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Abstract

This paper deals with quadratic stabilization of discrete-time multiple-input (MI) systems by means of quantized static feedback. We
consider the minimization of quantization density, which is still an open problem for MI systems. Our first contribution in this regard is
to partially derive the structure that a quantizer that minimizes density for a MI system should have. The second and main contribution of
the paper is to develop a systematic design procedure for finite-density quadratically-stabilizing quantizers for MI systems. The resulting
quantizers have a simple geometric structure and can be implemented via simple function evaluations. To the best of the authors’ knowledge,
no such design of finite-density quadratically-stabiling quantizers has been previously proposed in the literature for general MI systems.
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1 Introduction

Quantization is an inescapable phenomenon in engineering
systems, especially when digital implementations are in-
volved. Strategies to deal with quantization effects are ad-
visable in the design of such systems to avoid any deleteri-
ous impact that quantization may have on their stability and
performance. Numerous works have been published which
explicitly deal with quantization while focusing on stabi-
lization in a networked control setting. Within these works,
we can distinguish between the ones where the quantization
strategy is dynamic and time-varying (for example, Wong
and Brockett, 1999; Brockett and Liberzon, 2000; Liber-
zon, 2003; Nair and Evans, 2004; Li and Baillieul, 2004;
Tatikonda and Mitter, 2004; Tatikonda and Elia, 2004) and
where it is fixed and static (for example, Delchamps, 1990;
Elia and Mitter, 2001; Elia and Frazzoli, 2002; Kao and
Venkatesh, 2002; Fu and Xie, 2005; Baillieul, 2002; Ishii
and Francis, 2003; Goodwin et al., 2004).

Throughout this paper, we regard a quantizer as a fixed and
static component of the system and deal with quadratic sta-
bilization by means of quantized static feedback. The ap-
proach that we follow is related to the work of Elia and
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Mitter (2001); Elia and Frazzoli (2002); Elia (2002); Kao
and Venkatesh (2002); Fu and Xie (2005); Haimovich and
Seron (2005, 2007); Haimovich (2005); Haimovich et al.
(2006); Haimovich (2006). Elia and Mitter (2001) introduce
a measure of density of quantization. Intuitively, the density
of a quantizer is lower than that of another quantizer if the
values of the former are more separated than those of the
latter. Consequently, a quantizer can be regarded as being
more efficient in the use of its quantization levels if its den-
sity is lower. In this context, an important question that is
posed and answered in Elia and Mitter (2001) is: for a lin-
ear single-input system, what is the most efficient quantizer
over all quadratically stabilizing quantizers? Elia and Mitter
(2001) thus find least dense quantizers over all quantizers
that quadratically stabilize a given linear single-input sys-
tem and also show how such a least dense quantizer may be
constructed.

Haimovich and Seron (2007) develop a geometric charac-
terization of quadratically-stabilizing quantizers for single-
input systems. This geometric characterization is therein
employed to develop a state-space approach to quantization
density. In this approach a least dense quantizer has its quan-
tization regions as separated as possible, as opposed to the
input-space-based quantization density of Elia and Mitter,
where the separation of the quantization levels are of impor-
tance.
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The interesting results of Elia and Mitter (2001) apply only
to single-input systems. Generalizing these results to MI
systems is recognized as an extremely difficult task. Indeed,
for MI systems, the quantization density problem introduced
in Elia and Mitter (2001) still remains largely open. Elia
and Frazzoli (2002) and Elia (2002) provide lower bounds
on the infimum quantization density for two-input systems.
Haimovich and Seron (2005) show that Theorem 1 of Elia
and Frazzoli (2002) is incorrect and provide a partial re-
placement. It should be pointed out, however, that the main
result of Elia and Frazzoli (2002) remains valid, provided
it is carefully (re)interpreted (see Haimovich, 2006, §5, for
further details). Kao and Venkatesh (2002) analyze differ-
ent quantization schemes and their densities for linear MI
systems. However, explicit design of a multivariable quan-
tizer with finite (though not necessarily infimum) quantiza-
tion density is performed only when quadratic stabilization
is possible through the use of a two-dimensional subspace of
the input space. Haimovich et al. (2006) extend the geomet-
ric characterization of Haimovich and Seron (2007) to MI
systems in the case when the quantized control, that is, the
quantizer output, is constrained to lie in a subspace of mini-
mum dimension of the input space. Haimovich et al. (2006)
also mention a possible path toward designing finite-density
quadratically-stabilizing quantizers.

As mentioned above, the solution to the infimum-
quantization-density problem is still unknown for general
MI systems. For these systems, in addition, none of the
available results even give insight into the structure of
infimum-density quantizers or a finite-density quantizer de-
sign procedure. Note that a first step towards the obtention
of infimum-density quantizers may be the construction of
finite-density quantizers, as opposed to the infinite-density
ones employed in, for example, Ishii and Francis (2003)
and Fu and Xie (2005) (see comments after Definition 5).
These results consider valid and interesting approaches to
the design of quantizers for MI systems, but do not address
the MI infimum quantization density problem. In this con-
text, the current paper provides two related but different
contributions. The first contribution consists in the partial
derivation of the structure that an optimal quantizer for a
MI system should have. The second and main contribu-
tion of the paper is to develop a systematic finite-density
quadratically-stabilizing quantizer design procedure for MI
systems. The results of the current paper build on previous
work by the authors (Haimovich et al., 2006) and formed
part of H. Haimovich’s Ph.D. work (Haimovich, 2006).

2 Quadratic Stabilization and Quantization Density

We consider a discrete-time linear time-invariant system:

x(k + 1) = Ax(k) +Bu(k), (1)

where A ∈ Rn×n, B ∈ Rn×m, u(k) ∈ Rm is the current
control, and x(k) ∈ Rn is the current state. We assume that
the matrix A has at least one eigenvalue outside or on the

unit circle, B has full column rank and the pair (A,B) is
stabilizable. Consider a positive definite quadratic function
V : Rn → R+,0, of the form

V (x) = xTPx, where P = PT > 0. (2)

Given a function V of the form (2), we will analyze feedback
laws that render V a Lyapunov function for the closed-loop
system. However, not every function V of the form (2) will
allow such a feedback law to exist. We therefore employ the
following definition (adapted from Sontag, 1998).

Definition 1 (CLF) A positive definite quadratic function
of the form (2) is said to be a control Lyapunov function
(CLF) for system (1) if a static feedback u = q(x) exists such
that the closed-loop system x(k + 1) = Ax(k) +Bq(x(k))
admits V as a Lyapunov function.

Let ∆V (x, u) denote the increment of a function V of the
form (2) along the trajectories of system (1):

∆V (x, u) , V (Ax+Bu)− V (x)

= xTLx+ 2xTMu+ uTBTPBu, (3)

where L , ATPA− P, M , ATPB. (4)

Since, by assumption, P = PT > 0 and B has full column
rank, then BTPB > 0 and hence BTPB is invertible. We
then define the matrices

Q ,M(BTPB)−1MT − L, KGD , −(BTPB)−1MT .
(5)

We have the following well-known result (see, for example,
Haimovich, 2006, §2.2, for a proof).

Lemma 2 A function V : Rn → R+,0 of the form (2) is
a CLF for system (1) if and only if Q > 0, where Q was
defined in (5) with L and M as in (4).

We consider quadratic stabilization of system (1) when the
control is a quantized static state feedback.

Definition 3 (Quantizer) A quantizer q is a discrete-range
function q : Rr → Rs of the form

q(x) = ui if and only if x ∈ Ri, for i ∈ Z. (6)

The sets Ri are called the quantization regions of q and ui
is called the value or level of q corresponding to Ri. The
sets Ri, i ∈ Z, satisfy⋃

i∈ZRi = Rr, and Ri ∩Rj = ∅ whenever i 6= j. (7)

If r = n in Definition 3, we say that q is a state quantizer.
If r = s = 1, we say that q is a scalar quantizer.
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Definition 4 (QS Quantizer) Consider a CLF V of the
form (2) and its increment along the trajectories of sys-
tem (1), ∆V (x, u) in (3). A quantizer q : Rn → Rm that
satisfies q(0) = 0 and

∆V (x, q(x)) < 0, for all x ∈ Rn \ {0}, (8)

is called quadratically stabilizing (QS) with respect to V .
We say that a quantizer q is just ‘QS’ instead of ‘QS with
respect to V ’ when the CLF V is clear from the context.

It is well-known (Delchamps, 1990) that any quantizer that
quadratically stabilizes a given open-loop-unstable discrete-
time LTI system necessarily has an infinite number of levels,
which become increasingly closer near the origin. Therefore,
the density of quantization has been defined to yield a finite
value for quantizers having these features (for example, for
logarithmic quantizers in the scalar case). The quantization
density concept introduced in Elia and Mitter (2001) applies
to symmetric quantizers with scalar levels, that is, quantizers
q : Rr → R that satisfy q(x) = −q(−x) for all x ∈ Rr.
A generalization to quantizers with two-dimensional levels
(q : Rr → R2) appears in Elia and Frazzoli (2002) and Elia
(2002). We next provide a straightforward generalization to
quantizers with levels of arbitrary dimension.

Definition 5 (Quantization Density) Given a quantizer q :
Rr → Rs, let U(q) denote the range of q, that is,

U(q) , {u ∈ Rs : u = q(x) for some x ∈ Rr}. (9)

For ε ∈ (0, 1], let Cs(ε) be the following region in Rs:

Cs(ε) , {u ∈ Rs : ε ≤ ‖u‖2 ≤ 1/ε}. (10)

The density of q, denoted η(q), is defined as follows, where
#[·] denotes the number of elements (cardinality) of a set:

η(q) , lim sup
ε→0

#[U(q) ∩ Cs(ε)]
−2 ln ε

. (11)

It can readily be verified that the measure of density in
Definition 5 coincides with the one given in Elia and Mitter
(2001) when the output of the quantizer q is a scalar (s =
1) and q satisfies q(x) = −q(−x). According to (11), the
density of a quantizer with a finite number of levels is zero
and the density of a quantizer with radially uniformly spaced
values is infinite. The density of a quantizer q also is infinite
if, for some 0 < ε ≤ 1, q has an infinite number of levels in
the setCs(ε). This is the case if the range of q is the Cartesian
product of the ranges of s scalar logarithmic quantizers, as
in, for example, Ishii and Francis (2003) and Fu and Xie
(2005). The quantization density in Definition 5 is finite for
quantizers with radially logarithmically spaced values, as
follows from the next result (see Haimovich, 2006, §2.4 for
a proof).

Theorem 6 Let 0 < ρ < 1 and let ui ∈ Rs, for i =
1, . . . , N , be any nonzero vectors such that the sets Ui ,
{ρjui : j ∈ Z} are disjoint. Suppose that the range of a
quantizer q : Rr → Rs, namely U(q), satisfies

U(q) =

N⊎
i=1

Ui ∪ {0}, (12)

where ] denotes disjoint union. Then,

η(q) =
N

− ln ρ
. (13)

From expression (13), it follows that the lower ρ is, the lower
the density of the quantizer q (recall that 0 < ρ < 1). Note
that the lower ρ is, the more radially separated the values
of q are. The following result, whose proof can be found in
Haimovich (2006, §2.4) shows that the density of a quantizer
is preserved under a linear one-to-one transformation.

Lemma 7 Let q̄ : Rr → Rp be a quantizer, let W ∈ Rs×p
be a matrix having linearly independent columns and let
q : Rr → Rs be defined by q(x) = Wq̄(x), for all x ∈ Rr.
Then, η(q) = η(q̄).

3 Infimum Quantization Density

In this section, we present the first contribution of the paper.
Specifically, Theorem 8 below partially reveals the structure
of a quantizer that optimizes density over all quantizers that
are QS with respect to a given CLF, for a MI system.

Theorem 8 Let q : Rn → Rm be a QS quantizer for system
(1) with respect to a CLF V of the form (2). Consider the
matrices L and M defined in (4) and the matrix Q defined
in (5). Define

Z , (BTPB)1/2, K , Z−1MT , (14)

and find the following singular value decomposition 2 of
KQ−1/2:

KQ−1/2 = S1ΣST2 (15)

where S1 ∈ Rm×m, S2 ∈ Rn×m, Σ = diag(σ1, . . . , σm),
and ST1 S1 = Im = ST2 S2. Define the quantizer q̄ : Rn →
Rm by

q̄(x) = q
(
Q−1/2S2S

T
2 Q

1/2x
)
, for all x ∈ Rn. (16)

Then, q̄ is QS and η(q̄) ≤ η(q).

2 This decomposition was proposed in Kao and Venkatesh (2002).
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PROOF. We begin by showing that q̄ is QS. Since q is QS
by assumption, then q(0) = 0. Then, from (16) it follows
that q̄(0) = 0. Consider the increment of V , as defined in
(3). Using (3)–(5) and (14), we can write ∆V (x, u) as

∆V (x, u) = [Kx+ Zu]
T

[Kx+ Zu]− xTQx. (17)

Using (15), (17), and simplifying, yields

∆V (Q−1/2S2S
T
2 Q

1/2x, u) =

[Kx+ Zu]
T

[Kx+ Zu]− xTQ1/2S2S
T
2 Q

1/2x. (18)

It can readily be verified that Q ≥ Q1/2S2S
T
2 Q

1/2. It then
follows from (17) and (18) that for all x ∈ Rn and u ∈ Rm:

∆V (x, u) ≤ ∆V (Q−1/2S2S
T
2 Q

1/2x, u). (19)

From (19), with u = q̄(x), then

∆V (x, q̄(x)) ≤ ∆V
(
Q−1/2S2S

T
2 Q

1/2x, q̄(x)
)
. (20)

Since q is QS by assumption, then ∆V (x, q(x)) < 0 for all
nonzero x ∈ Rn. In particular, using (16),

∆V
(
Q−1/2S2S

T
2 Q

1/2x, q̄(x)
)
< 0, (21)

for all x ∈ Rn satisfying Q−1/2S2S
T
2 Q

1/2x 6= 0. Note that
Q−1/2S2S

T
2 Q

1/2x 6= 0 if and only if ST2 Q
1/2x 6= 0. Com-

bining (19)–(21), it follows that ∆V (x, q̄(x)) < 0 for all
x ∈ Rn such thatST2 Q

1/2x 6= 0. IfST2 Q
1/2x = 0, then from

(16) and since q is QS, we have q̄(x) = q(0) = 0. From (17)
and (15), it follows that ∆V (x, 0) = xTKTKx−xTQx =
−xTQx if ST2 Q

1/2x = 0. We have thus established that
∆V (x, q̄(x)) < 0 for all nonzero x ∈ Rn. Hence, q̄ is QS.

We next show that η(q̄) ≤ η(q). Let U(·) denote the range of
a quantizer [recall (9)]. From (16), note that U(q̄) ⊆ U(q).
Therefore, it follows that

#[U(q̄) ∩ Cm(ε)] ≤ #[U(q) ∩ Cm(ε)], (22)

for all ε ∈ (0, 1], where Cm(ε) is the set defined in (10).
From (11), then η(q̄) ≤ η(q). This concludes the proof. 2

Theorem 8 shows that, given any QS quantizer q, we can
construct a QS quantizer q̄ with a specific structure that is
also QS and whose density is not greater than that of q. The
key structural difference between an arbitrary QS quantizer q
and a quantizer q̄ constructed from q according to (16) is that
the matrix Q−1/2S2S

T
2 Q

1/2 has rank m where m ≤ n (this
inequality follows because the system input matrix B has
full column rank). Note that the quantizer q̄ can be written as

q̄(x) = q̃(ST2 Q
1/2x), (23)

where q̃ : Rm → Rm. The result of Theorem 8 then implies
that the search for an infimum-density QS quantizer can be
performed exclusively over quantizers q̄ having the specific
structure (23). Since the ranges of q̄ and q̃ coincide, then
η(q̄) = η(q̃) and thus the search for the infimum density,
which has to be performed over quantizers q : Rn → Rm is
reduced to a search over quantizers q̃ : Rm → Rm (m ≤ n).

Remark 9 In the single-input case, ST2 Q
1/2 = αKGD,

with α ∈ R and KGD as in (5). Then, Theorem 8 shows
that the search for an infimum density quantizer can be per-
formed exclusively over quantizers q̄ : Rn → R of the form
q̄(x) = qs(KGDx), where qs is a scalar quantizer. This
structure is precisely the one derived in the first part of the
proof of Theorem 2.1 of Elia and Mitter (2001).

4 Finite-density Multivariable QS Quantizers

In this section, we present the main contribution of the paper.
Specifically, given system (1) and a CLF V of the form (2),
we design a QS quantizer q : Rn → Rm such that η(q) <∞.
Our quantizer design procedure utilizes several results of
Haimovich et al. (2006). Following the latter reference, we
construct quantizers having the structure:

q(x) = Wq̊(DTx), for all x ∈ Rn, (24)

where q̊ : R` → R`, W ∈ Rm×` and D ∈ Rn×` have lin-
early independent columns, and ` is the number of positive
eigenvalues of the matrix L in (4). This number is the low-
est possible dimension for q̊ in (24), for the given system
and CLF. The results of Haimovich et al. (2006) require that
the matrix L in (4) be invertible. We therefore make this as-
sumption in the sequel. Relating the quantizer structure (24)
with the result of Theorem 8 in §3, it follows that as far
as quantization density is concerned, it is advantageous that
the matrix DT have the form

DT = ΓTST2 Q
1/2, (25)

with Q as in (5), S2 as in Theorem 8, and Γ ∈ Rm×`,
since in this case q in (24) satisfies (23), with q̃ defined
by q̃(x̄) = Wq̊(ΓT x̄). The following theorem provides the
main ingredient for our design procedure.

Theorem 10 Let D ∈ Rn×` have linearly independent
columns and satisfy DTL−1D = I`, where L was defined in
(4) and ` is the number of positive eigenvalues of L. Define

H , BTPB −MTL−1M. (26)

Let W ∈ Rm×` be such that S , DTL−1MW = −I`, with
M as defined in (4), and such that J , −WTHW > 0. Let
λ denote the smallest eigenvalue of the matrix J , and let C

be an odd integer satisfying C ≥ 3 and C > 1 +
√
`/λ. Let

ρ , (C− 2)/C and consider the quantizer q defined by (24)
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with q̊ : R` → R` satisfying

q̊(a) ,

{
0 if a = 0,(27a)

ρj(‖a‖∞)I
(
aρ−j(‖a‖∞)

)
if a 6= 0,(27b)

the function I : R` → R` is defined by

I(a) ,
[
I(a1) . . . I(a`)

]T
, (28)

where I : R→ 2
C−1Z and j : R+ → Z are defined by

I(b) ,
2

C − 1

⌈
C − 1

2
|b| − 1

2

⌉
sgn(b), (29)

j(b) ,

⌊(
ln

C

(C − 1)b

)
/

(
ln

1

ρ

)⌋
, (30)

dbe denotes the least integer not less than b and bbc denotes
the greatest integer not greater than b. Then, q is QS and

η(q) =
C` − (C − 2)`

ln C − ln(C − 2)
. (31)

PROOF. The proof that q is QS is omitted for space reasons.
This proof employs the necessary and sufficient conditions
derived in Haimovich et al. (2006) and can be consulted in
Haimovich (2006, §3.5).

We next establish (31). Let q̄ : Rn → R` be the quan-
tizer defined by q̄(x) = q̊(DTx). Since D has linearly in-
dependent columns, then U(q̄) , {q̄(x) : x ∈ Rn} and
U(q̊) , {q̊(a) : a ∈ R`} are equal. Therefore, η(q̄) = η(q̊)
because quantization density depends only on the range of a
quantizer (recall Definition 5). From (24) and since W has
linearly independent columns, then Lemma 7 establishes that
η(q) = η(q̊). We next note that the range of q̊ has the form
(12) as in Theorem 6, with N = C`− (C−2)` (see Figure 1
below). Therefore, Theorem 6 yields η(q) = C`−(C−2)`

− ln ρ .
Eq. (31) then follows by substituting ρ = (C−2)/C into the
former equation. 2

Remark 11 Haimovich et al. (2006) give necessary and
sufficient conditions on the matrices W and D so that a QS
quantizer of the form (24) exists. It can easily be shown that
the additional assumptions required by Theorem 10 incur
no loss of generality [see steps (vi) and (vii) below].

We are now ready to present our quantizer design procedure.

Finite-density QS Quantizer Design

(i) Given the system and CLF matrices A ∈ Rn×n, B ∈
Rn×m and P ∈ Rn×n such that A is unstable, (A,B)
is stabilizable and P = PT > 0.

1

1

a1

a2

Fig. 1. Quantization regions and values of q̊ : R` → R` for ` = 2
and C = 5. Each square is a quantization region of q̊ whose centre
is its corresponding value.

(ii) Compute L and M from (4), and Q from (5).
(iii) Verify that L is nonsingular.
(iv) Compute `, the number of positive eigenvalues of L.
(v) Compute H from (26).

(vi) Choose D̃ ∈ Rn×` and W̃ ∈ Rm×` satisfying
the necessary conditions (Haimovich et al., 2006)
D̃TL−1D̃ > 0 and W̃THW̃ < 0.

(vii) Compute D = D̃(D̃TL−1D̃)−1/2 and W =

−W̃ S̃−1(D̃TL−1D̃)1/2, where 3 S̃ = D̃TL−1MW̃ .
Note that we now have DTL−1D = I` and
S = DTL−1MW = −I`.

(viii) Compute J = −WTHW and smallest eigenvalue, λ.
(ix) Choose an odd integer C ≥ 3 satisfying C > 1+

√
`/λ.

(x) Consider q̊ : R` → R` defined in (27)–(30).
(xi) The required QS quantizer q : Rn → Rm is defined

by q(x) = Wq̊(DTx). Its density is given by (31).

Remark 12 Given a system and a corresponding CLF, the
above quantizer design procedure yields a finite-density QS
quantizer provided that the matrix L is invertible. This latter
requirement is the only additional assumption in our devel-
opment, that is, there are no other requirements that may
prevent our procedure from yielding the desired quantizer.

Remark 13 Our quantizer design procedure may yield a
quantizer with lower density if the matrix D̃ chosen at step
(vi) satisfies, in addition, D̃T = Γ̃TST2 Q

1/2, for some Γ̃ ∈
Rm×`. This follows since, in such case, the corresponding
D of step (vii) satisfies (25) (see the example in §5 below).
A systematic procedure for selecting D̃ and W̃ satisfying all
requirements is suggested in Haimovich (2006, §3.5).

3 The matrix S̃ is always invertible provided D̃ and W̃ are chosen
as required in step (vi) (see Haimovich, 2006, Remark 3.16).
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5 Example

We next apply our quantizer design procedure in a numerical
example. Consider system (1) with matrices

A =

[
2 1 0 0 0
0 2 0 0 0
0 0 2 0 0
0 0 0 2 1
0 0 0 0 3

]
, B =

[
1 1 0 0
1 0 1 0
0 1 0 0
0 0 1 0
0 0 0 1

]
, (32)

and the quadratic function V (x) = xTPx with

P =

[ 16.6561 −7.2172 −15.3227 −0.1282 −0.08183
−7.2172 4.4423 7.2172 0.04159 0.02651
−15.3227 7.2172 16.6561 0.1282 0.08183
−0.1282 0.04159 0.1282 21.5906 10.7047
−0.08183 0.02651 0.08183 10.7047 6.6030

]
. (33)

We would like to design a quantizer q : R5 → R4 with
finite density that renders V a Lyapunov function for the
closed-loop system x(k + 1) = Ax(k) + Bq(x(k)). We
hence follow steps (i)–(xi) of our quantizer design procedure
above. We readily check that the matrices A, B and P given
above are such that A is unstable, (A,B) is stabilizable
and P = PT > 0 [step (i)]. We compute L, M and Q
[step (ii)] and check that Q > 0, hence verifying that the
given V is a CLF. We next check that L is nonsingular
[step (iii)] and compute the number of positive eigenvalues
of L [step (iv)], ` = 3. We next compute H [step (v)].
For step (vi), Haimovich (2006, §3.5) outlines a systematic
procedure for selecting D̃ and W̃ satisfying the required
inequalities. Instead of applying this procedure, we here will
focus on showing how, given D̃1 satisfying D̃T

1 L
−1D̃1 > 0,

Theorem 8 can be used to generate a matrix D̃2 that, in
addition to satisfying D̃T

2 L
−1D̃2 > 0 also satisfies (25). To

this aim, we choose the following matrices:

D̃1 =

[ 0.040 −1.430 −0.289
0.071 −0.196 −0.303
−0.069 1.307 −1.309
1.144 0.124 −0.249
1.752 0.254 −0.126

]
; W̃ =

[−0.294 2.093 −0.094
0.142 −0.623 1.289
−0.010 −0.110 0.063
−2.602 0.034 −0.094

]
,

which satisfy the conditions of step (vi) but D̃1 does not
satisfy (25), for any Γ ∈ Rm×`. We proceed with step (vii)
and compute W and D1. These matrices now satisfy the
assumptions of Theorem 10. Computing J = −WTHW
and calculating its smallest eigenvalue yields λ ≈ 0.0117
[step (viii)]. The least odd integer C that satisfies C ≥ 3 and
C > 1 +

√
`/λ is C = 19 [step (ix)]. The required finite-

density QS quantizer satisfies q(x) = Wq̊(DT
1 x), with q̊

as described in (27)–(30) [steps (x) and (xi)]. The density
of q is η(q) ≈ 17496. This concludes the design of a QS
quantizer with finite density.

We next show how Theorem 8 may be employed
to design a quantizer with lower density. Theorem 8
states that the quantizer q̄(x) = Wq̊(D̃T

2 x), where
D̃T

2 = DT
1 Q
−1/2S2S

T
2 Q

1/2, is QS. Hence, the matrix D̃2

must also satisfy the necessary condition D̃T
2 L
−1D̃2 > 0,

and, in addition, has the form (25) by construction, with

ΓT = DT
1 Q
−1/2S2. Therefore, we apply again our quan-

tizer design procedure from step (vi) on with D̃ replaced
by D̃2. At step (viii), we now obtain λ ≈ 0.0167 and at
step (ix) we can choose C = 15. This yields a quantizer
q with density η(q) ≈ 8232, which is less than half the
density previously obtained using D̃1.

6 Conclusions

We have considered the minimization of quantization den-
sity in the context of quadratic stabilization of discrete-time
MI systems by means of quantized static feedback. Our first
contribution in this regard was to partially derive the struc-
ture of a quantizer that minimizes density for a MI sys-
tem. Our results reveal that the search for minimum den-
sity quantizers that map the state space into the input space
is reduced to a search over quantizers that map the input
space into the input space. Our second and main contribu-
tion was to develop a systematic design procedure to con-
struct finite-density quadratically-stabilizing quantizers for
MI systems. The quantizers constructed according to this
procedure can be implemented via simple function evalua-
tions. To illustrate the systematic design procedure, a finite-
density quadratically-stabilizing quantizer was designed for
a four-input open-loop unstable system.
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