
Formal Definition of Feature Models to Support

Software Product Line Evolutions

Huilin Ye1 and Wendy Zhang2

1School of Electrical Engineering and Computer Science,
University of Newcastle, Callaghan, NSW 2308, Australia

Huilin.Ye@newcastle.edu.au

2Computer Science & Industrial Technology Department
 Southeastern Louisiana University, Hammond, LA 70402, USA

wzhang@selu.edu

Abstract - Feature models have been widely used in software

product line based software engineering. The dependencies

between the variants and variation points in a feature model

have very strong implications on the product configurations.

Usually these dependencies are represented informally and

incomplete in existing feature modelling approaches. In this

work we first further explore the complex dependencies

existing in software product lines. And then we propose a

formal specification using Z notation to specify the

dependencies in a product line. The specification formally

defines software product lines and specifies complex

dependency constrains contained in product lines. A set of

operation schemas that support product line evolutions have

been developed. With these operation schemas the invariants

defined in the formal specification of product lines can be

ensured when new features and feature dependencies are

added into or removed from the product line. As Z

specifications provide proof mechanism to validate the formal

model and natural transition from a specification to an

implementation a reasoning mechanism and a feature

modelling tool can be developed in future.

Keywords: product line evolution, feature modelling, feature

dependency, formal specification, Z notation.

1 Introduction

 Feature models are suggested as a useful abstraction to
represent variability in software product lines [1]. Features are
prominent and distinctive system requirements or
characteristics that are visible to various stakeholders in a
product family [2]. Feature oriented modelling approaches
have been widely used in software product line engineering.
Most of the approaches use diagrams to represent features and
their relationships. Although the diagrams provide intuitive
pictures of feature models there is not sufficient accurate
definitions of the concepts used in feature modelling. This
brings ambiguous semantics of feature models. Formal
specifications are believed an effective means that provides a
theoretical foundation for the principles of software

engineering in general. Some research works that applied
formalism to feature modelling have been reported [3-6]. But
we think that the following issues of the formalisation have not
been well addressed in the previous works.

• Feature dependency modelling: the lack of complete
and accurate of formal specifications of feature
dependencies has great implication on member product
configurations in software product lines. Dependencies
in feature models not only exist between features but
also exist between features and variation points and
between variation points. Understanding these different
types of dependencies will help configure valid
member products.

• Support product line evolutions: Software product lines
will constantly evolve along the time. It must be
guaranteed the invariants of a product line remain
unchanged when new features and dependencies are
added in or existing features are removed from the
product line.

• Feature modelling tools are necessary for product line
engineering. Connection from the formal specification
to the implementation of the modelling tools should be
established. Formal approaches distant to tool
implementation are not practicable and may not be
acceptable by the software industry.

This work addressed the above issues. Thus it contains
several contributions. First, dependency relationships in
feature models will be further explored in addition to the ones
reported in the literature. Then a formal definition of software
product line will be presented. A set of operation schemas that
support product line evolutions have been developed. With
these operation schemas the invariants defined in the formal
specification of product lines can be ensured when features
and dependencies are added into or removed from the product
line. The remainder of the paper will be organised as follows.
Section 2 reviews the relevant background of feature
modelling and further explores feature dependency
relationships in feature models. Section 3 presents a formal
definition of product line and a set of operation schemas

supporting product line evolution. Section 4 concludes the
paper.

2 Background of Feature Modelling

2.1 Review of Feature Models

Features in a product line are classified as mandatory
features and variable features to represent commonality and
variability of the member products respectively. An important
concept used in feature modelling is variation point. Currently
existing feature modelling approaches usually use a tree
structure to organize features. If a parent node of the tree has
one or more variable child features, called variants, the parent
feature together with variable child features is defined as a
variation point [7]. The configuration of a member product in
a product line will go through the feature tree to include all
the mandatory features and select some of the variable
features at each variation point. Variable features include
alternative features, multiple alternative features, optional
alternative features, optional multiple alternative features.
Instead of using different symbols to represent these different
types of variable features multiplicity is introduced to each
variation point to differentiate the four kinds of variable
features. Hierarchical feature relationships and different
variability types are represented in Table 1 using extended

UML notations. The semantics of the notations are also
explained in the table.

Figure 1 shows a feature model for a Car product line
[8]. This simplified model is used to demonstrate the
abovementioned concepts rather than a real model for a car
product line. In this feature model Car is composed by
variation points Control, Ordinary Accessories,
Luxury accessories, Secure device, Quality
attributes and mandatory feature Engine. The
otherwise features are variable features that can be identified
by the attached stereotype <<variant>>. Manual and
Automatic are the specialised features of Control.
Quality attributes consists of Security and
Reliability. Control is composed by Manual and
Automatic. Its multiplicity is 1, which specifies that its
two variants are alternative variants, i.e. either Manual or
Automatic can be chosen for a product configuration.
Ordinary accessories has two optional variants
represented by the multiplicity 0..2 attached to it. A car can
have no such accessories, or can have either fan or power
steering, or can have both. Quality attributes
has multiple alternative variants represented by the
multiplicity 1..2 attached to it. One or two quality attributes
may be chosen when configuring a member product.

Table 1. Hierarchical Feature relationships and notations.

Relationships Notations Semantics

Composition

Feature A consists of
Feature A1, A2, and
A3

Generalisation/
Specialisation

Feature A is a
generalised feature of
Feature A1, A2, and
A3

Variation point
(Alternative)

One and only one
feature can be chosen
from {A1, A2, A3} at
this variation point.

Variation point
(Multiple
alternative)

One or more features
can be chosen from
{A1, A2, A3} at this
variation point.

Variation point
(Optional
alternative)

No feature or at most
one feature can be
chosen from {A1, A2,
A3} at this variation
point.

Variation point
(Optional multiple
alternative)

No feature or more
features can be
chosen from {A1, A2,
A3} at this variation
point.

Figure 1. A simplified feature model for a Car product line.

2.2 Dependencies in Feature Models

Dependencies in a feature model specify the constraints
on the selection of variable features when configuring member
products. There are three kinds of dependencies,
dependencies between two variable features, dependencies
between a variable feature and a variation point, and
dependencies between two variation points.

2.2.1. Dependencies between Variable Features

Three types of dependency relationships have been
identified as follows:

1. Requires: If a feature requires, or uses, another
feature to fulfil its task, there is a Requires
relationship between the two features.

2. Excludes: If a feature conflicts with another
feature, they cannot be chosen for the same product
configuration, i.e. they mutually exclude each other.

There is a bi-directional Excludes relationship
between the two features.

3. Impacts: When a feature is selected for a certain
configuration and the selection will have impact on
another feature, it is called impacts relationship
between the features.

Feature dependency relationships are non-hierarchical. We
use UML stereo types to represent different types of
dependencies (see Table 2). The dependencies identified for
a product line must be validated. For a complex product line
involving a large number of features, some conflicting
dependencies may be recorded without awareness of their
existence [9]. The validation of dependencies is intended to
discover these conflicting dependencies. The following rules
are defined for the validation:

• Excludes relationship must be mutually exclusive.

• Requires and Excludes cannot be occur between the
same pair of features.

Table 2. Feature dependency relationships and notations.

Dependency

type

Notations Semantics

Requires

Feature A requires Feature
B.

Excludes

Feature A excludes Feature
B and Feature B excludes
Feature A.

Impacts

Selection of Feature A will
have impact on Feature B

2.2.2. Dependencies between Variation Points

There are two types of variation points, mandatory and
optional, that can be distinguished by the multiplicity
associated with the variation points. A multiplicity of 0..* or
0..1 means optional variation point while the otherwise
multiplicity types represent mandatory variation points. For a
mandatory variation point at least one variant must be
selected. For an optional variation point the variants
associated with the variation point may or may not be
selected. Selecting or not selecting variants from an optional
variation point will generally be based on a certain product
configuration requirement. However, dependencies between
variation points may constrain this selection. Selection of
some variants at one variation point may cause dependencies
to the other variation points in a product line [10]. For
example, selection of some variants from one variation point
may require or exclude the selection of variants from another
variation point irrespective of which variant is selected. If
both variation points are mandatory variation points
Excludes dependency is not permitted and Requires
dependency has already supported. The only case needed to
be considered is the dependencies between optional variation
points. Assume that both variation point A and B are optional
variation points. If A requires B when some variants are
selected at A some variants at B must also be selected
irrespective of which variant is selected from both variation
points. If A excludes B when some variants are selected at A
no variant at B can be selected or when some variants are
selected at B no variant at A can be selected irrespective of
which variant is selected from both variation points. In the car
product line as depicted in Figure 1, both Ordinary
accessories and Luxury accessories are optional
variation points. There is an Excludes dependency between
the two variation points. If Fan or/and Power steering
is/are selected no variants can be selected at Luxury
accessories or if air condition or/and
Telescoping steering is/are selected no variants can
be selected at Ordinary accessories.

2.2.3. Dependencies between a Variable Feature

and a Variation Point

The selection of a variant from one variation point may
require or exclude the selection of variants from another
variation point without constraining on the selection of the
variants. If the required or excluded variation point is a
mandatory variation point it will not be a problem as
Excludes dependency is not permitted and Requires
dependency has already supported. However, if there is a
Requires dependency between a variant and an optional
variation point the selection of the variant will force the
optional variation point to become a mandatory variation
point, i.e. some variants must be selected from this variation
point. If there is an Excludes dependency between a variant
and an optional variation point the selection of the variant will
prohibit any variants being selected from the optional
variation point. In the car product line as depicted in Figure 1,
there is a Requires dependency from variable feature
security and the optional variation point, secure

device. If security is selected, air bag must be
selected at the optional variation point secure device.

3 Formal Specification for Product

Line Evolution

Figure 2 shows an updated version of a formal definition
of product line reported in [11]. A product line consists of a
set of features, variation points, and three kinds of
dependencies. The relation features maps the features existing
in a product line to the two different types (mandatory and
variable). The variationpoints specifies a collection of
variation points. The relation dependencies1 maps the
dependency types to different sets of feature pairs. The
relation dependencies2 maps the dependency types to
different sets pairs of feature and variation point. The relation
dependencies3 maps the dependency types to different sets of
variation point pairs. The detailed explanation of the formal
definition can be found in [11].

Figure 2. ProductLine schema

When a product line is defined it will be constantly
evolved. New features and dependencies will be introduced to
and some old features and dependencies may be removed from
the product line. The AddFeature operation schema (Figure 3)
is defined for adding a new feature into a product line. If a
feature being added, NewFeature?, is a variable feature it may
be attached to an existing variation point or a new variation
point will be created by the addition. If it is added to an
existing variation point the multiplicity may need to be
updated by the addition. If this addition will create a new
variation point, a multiplicity must be specified. In either
case, an input variable Multiplicity? is needed to specify the
multiplicity.

The predicate part of the AddFeature asserts the
following:

∙ If NewFeature?is not an existing feature in the product
line, add it in.

∙ If NewFeature? is a variable feature and its parent is the
parent of an existing variation point, include it to the
variants of this variation point.

∙ If NewFeature? is a variable feature and the parent of
NewFeature? is not the parent of any existing variation
points the addition of NewFeature? will create a new
variation point. The id of the new created variation point
will be the number of existing variation points plus one.
The parent of the new created variation point is the
parent of NewFeature?. Its multiplicity is Multiplicity?.
Its variant is NewFeature?. The AddFeature uses a µ
expression. The semantics of a µ expression is the same
as that of a set comprehension except that a µ expression
returns only one value for the set.

Figure 3. AddFeature schema.

Figure 4. AddDependencies schema.

Figure 5. Removefeature function.

The addition of new features may introduce new
dependencies into product lines. New dependencies can also
be identified among existing features and variation points. The
AddDependencies schema (Figure 4) is used to add
dependencies to product lines. The relation
newDependencies1? maps the new dependencies to be added
between variable features to different dependency types. The
relation newDependencies2? maps the new dependencies to be
added between variable features and variation points to
different dependency types. The relation newDependencies3?

maps the new dependencies to be added between variation
points to different dependency types. The relation
newImptMesgs? maps a pair of features with Impacts
relationship to an impact message.

The predicate part of the AddDependencies schema
asserts that the new added set of dependencies should not
conflict with the existing dependencies, i.e., a Requires and
Excludes dependency should not exist between a pair of
features, or between a feature and a variation points, or
between a pair of variation points, at the same time in a
product line.

A function named RemoveFeature (Figure 5) is used to
remove a feature from a product line. The feature to be
removed is given as a parameter of the function. The
predicate part of the RemoveFeature asserts the following:

∙ If the feature to be removed is not a required feature by
any of the other features in the product line, remove it.
When the feature is deleted the following constraints must
be satisfied.

∙ If the deleted feature is a variant of a variation point
remove it from the set of variants of the variation point.

∙ Remove all the dependencies involving the deleted
feature, including dependencies with other features and
dependencies with optional variation points.

∙ RemoveFeature is a recursive function. If a deleted
feature is a parental feature all of its child features should
be recursively deleted from the product line.

4 Conclusions

 The formal specification presented in this paper provides
a generalised approach to product line engineering and has
several advantages. It supports product line evolution. The
defined operation schemas will detect conflicting
dependencies introduced by adding new features into or by
removing old features from a product line. It will be difficult
for the logic expression based approaches to support product
evolution as there is no facility to check any inconsistent
dependency after a product line is updated. Based on the
formal specification a set of theorems can be developed and
proved. The reasoning mechanism and proofs of the formal
specification will be our future work. Based on the formal
specification a modelling tool for product line engineering can
be easily developed as Z specifications provide natural
transition from the specifications to an implementation. It will
be much easier to implement a modelling tool based on the Z
specification than any of the formal models using logic
expressions. A modelling tool for product line engineering
and product configuration will be developed in the near
future.

5 References

[1] Gurp, J., Bosch, J., and Svahnberg, M., “On the Notion
of Variability in Software Product Lines”. In
Proceedings of the Working IEEE/IFIP Conference on
Software Architecture (WICSA’01), 45-54, 2001.

[2] Lee,, K., Kang, K., and Lee, J., “Concepts and
Guidelines of Feature Modelling for Product Line
Software Engineering”. In Proceedings of 7th
International Conference of Software Reuse, LNCS, Vol.
2319, 62-67, 2002.

[3] Batory, D., “Feature Models, Grammars, and
Propositional Formulas”. SPLC2005, Lecture Notes of
Computer Science, Vol. 3714, 7-20, 2005.

[4] Benavides, D., Trinidad, P., and Ruiz-Cortés, A.,
“Automated Reasoning on Feature Models”. In
Proceedings of 17th International Conference on
Advanced Information Systems Engineering, Lecture
Notes of Computer Science, Vol. 3520, 2005.

[5] Mannion, M., “Using First-Order Logic for Product Line
Model Validation”. In Proceedings of 7th International
Software Product Line Conference, Lecture Notes in
Computer Science, Vol. 2379, pp. 176-187, 2002.

[6] Sun, J., Zhang, H., Li, Y., and Wang, H., “Formal
Semantics and Verification for Feature Modelling”. In
Proceedings of the 10th IEEE International Conference
on Engineering of Complex Computer Systems, 2005.

[7] Riebisch, M., BÖllert, K., Streitferdt, D., and Philippow,
I., “Extending Feature Diagrams with UML
Multiplicities”. In Proceedings of the Sixth Conference
on Integrated Design and Process Technology,
Pasadena, CA, June 2002.

[8] Ye, H. and Liu, H., “An Approach to Modelling Feature
Variability and Dependencies in Software Product
Lines”. IEE Proceedings – Software, Vol. 152, 101-109,
2005.

[9] Ye, H. and Sharmin, A., “Modelling Feature Variability
and Dependency in Two Views”. In Proceedings of the
17th International Conference on Software Engineering
and Knowledge Engineering, Taipei, Taiwan, 661-664,
July 2005.

[10] Bühne, S., Günter, H., and Pohl, K., “Modelling
Dependencies between Variation Points in Use Case
Diagrams”. In Proceedings of 9th International
Workshop on Requirement Engineering – Foundation
for Software Quality, 59-70, June, 2003.

[11] Ye, H. and Lin, Y., “A Formal Specification for Product
Configuration in Software Product Lines”. In
Proceedings of 19th International Conference on
Software Engineering and Knowledge Engineering, July
2007.

