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Abstract

In Networked Control Systems (NCS’s) achievable performance is limited by the communication links employed to transmit
signals in the loop. In the present work, we characterise LTI coding systems which optimise performance for various NCS
architectures. We study NCS’s where the communication link is situated between plant output and controller, and NCS’s
where the communication link is located between controller and actuator. Furthermore, we present a novel NCS architecture,
which is based upon the Youla parameterisation. We show that, which of these architectures gives best performance depends,
inter alia, upon characteristics of a related non-networked design, plant disturbances and reference signal. A key aspect of
our work, resides in the utilisation of fixed signal-to-noise ratio channel models which give rise to parsimonious designs, where
channel utilisation is kept low. The results are verified with simulations utilising bit rate limited channels.
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1 Introduction

In traditional control systems, one commonly assumes
that the interconnection of plant and controller is trans-
parent, i.e., transmitted signals are equal to received
signals. This paradigm is often appropriate and under-
lies many successful control design methods, especially
for linear time invariant (LTI) systems; see, e.g., [7].
However, in some situations, the assumption of trans-
parent communication is not justified. Control systems
where the communication link constitutes a bottleneck
in achievable performance are commonly termed Net-
worked Control Systems (NCS’s); see, for example, arti-
cles contained in the special issue [1], and the survey pa-
pers [10,29]. The communication link can either be ded-
icated or consist of a network which is shared between
several users. Novel aspects introduced by the presence
of non-transparent communication links in control in-
clude time delays, data-dropouts and quantisation, see
also [11, 12, 21, 25]. From an analysis perspective, even
basic system theoretic notions, such as closed loop sta-
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bility are far from trivial in the networked control con-
text; see, e.g., [4–6,8, 14,21,26,31].

When designing NCS’s, the characteristics of the com-
munication system should be explicitly taken account of
to ensure acceptable performance levels. This raises new
challenges. A key observation is that, in NCS’s, there ex-
ist additional degrees of freedom in the design process,
when compared to traditional control loops. As a conse-
quence, to optimise performance, it is useful to investi-
gate architectural issues and signal coding methods, see
also [2, 3, 22,28].

Several NCS architectures have been studied. One can
distinguish configurations where the channel is located
in the up-link, i.e., between sensors and controller in-
put [2, 31], and where it lies in the down-link, i.e., be-
tween controller output and actuators [6]. More general
architectures, where the processing power is distributed,
have also been examined, for example, in [8, 16,26,28].

The goal of the present work is to compare various NCS
architectures for the control of a single-input single-
output (SISO) plant. We will consider a design situation,
where an LTI controller is to be implemented in an NCS
which employs a signal-to-noise ratio constrained com-
munication channel. This type of channel model is com-
monly utilized in the signal processing literature, see,
e.g., [13]. The controller is assumed to have already been
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designed for a given plant so as to achieve desired control
objectives when the communication link is assumed to
be transparent. However, when implementing this con-
troller in an NCS, unavoidably performance losses oc-
cur. We will show how performance degradation, as mea-
sured by the variance of the tracking error, can be min-
imised through appropriate signal coding. As in other
contemporary approaches to NCS design, see [4, 15,32],
we will employ design methodologies that utilise LTI
system theoretic ideas. This will allow us to obtain re-
sults which quantify the achievable performance of vari-
ous NCS architectures. The present paper extends work
described in [9, 24].

The remainder of this work is organised as follows: In
Section 2, we present the nominal control design which
is to be implemented via an NCS and give details about
the specific communication link to be utilised. Optimal
coding for two different standard NCS architectures is
studied in Section 3. In Section 4, we present a novel
NCS architecture and show how to equip it with optimal
coding systems. Section 5 documents a design study. Fi-
nally, conclusions are drawn in Section 6.

2 NCS Elements

2.1 Nominal design

We will examine a networked scenario, where the control
loop is closed through a communication link. Specifically,
we will consider the situation where an LTI SISO discrete
time controller, say C(z), has already been designed for
a discrete time SISO LTI plant G(z). This design has
been carried out assuming that the plant is affected by
output disturbances 1 , d, that the output measurement
is corrupted by noise, n, and that a given reference signal,
r, should be tracked; see Figure 1. We will refer to this
design as the nominal design and we will assume that it
gives satisfactory performance when the communication
links are transparent.

In the closed loop of Figure 1, the tracking error,

e , r − y, (1)

is given by

e = S(z) (r − d) + T (z)n, (2)

where S(z) , (1+G(z)C(z))−1 and T (z) , 1−S(z) are
the loop sensitivity functions; see, e.g., [7]. The signals r,
d and n are assumed to be independent stationary zero

1 We use vector space notation to denote signals. For ex-
ample, y denotes {y(`)}`∈N. The symbol z is used to refer
to both the argument of the z-transform and to the forward
shift operator.

mean processes, with power spectral densities (PSD’s)∣∣R(ejω)
∣∣2, ∣∣D(ejω)

∣∣2 and
∣∣N(ejω)

∣∣2, respectively.

In the particular case when G(z) is stable, the nomi-
nal design can alternatively be realised in the form of
the affine parameterisation of all stabilising controllers
(Youla parameterisation) depicted in Figure 2; see, e.g.,
[7, 20]. In that figure, Ĝ(z) is an explicit model for the
plant. The Youla controller CY (z) in Figure 2 is related
to C(z) in Figure 1 via C(z) = CY (z)(1−CY (z)Ĝ(z))−1.

We will ignore differences between the plant transfer
function G(z) and the model Ĝ(z). As a consequence,
the signal δ0 in Figure 2 satisfies δ0 = d + n. Thus, δ0

summarises essential information about the system to
be controlled. Heuristically, this signal is a useful candi-
date to be transmitted through a communication link in
an NCS, where channel utilisation is to be kept low. We
will return to this Youla configuration later in Section 4.

2.2 The Communication Link

The novel ingredient in an NCS, when compared to a tra-
ditional control loop, is the communication link. From a
design perspective, this opens the possibility of coding
signals prior to transmission and also plays a key role
in the achievable performance. Accordingly, we will con-
sider a communication link consisting of a communica-

+

C(z) G(z)

−

+

+

d

+

+

PlantController

r y

n

Fig. 1. Standard non-networked control system.
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Fig. 2. Standard non-networked control system for stable
plant: Youla form.
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tion channel together with an encoder-decoder pair, as
shown in Figure 3.

We start by describing the channel model. There exist
several ways of characterising a communication channel;
see, e.g., [27,30]. We will focus on an additive signal-to-
noise ratio constrained channel model, where the channel
output w is related to the channel input v via

w = v + q, (3)

and q is zero mean stationary discrete time random pro-
cess, having PSD

∣∣Q(ejω)
∣∣2 and variance

Φq =
1
2π

∫ π

−π

|Q(ejω)|2dω. (4)

The signal-to-noise ratio constraint implies that Φq is
related to the variance of v, Φv, by

γ =
Φv

Φq
, (5)

where γ is the (finite) channel signal-to-noise ratio.
Therefore, we can write

|Q(ejω)|2 =
Φv

γ
|Q0(ejω)|2, (6)

where Q0(ejω) is such that 1
2π

∫ π

−π

∣∣Q0(ejω)
∣∣2 dω = 1.

Many (source) coding schemes have been studied in the
NCS literature; see, e.g., [2,3,19,23,28,31]. These meth-
ods vary in complexity and on the assumptions made
regarding the information available to the encoder and
decoder. In the present work, we concentrate on LTI
encoder-decoders pairs that have access only to local
information; see, e.g., [13]. In order not to modify the
nominal design relations (as discussed in Section 2.1),
we restrict the encoder-decoder pair to achieve perfect
reconstruction, i.e., we assume that

F (z)F−1(z) = 1 (7)

(see Figure 3). To avoid unstable pole zero cancellations
and non-causality, we restrict the encoder F (z) to be
stable, minimum phase and biproper. The design of the
encoder-decoder pairs, i.e., of F (z) and F−1(z) in Fig-
ure 3, will form a central theme in the subsequent anal-
ysis.

3 Optimal Coding in Standard NCS Architec-
tures

This section examines the two most common single-
channel networked control architectures, namely, where
the channel is located in the down-link and where it is
located in the up-link. These architectures are depicted
in Figures 4 and 5, respectively.

3.1 Optimal coding for the down-link case

In the architecture of Figure 4 it holds that the tracking
error (see (1)) is given by

e = S(z) (r − d) + T (z)n− S(z)FD(z)−1G(z)q,

where we have used the additive noise channel in (3).
Using (2), we note that the variance of the component
of the tracking error that arises from the communication
link is given by

J =
1
2π

∫ π

−π

∣∣S(ejω)F−1
D (ejω)G(ejω)Q(ejω)

∣∣2 dω. (8)

The above expression serves to quantify the impact of
the communication link on the performance of the NCS.
It depends upon the encoder-decoder pair used.

Based on (8), one might be tempted to simply set
F−1

D (ejω) ≈ 0, for all frequencies ω. This, however,
would lead to a decoder such that FD(ejω) → ∞, ∀ω
and hence, to an unbounded signal v. This is clearly
unacceptable. Thus, encoder-decoder design has to be
carried out more carefully.

A key point is that Φq is related to Φv via (5). Indeed,
from Figure 4, it follows that

Φv =
1
2π

∫ π

−π

∣∣T (ejω)Q(ejω)
∣∣2 dω

+
1
2π

∫ π

−π

∣∣S(ejω)C(ejω)FD(ejω)ΩD(ejω)
∣∣2 dω, (9)

where

|ΩD(ejω)|2 , |D(ejω)|2 + |N(ejω)|2 + |R(ejω)|2 (10)

is the PSD of d + n + r.

Substituting (6) into (9) gives

Φv =
α γ

2π

∫ π

−π

∣∣S(ejω)C(ejω)FD(ejω)ΩD(ejω)
∣∣2 dω,

(11)
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Fig. 4. Channel in the down-link.

where

α ,
(

γ − 1
2π

∫ π

−π

∣∣T (ejω)Q0(ejω)
∣∣2 dω

)−1

. (12)

Using (6), (8) and (11), it follows that J in (8) satisfies

J =
α

2π

∫ π

−π

∣∣S(ejω)F−1
D (ejω)G(ejω)Q0(ejω)

∣∣2 dω

· 1
2π

∫ π

−π

∣∣S(ejω)C(ejω)FD(ejω)ΩD(ejω)
∣∣2 dω. (13)

Remark 1 (Bound on γ) In (13), J is the the vari-
ance of the effect that the communication link has
on the tracking error. Therefore, α in (12) has to
be positive. This imposes a constraint on γ, namely
γ > (2π)−1

∫ π

−π

∣∣T (ejω)Q0(ejω)
∣∣2 dω. If γ does not sat-

isfy this constraint, then the fixed signal to noise ratio
model will not hold, and instability may occur. This ob-
servation is consistent with the results reported in [6].
(Note that the results in [6] are based on a channel model
with fixed noise variance, rather than fixed signal-to-
noise ratio, as considered here.)

The following theorem characterises optimal encoder-
decoder pairs for the NCS in Figure 4.

Theorem 1 (Down-link Channel [24]) Consider
the NCS depicted in Figure 4 and the loss function J
in (13). Then J ≥ Jopt

D , where

Jopt
D , α

(
1
2π

∫ π

−π

∣∣S(ejω)T (ejω)ΩD(ejω)Q0(ejω)
∣∣ dω

)2

(14)

and α is defined in (12). This performance bound is tight
and can be achieved by all encoders which satisfy

|FD(ejω)|2 = kD

∣∣∣∣
G(ejω)Q0(ejω)
C(ejω)ΩD(ejω)

∣∣∣∣ , ∀ω ∈ [−π, π],

(15)

where kD > 0 is any positive (fixed) real number.
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Fig. 5. Channel in the up-link.

Proof: Using the Cauchy-Schwartz inequality in (13)
it follows that J ≥ Jopt

D , and that equality is achieved
if and only if there exists kD constant and positive such
that

∣∣S(ejω)F−1
D (ejω)G(ejω)Q0(ejω)

∣∣ =

kD

∣∣S(ejω)C(ejω)FD(ejω)ΩD(ejω)
∣∣ ,

for all ω, i.e., if and only if (15) holds.
222

The class of coding systems specified via (15) achieves
the best trade-off between channel utilisation and the
effect of channel noise on loop performance, as measured
by the variance of the tracking error. We will denote any
coder FD(z) that satisfies (15) by F opt

D (z).

Since (15) is a restriction on the magnitude of F opt
D (ejω),

one can always resort to appropriate all-pass filters to
guarantee that F opt

D (z) is biproper, stable and minimum
phase (recall Section 2.2).

Remark 2 (Parsimony of the channel model) We
can see that by using a fixed signal-to-noise ratio channel
model, optimal coders do not have an infinite gain over
all frequencies (see also [17]). In contrast, if the channel
noise variance (rather than the signal-to-noise ratio)
were to be fixed (as in [6]), then setting F−1

D (ejω) ≈ 0,
∀ω (so that v becomes unbounded) would minimise the
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channel induced plant output variance. In such cases, for
a parsimonious design which only incurs limited channel
utilisation a different loss function should be used (see,
e.g., [23]).

3.2 Optimal coding for the up-link case

We next investigate optimal encoder-decoder pairs for
the alternative architecture depicted in Figure 5, where
the communication system is located in the up-link.

As before, we define the tracking error variance due to
channel effects as J . Proceeding as in the down-link case
analysed in Section 3.1, we conclude that in the NCS of
Figure 5

J =
α

2π

∫ π

−π

∣∣F−1
U (ejω)T (ejω)Q0(ejω)

∣∣2 dω

· 1
2π

∫ π

−π

∣∣S(ejω)FU (ejω)ΩU (ejω)
∣∣2 dω, (16)

where α is as in (12) and

|ΩU (ejω)|2 , |D(ejω)|2 + |N(ejω)|2
+ |G(ejω)C(ejω)R(ejω)|2 (17)

is the PSD of d + n + G(z)C(z)r; compare to (10).

As in the down-link architecture, when designing the
coding system, there exists a trade-off between channel
noise attenuation and channel utilisation. Optimal per-
formance can be attained by means of the following the-
orem:

Theorem 2 (Up-link Channel) Consider the NCS
depicted in Figure 5 and the loss function J in (16).
Then J ≥ Jopt

U , where

Jopt
U , α

(
1
2π

∫ π

−π

∣∣S(ejω)T (ejω)ΩU (ejω)Q0(ejω)
∣∣ dω

)2

(18)

and α is defined in (12). This bound is tight and is at-
tained by all encoders which satisfy

|FU (ejω)|2 = kU

∣∣∣∣
G(ejω)C(ejω)Q0(ejω)

ΩU (ejω)

∣∣∣∣ , ∀ω ∈ [−π, π],

(19)

where kU is any (fixed) positive real number.

Proof: Similar to the proof of Theorem 1.
222

We will denote any coder that satisfies (19) by F opt
U (z).

As in the down-link case, all-pass filters can be used to
impose additional properties on F opt

U (z).

3.3 Performance Comparison

For the two architectures examined so far, the only dif-
ference in the optimal performance resides in the terms
ΩD(ejω) and ΩU (ejω) (see (14) and (18)). Further in-
sight can be gained by analysing three different scenar-
ios:

3.3.1 Disturbance rejection

Assume that the reference is zero. Comparison of (10)
and (17) shows that, if r = 0, then ΩD(ejω) = ΩU (ejω)
∀ω ∈ [−π, π]. Thus, in a regulation loop, both architec-
tures, when equipped with optimal coder-decoder pairs,
attain the same performance. It is interesting to note
that, in this situation, (15) and (19) suggest choosing
F opt

U (z) = C(z)F opt
D (z). With this choice, placing the

channel in the down-link is algebraically equivalent to
placing it in the up-link.

3.3.2 Cancelling nominal design

Here we consider a special case where the controller can-
cels (stable) poles and zeros of the plant model 2 . We
also assume that n = 0, r = 0, and that the channel
noise is white, i.e., |Q0(ejω)| = 1, ∀ω ∈ [−π, π]. It then
follows from (19) that, if there exists β ∈ R such that
|D(ejω)| = β|G(ejω)C(ejω)|, ∀ω ∈ [−π, π], then the op-
timal encoder in the architecture represented in Figure 5
can be chosen as F opt

U (z) = 1 (see also [24]). Thus, in
this case, it is optimal to send the measured plant out-
put without any coding. Stated differently, for the sim-
ple case under study, if uncoded signals are used, and if
the physical constraints allow this to be done, then it is
preferable to place the communication link in the up-link
rather than in the down-link. (See [24] for an experimen-
tal validation of this observation).

3.3.3 Non-zero references

With non-zero reference signals, the two NCS architec-
tures studied so far will, in general, give different perfor-
mance. In particular, if d = n = 0, then the achievable
loss functions in (14) and (18) are lower bounded by

Jopt
D = α

(
1
2π

∫ π

−π

∣∣S(ejω)T (ejω)Q0(ejω)R(ejω)
∣∣ dω

)2

,

Jopt
U = α

(
1
2π

∫ π

−π

∣∣(T (ejω))2Q0(ejω)R(ejω)
∣∣ dω

)2

.

(20)

To investigate this situation further, it is worthwhile re-
calling that common design strategies will ensure that

2 This is the case of, for example, simple internal model
based controllers, see [20].
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T (ejω) ≈ 1 (⇔ S(ejω) ≈ 0) at those frequencies where
R(ejω) is significant, and that |T (ejω)| is small at other
frequencies [7]. As a consequence, we would anticipate,
by examining (20), that Jopt

D < Jopt
U . We conclude that,

for non-zero reference signals (and optimal coding), the
architecture of Figure 4 generally outperforms that of
Figure 5, i.e., if possible the channel should be placed in
the down-link.

In the following section we will propose a novel NCS ar-
chitecture, which, when equipped with optimal coder-
decoder pairs, will often give enhanced performance rel-
ative to the two architectures analysed so far.

Remark 3 (Two channel architectures) To some
extent, our results can be applied to NCS architectures
with communication channels in both the up-link and
down-link. Indeed, if signal-to-noise ratios of these chan-
nels are sufficiently large, then the design of each coder-
decoder pair can be based on the channel noise model in
each respective link and expressions (15) and (19).

4 Networked Youla Architecture for Stable
Plants

We will use the form of the Youla parameterisation de-
scribed in Section 2.1 to develop an alternative parsimo-
nious NCS architecture for stable 3 plants. A key obser-
vation here is that the signal δ0 in Figure 2 will often
have small energy relative to other signals, especially if
the reference signal dominates. The scheme depicted in
Figure 6, which is an embellishment of that proposed
in [9], puts this idea into practice. As stated before, we
will neglect differences between the true plant G(z) and
the model Ĝ(z).

4.1 Key Aspects

In the networked Youla architecture proposed, process-
ing takes place at two locations (see Figure 6). Firstly,
at the receiving side of the communication link, the
Youla controller CY (z) calculates the plant input signal.
Secondly, at the plant output side, we have included a
feedback loop, which incorporates a model of the sig-
nal path between communication link input, i.e., δ, and
the (unperturbed) plant output (compare to the basic
Youla configuration in Figure 2). This inner loop uses a
model of the communication channel and assumes per-
fect knowledge of the reference signal 4 . The informa-
tion sent through the communication link is obtained by
encoding the signal δ, which is given by

δ = n + d + T (z)F−1
Y (z)σ, (21)

3 This restriction was not needed in the results of Section 3.
4 Of course, this assumption does limit applicability of the
architecture in Figure 6.

where σ , ŵ − w and ŵ is the output of the channel
model, i.e., ŵ ≈ w. The signal σ takes into account
inaccuracies in the channel model.

The signal δ summarises essential information regarding
the system to be controlled. As a consequence, we can
expect that, if channel utilisation is to be kept low, then
the NCS of Figure 6 will often outperform the more tra-
ditional architectures described in Section 3.

Resembling the modelling of channel noise, we will
adopt a finite signal-to-noise ratio model for σ, i.e.,
we will describe σ as a zero mean exogenous sta-
tionary process with PSD

∣∣Σ(ejω)
∣∣2 and variance

Φσ = 1
2π

∫ π

−π

∣∣Σ(ejω)
∣∣2 dω. This variance depends upon

the variance of the channel input v via Φσ = λ−1Φv,
where λ > 0 is fixed and finite. As in Section 2.2, we
will write

|Σ(ejω)|2 =
Φv

λ
|Σ0(ejω)|2, (22)

where Σ0(ejω) is such that 1
2π

∫ π

−π

∣∣Σ0(ejω)
∣∣2 dω = 1.

Remark 4 Since σ depends only on possible differences
between the channel and its model, its variance can be ex-
pected to be much smaller than that of the channel noise,
i.e., Φσ < Φq (see Section 2.2). Under these conditions,
it follows that λ > γ. Accordingly, we define:

ε , γ

λ
(23)

and assume that 0 ≤ ε < 1. A perfect channel model
corresponds to ε = 0.

A key point is that deterministic channel artifacts can
generally be accurately incorporated into the channel
model. Thus, only random channel artifacts need to be
modelled via σ.

4.2 Optimal Coder Design

From Figure 6 and Equation (21), it follows that the
channel input is given by

v = FY (z)(d + n) + T (z)σ,

so that, by using (22) and (23), the variance of v satisfies

Φv =
γ

∫ π

−π

∣∣FY (ejω)ΩY (ejω)
∣∣2 dω

2π γ − ε
∫ π

−π
|T (ejω)Σ0(ejω)|2 dω

(24)

where

|ΩY (ejω)|2 , |D(ejω)|2 + |N(ejω)|2; (25)
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(compare to (10) and (17)).

In contrast to the architectures examined in Section 3,
the reference signal r and the channel noise q do not con-
tribute to the variance of v. Indeed, only the plant out-
put disturbance d, measurement noise n and the chan-
nel model mismatch σ invoke channel utilisation. This
is due to the cancelling effect of the Youla structure.

The tracking error in Figure 6 satisfies

e = S(z) (r − d) + T (z)n + T (z)F−1
Y (z)q

+ (T (z))2F−1
Y (z)σ.

Thus, the tracking error variance due to network effects
is given by

J =
1
2π

∫ π

−π

∣∣T (ejω)F−1
Y (ejω)Q(ejω)

∣∣2 dω

+
1
2π

∫ π

−π

∣∣(T (ejω))2F−1
Y (ejω)Σ(ejω)

∣∣2 dω. (26)

Substitution of (6), (22) and (24) into (26) yields

J =

∫ π

−π

∣∣FY (ejω)ΩY (ejω)
∣∣2 dω

2π γ − ε
∫ π

−π
|T (ejω)Σ0(ejω)|2 dω

· 1
2π

∫ π

−π

∣∣Γ(ejω)T (ejω)F−1
Y (ejω)

∣∣2 dω, (27)

where

|Γ(ejω)|2 , |Q0(ejω)|2 + ε|T (ejω)Σ0(ejω)|2. (28)

It is interesting to observe that in (27) the channel
model mismatch description Σ0(ejω) appears multiply-
ing T (ejω). If the latter is low-pass, then the networked
Youla architecture will be robust with respect to differ-
ences between the channel and its model, provided that
they are concentrated at high frequencies. From this
viewpoint, the channel mismatch assumes a role which
is akin to that of measurement noise in a non-networked
situation.

We can now characterise optimising coder-decoder pairs
proceeding as in previous sections of this paper:

Theorem 3 (Networked Youla Architecture)
Consider the networked Youla architecture depicted in
Figure 6 and the loss function J in (27). Then J ≥ Jopt

Y ,
where

Jopt
Y ,

(
1
2π

∫ π

−π
|Γ(ejω)T (ejω)ΩY (ejω)|dω

)2

γ − ε
2π

∫ π

−π
|T (ejω)Σ0(ejω)|2 dω

. (29)

This bound is tight and is achieved by all encoders FY (z)
that satisfy

|FY (ejω)|2 = kY

∣∣∣∣
Γ(ejω)T (ejω)

ΩY (ejω)

∣∣∣∣ , ∀ω ∈ [−π, π], (30)

where kY is any (fixed) positive real number.

Proof: Similar to the proof of Theorem 1
222

As in the results included in Section 3, the optimal coder,
say F opt

Y (z), is parsimonious and depends upon closed
loop properties. Also, all-pass filters can be used to en-
sure that F opt

Y (z) is proper, stable and minimum phase.
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Remark 5 It is interesting to examine the special case
where n = 0, there is no channel mismatch (ε = 0), q is
white, and d has a PSD such that |D(ejω)| = |T (ejω)|.
In this case, it follows from (25), (28) and (30), that the
optimal coder can be chosen as F opt

Y (z) = 1. Thus, in this
situation, it is optimal to send δ through the communi-
cation channel without any prior coding (compare to the
case studied in Section 3.3.2).

4.3 Comparison to Standard NCS Architectures

As already noted, a key property of the networked Youla
architecture is that the signal transmitted, namely v =
FY (z)δ, does not depend upon the reference signal. We
therefore divide our subsequent comparative analysis ac-
cording to the reference signal energy:

4.3.1 Large reference signal

Our first, and most important, observation is that, if r
has significantly larger energy than d and n, then the
networked Youla configuration will, in general, give better
performance than the architectures of Figures 4 and 5.
This is easy to see from (29) by considering the extreme
case where |N(ejω)| = |D(ejω)| = 0 for all ω, so that
Jopt

Y = 0. In contrast, under the same conditions, Jopt
D

and Jopt
U will, in general, be positive (see (14) and (18)).

4.3.2 Small reference signal

The situation is different when the reference signal is
small in comparison with the disturbance. Indeed, in a
well designed control loop, the sensitivity S(ejω) will
typically have small magnitude at frequencies where
D(ejω) is significative. Thus,

1
2π

∫ π

−π

|T (ejω)Q0(ejω)S(ejω)D(ejω)|dω <

1
2π

∫ π

−π

|T (ejω)Q0(ejω)D(ejω)|dω.

Inspection of (14), (18) and (29) allows one to conclude
that in this case, and provided that γ is large, placing the
channel either in the down-link or in the up-link gives bet-
ter performance than the networked Youla architecture.

5 Design Study

We next illustrate the performance of the different archi-
tectures considered in this paper via a simulation study
for NCS’s with bit rate limited channels.

5.1 Simulation setup

The continuous time plant model is given by Go(s) =
2(5s + 1)−1. We choose a sampling period of 1[s] and
use a zero order hold at the plant input, giving the dis-
crete time model G(z) = 0.36254(z − 0.8187)−1. Refer-
ences and disturbances are taken as random walks. To
model such signals, we define the process ψ with PSD
satisfying

∣∣Ψ(ejω)
∣∣ =

∣∣0.02(ejω − 1)−1
∣∣. We choose the

PI controller C(z) = 2.4488(z − 0.4871)(z − 1)−1.

For each NCS architecture, we model the channel as be-
ing bit-rate limited, achieving error-free transmission,
but at a limited data-rate. To force the bit-rate limita-
tion, the channel input is passed through a b-bit uni-
form quantiser designed following the well-known “4×
standard deviation” rule (see Ch. 4 in [13]) 5 . This de-
sign rule allows one to obtain an appropriate tradeoff
between granular and overload quantization errors. We
also note that, since we have chosen a sampling interval
of 1[s], b equals the channel bit rate in [bit/s].

For the purpose of coder design, we will approximate 6

the channel errors (namely, quantisation errors) as a
zero-mean white noise sequence [13,18,32].

5.2 Results

Simulations were conducted for the three NCS architec-
tures discussed earlier. In all simulations n was taken
to be zero, whilst d and r are considered either zero
or modelled by ψ. In the networked Youla architecture,
the channel model corresponds to the real channel, i.e.,
ε = 0. In addition, the channel bit rate is varied be-
tween b = 2[bit/s] and b = 8[bit/s]. The extreme case
of b = 1[bit/s] was also considered, but the results are
not shown. In that case, the noise model for quantisa-
tion breaks down and the quantitative predictions made
by the model are poor. However, the same qualitative
results hold.

5.2.1 The benefits of optimal coding

We will restrict attention to the networked down-link
case. Similar results and conclusions apply to the other
architectures.

Figure 7 shows the empirical 7 sample variance of e, con-
sidering both an optimally-coded and uncoded down-

5 To design the quantiser, we model the standard deviation
of the signal to be quantised as the corresponding standard
deviation when no quantisation is present.
6 We stress that the simulations use a quantized input chan-
nel and that the fixed signal-to-noise ratio channel model is
used only for coder/decoder design.
7 In the sequel, the terms “empirical” and “measured” refer
to calculations made using the quantised simulation results.
All simulations results are based on 104 time samples.
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link, for a regulation loop where r = 0 and d = ψ. The
figure clearly shows that networked closed loop perfor-
mance can be significantly (up to an order of magnitude)
improved through coding. It can be seen that the bene-
fits of coding are significant for bit rates up to 5[bit/s].
For higher bit rates, the performance of the networked
down-link loop (with and without coding) is almost iden-
tical to that of the nominal non-networked design. This
is a consequence of the associated high signal-to-noise
ratio and hence the very small value of α in (13).

To study the problem further, we will next examine the
analytical expressions for the optimal performance pre-
dicted by the approximate channel noise model, i.e., Jopt

D
(see (14)). In Figure 8 we compare these results with
the empirical variance of the effects of the channel on
the regulation error, when optimal coding is used. It can
be seen that, in this case, the theoretical results match
the measurements closely. Furthermore, a study of the
quantisation noise PSD revealed that, at least for the
cases considered, the white quantisation noise assump-
tion is remarkably realistic in all cases. It gives accurate
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Fig. 7. Comparison between optimally coded and non-coded
networked down-link with r = 0 and d = ψ.
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Fig. 8. Comparison between the analytical performance in-
dex values and the empirical values with r = 0 and d = ψ
for the networked down-link (considering optimal coding).

predictions in the networked down-link architecture and
in the up-link case. It also provides qualitatively mean-
ingful predictions in the case of the Youla architecture,
but with slightly lower quantitative accuracy.

5.2.2 Comparison between NCS architectures

We next present a comparison between the different ar-
chitectures. In particular, we will investigate the state-
ments made in Sections 3.3 and 4.3 for the empirical re-
sults concerning bit rate limited NCS’s.

• Zero disturbance: As stated in Sections 3.3.3 and 4.3.1,
in this case the approximate noise model analysis pre-
dicts that the optimally coded down-link architecture
should perform better than the optimally coded up-
link architecture. Furthermore, the Youla architecture
should provide a performance identical to that of the
nominal design (recall that we consider ε = 0). This is
confirmed by the empirical results shown in Figure 9.

• Zero reference: As predicted by the approximate chan-
nel noise model in Section 3.3.1, if no reference is
present and optimal coding systems are used, then
placing the channel in the down- or in the up-link
should give the same performance. However, if one
chooses to use the Youla architecture, then the per-
formance should be worse (recall Section 4.3.2). These
assertions are confirmed in Figure 10. We also see that,
as stated earlier, a sufficiently large bit-rate leads to
NCS’s that perform very close to the nominal non-
networked design.

6 Conclusions

This paper has studied the role played by architectures
and signal coding on the performance of NCS’s. We have
developed analytic expressions which quantify the im-
pact of the communication link on overall performance,
and we have utilised these expressions to design optimal
LTI source coding schemes. The predictions made by
the fixed signal-to-noise ratio channel model have been
verified by empirical simulations using a bit-rate limited
channel.

Open problems in this area include the MIMO case. In
that setting, decentralized control and/or network ar-
chitectures will certainly play a major role. Other ex-
tensions lie in the consideration of more sophisticated
quantization schemes using noise shaping or predictive
coding ideas (see, e.g., [13]).
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