

pages 642–651, 1996.  

[108] P. Viola, M. J. Jones. Rapid object detection using a boosted cascade 

of simple features. In CVPR (1), 511–518, 2001. 

[109] P. Viola, M. J. Jones, and D. Snow. Detecting pedestrians using 

patterns of motion and appearance. The 9th ICCV, Nice, France, 

volume 1, pages 734–741, 2003. 

[110]  L. von Ahn, M. Blum, and J. Langford. Telling humans and 

computers apart (automatically). CMU Tech Report CMU-CS-02-117, 

February 2002. 

[111] C. Wallraven, B. Caputo, and A. Graf. Recognition with local 

features: the kernel recipe. In Proc. ICCV, volume 1, pages 257–

264, 2003. 

[112] A. Witkin. Scale-space filtering, Proc. 8th Int. Joint Conf. Art. Intell., 

Karlsruhe, Germany,1019–1022, 1983. 

[113] H. Zhang, A. Berg, M. Maire, J. Malik. SVM-KNN: Discriminative 

nearest neighbor classification for visual category recognition. In 

Proc. CVPR, volume 2, pages 2126–2136, 2006. 

[114]  J. Zhang, M. Marszalek, S. Lazebnik, and C. Schmid. Local features 

and kernels for classifcation of texture and object categories: An in-



 

Part IV Applications and Conclusions 181

depth study. Technical Report RR-5737, INRIA Rhone-Alpes, 2005. 

 

 

 

 



 

Part IV Applications and Conclusions 182

Appendix I – Image Data Sets 
 
 
Examples of Oxford Affine Set 
 

     
 
 

    
 
 

    
 

    
 
 
Examples of Caltech 101 Set 
 

    
 

    



 

Part IV Applications and Conclusions 183

 

    
 

    
 
 
Examples of Caltech Image Sets 
 

    
 

    
 
 
 
 
 




