NORCANTHARIDIN ANALOGUES: PP1 AND PP2A INHIBITION AND POTENTIAL THERAPEUTIC DEVELOPMENT

by

Benjamin Sauer

BSc (Hons)

A thesis submitted in partial fulfilment of the requirements for the degree of

Doctorate of Philosophy (Chemistry)

University of Newcastle

Submitted July 2009

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying subject to the provisions of the Copyright Act 1968.

I hereby certify that the work embodied in this Thesis contains four published papers of which I am a joint author. A copy of each of the papers is attached in the Appendices.

Benjamin Sauer

ACKNOWLEDGMENTS

Firstly I would like to thank my supervisor Professor Adam McCluskey for your support, encouragement, understanding, and most importantly, your persistence. Without your faith this thesis would not have been possible.

Thanks to the Medicinal Chemistry Group at the University of Newcastle, for teaching me many valuable skills, both chemistry and life related, which helped me acquire the knowledge and maturity which will be with me for many years to come. Timothy Hill and Cecilia Walkom particularly come to mind.

Thanks to the staff at the Department of Medical Oncology of the Mater Hospital, namely Jannette Sakoff and Jayne Gilbert, for screening all of my compounds.

Thanks to my friends, who helped, or at times maybe hindered my studies, but kept me sane throughout. A warm thank you goes out to the staff at Jurox Pty Ltd, who have also largely developed my chemistry skills and introduced me to the pharmaceutical industry.

And a big thanks goes out to my family; Carol, Rudi and Rebecca for putting up with my prolonged student life. And last but definitely not least, my life partner Lyndal and son Alex, thanks for your patients, tolerance and help with my busy schedule.

TABLE OF CONTENTS

Chapter Number Page		
Chapter 1	Introduction1	
Chapter 2	Lead Selection and Analogue Development	
Chapter 3	General Experimental45	
Chapter 4	Development of Ring-Closed Cantharimide Analogues as Potential PP1 and PP2A Inhibitors	
Chapter 5	Development of Ring-Opened Cantharimide Analogues as Potential PP1 and PP2A Inhibitors	
Chapter 6	Development of α-Hydroxylactam Derivatives as Potential PP1 and PP2A Inhibitors	
Chapter 7	Development of Lactone Derivatives as Potential PP1 and PP2A Inhibitors	
Chapter 8	Development of Heteroatom Substituted Anhydrides as Potential PP1 and PP2A Inhibitors	
Chapter 9	Conclusion and Future Directions	

Publications arising from this works:

- Appendix 3 Norcantharidin Analogues: Synthesis, Anticancer Activity and Protein Phosphatase 1 and 2A Inhibition 219 *Chem Med Chem* 2008, 3 1878-1892

LIST OF FIGURES

Figure Num Figure 1.1	<i>ber</i> Page Basic Mechanism for the Reversible Phosphorylation2	
C	Domain Organisation of Protein Phosphatases in the Serine/Theonine Family	
Figure 1.3	PP1 Cerius 2 Generated Model5	
Figure 1.4	PP2A Cerius 2 Generated Model8	
Figure 1.5	The Cell Cycle – Key Enzymes12	
Figure 1.6	PP2A and Cyclin-cdk Activation14	
Figure 1.7	PP1 and the Phosphorylation of the Retinoblastoma Protein14	
Figure 1.8	PP1 Active Site	
Figure 2.1	Cantharidin Pharmacophore	
Figure 5.1	Possible Mechanism for the Formation of the Ring-Closed Cantharimides	
Figure 6.1	Possible Mechanism for the Formation of the α-Hydroxylactam	
Figure 9.1	Modifications to the Cantharidin Pharmacophore	

LIST OF TABLES

Table NumberPage		
Table 1.1	Disease Caused by Mutations in Kinases and Phospatases2	
Table 1.2	Composition of PP1 and Their Regulatory Subunit6	
Table 1.3	Composition of PP2A and Their Regulatory Subunits8	
Table 1.4	Known Tumour Suppression Genes16	
Table 1.5	Okadaic Acid Class of Compounds and Associated PP1 and PP2A IC ₅₀ Values18	
Table 2.1	Effects of Skeletal Modification on PP1 and PP2A inhibition35	
Table 2.2	Effects of Anhydride Ring Opening on PP1 and PP2A inhibition	
Table 2.3	Effects of Anhydride Modification on PP1 and PP2A inhibition	
Table 4.1	Cytotoxicity of Cantharidin, Norcantharidin and a Variety of Simple Alkylated Cantharimides in a Panel of Human Cancer Cell Lines	
Table 4.2	Cytotoxicity of a Variety of Functionalised Ring-closed Cantharimide Analogues in a Panel of Human Cancer Cell Lines	
Table 4.3	Cytotoxicity of a Variety of Benzyl Substituted Ring-closed Cantharimide Analogues in a Panel of Human Cancer Cell Lines	
Table 4.4	Cytotoxicity of a Variety of Amino-Acid Substituted Ring-closed Cantharimide Analogues in a Panel of Human Cancer Cell Lines	

LIST OF TABLES (Continued)

Table Numb Table 5.1	0
Table 5.2	Inhibition of PP1 and PP2A, and Growth Inhibition of a Variety of Functionalised Ring-Opened Cantharimides in a panel of Human Cancer Cell Lines
Table 5.3	Inhibition of PP1 and PP2A, and Growth Inhibition of a Variety of Aromatic Ring-Opened Cantharimides in a panel of Human Cancer Cell Lines
Table 5.4	Inhibition of PP1 and PP2A, and Growth Inhibition of Morpholino Cantharimide Analogue in a panel of Human Cancer Cell Lines
Table 6.1	Growth Inhibition of a Variety of Alkylated α -Hydroxylactams Analogues on HT29 and G401 cells at 100 μ M Drug Concentration
Table 6.2	Growth Inhibition of a Variety of Fuctionalised α -Hydroxylactams Analogues on HT29 and G401 cells at 100 μ M Drug Concentration
Table 7.1	Growth Inhibition of Cantharidin, Norcantharidin and the Lactone Analogues on HT29 and G401 cells lines
Table 8.1	Growth Inhibition of Cantharidin, Norcantharidin and the Heteroatom Substituted Analogues on HT29 and G401 cells lines

ABBREVIATIONS

Abbreviations	
AIDS	Acquired Immunodeficiency Syndrome
ATP	Adenosine Triphosphate
cdk	cyclin dependant kinases
DCM	Dichloromethane
DMF	<i>N</i> , <i>N</i> -Dimethylformamide
DMSO	Dimethylsulfoxide
EIMS	Electron Impact Mass Spectra
EPI	Endogenous Protein Inhibitor
ESIMS	Electrospray Ionisation Mass Spectra
GCMS	Gas Chromatograph Mass Spectrometer
GI_{50}	Inhibition Concentration 50; drug concentration required to
	inhibit cell growth by 50% relative to untreated control
HAART	Highly Active Antiretroviral Therapy
HIV	Human Immunodeficiency Virus
HPLC	High Performance Liquid Chromotography
IC_{50}	Inhibition Concentration 50; drug concentration required to
	inhibit enzyme function by 50%
IR	Infrared
MSD	Mass Selective Detector
NMR	Nuclear Magnetic Resonance
OA	Okadaic Acid
PK	Protein Kinase
PP	Protein Phosphatase
PP1	Protein Phosphatase 1
PP2A	Protein Phosphatase 2A
PPM	Protein Phosphatase Magnesium
PPP	Phosphor-Protein Phosphatases
pRb	Retinoblastoma
PTP	Protein Tyrosine Phosphatase
SAR	Structure Activity Relationship
THF	Tetrahydrofuran
TLC	Thin Layer Chromatography
TS	Total Synthesis
TSG	Tumour Suppressor Genes

ABSTRACT

This study described in this work examines the potential for derivatives of the potent PP1 (IC₅₀ 9.0 μ M) and PP2A (IC₅₀ 3.0 μ M) inhibitor, norcantharidin, the demethylated cantharidin analogue, and their protein phosphatase inhibition, namely PP1 and PP2A and their cytotoxicity across a range of human cancer cell lines.

A variety of derivatives were examined, paying particular attention to modifications to the anhydride moiety. These included a series of ring opened and ring closed cantharimides, a series of α -hydroxylactams, a series of lactone analogues and derivatives, and a series of heteroatom substituted analogues.

Of the analogues developed, the ring opened and ring closed cantharimides displayed moderate to excellent activity, in cases, an improvement over the lead compound norcantharidin was observed. The ring closed dodecyl-linked bis-analogue (63) was the most potent analogue displaying μ M potent cytoxicities against all the cell lines examined. Of the ring opened analogues, the morpholino analogues proved most active.