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Abstract. In this paper, we investigate oxygen in-diffusion and out-diffusion with respect to a cer-

met composite where oxygen segregates at the interface between the metal matrix phase and the 

ceramic oxide phase. This phenomenological diffusion problem is treated by overlaying it with a 

fine-grained lattice that was addressed using a Lattice Monte Carlo method and a little-known exact 

expression for the lattice-based effective diffusivity in the presence of random traps. It is shown that 

there is very good agreement for the oxygen concentration depth profiles between the Monte Carlo 

results and the exact expression. 

 

Introduction 

During the initial synthesis and later in-service lifetime of a ceramic oxide-cermet, oxygen from the 

external surface diffuses through the metal matrix and segregates at the interfaces of the 

metal/ceramic oxide inclusions [1]. The presence of this oxygen leads to significant weakening of 

the bonding between the metal matrix and the ceramic oxide inclusions and subsequent serious 

deterioration of the mechanical properties of the cermet. This oxygen can generally be removed by 

annealing of the composite in vacuum at high temperature by an out-diffusion process that is 

essentially diffusion-limited evaporation [1]. Both processes of in-diffusion and out-diffusion are 

phenomenological mass diffusion problems that are amenable to being addressed using finite-

difference and finite element methods. Recently, another method, termed the Lattice Monte Carlo 

(LMC) method, has been developed to address phenomenological mass as well as heat diffusion 

problems [2]. This method shows special promise as an alternative that is particularly well-suited 

for addressing diffusion problems that have complex geometries and/or which have singularities in 

the sources and sinks of diffusant. 

        The LMC method has been used to describe the detailed process of in-diffusion and 

segregation of oxygen at the interfaces of (square) MgO inclusions in an Ag matrix [3,4]. In this 

case, there was very good agreement of the local oxygen concentration profiles obtained from the 

LMC method with those obtained by the finite element method. In the present paper we take what 

might be regarded as a ‘bigger picture’ model of this phenomenological diffusion problem wherein 

the ceramic oxide inclusions are distributed randomly in the matrix and can be represented as 

featureless traps for oxygen within the matrix. In this paper, we investigate the effective diffusivity 

of oxygen in this model and deduce concentration profiles for both in-diffusion and out-diffusion 

using the LMC method. We also make contact with an exact lattice-based expression for the 

effective long-time limit diffusivity for a diffusant in the presence of random traps.   
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The Model  

 

       In keeping with the spirit of the LMC method [2] a fine-grained lattice is constructed to overlay 

the phenomenological diffusion problem. For convenience, in this problem we use a 2D lattice. 

Each inclusion is represented as a single trap situated at a given site of this lattice. Accordingly, the 

mesh size of the lattice then determines the apparent size of the inclusions. The trapping sites are 

distributed randomly. In adopting such a model we are assuming in effect that the oxygen mobility 

along the interfaces of the metal/ceramic oxide inclusions is very rapid compared with diffusion in 

the matrix. Thus oxygen can exit (and enter) a trap with exactly the same probability in all four 

directions. This seems to be quite a reasonable simplifying assumption. We define D1 as the oxygen 

diffusion coefficient in the matrix and D2 as the diffusivity of oxygen associated with the interface 

i.e. with the trap itself. The diffusivities Di are related to the jump frequencies Γi by the lattice 

random-walk expression in two dimensions: 

 

                             Di = Γi a 
2
/4                                                                                           (1) 

 

where a is the lattice mesh size and the factor 4 comes from the lattice being two dimensional. For a 

three dimensional lattice this factor would be 6. The segregation factor s is defined in the usual 

Henry’s Law form (but a site blocking-type expression can also be used in principle [5]): 
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where 2

Oψ  and 1

Oψ  are the equilibrium concentrations of the diffusant oxygen at the traps and in the 

matrix respectively. The segregation factor is also given by: 

 

                              s = Γ12/ Γ21                                                                                          (3)                    

 

where Γ12 and Γ21   are the jump frequencies into and out of a trap from the matrix. For 

convenience, in the absence of more detailed information, we set Γ12 equal to Γ1 and  Γ21 equal to 

Γ2. Thus we have a simple two-frequency trapping model. For this trapping model, there exists a 

little-known exact lattice-based expression for the effective long-time diffusivity in the presence of 

random traps [6]. In the present notation, the expression is: 
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where g is the volume (area) fraction of the inclusions and Deff is the effective diffusivity of the 

composite. In effect, with respect to the lattice, the area of a given trap is a
2
.  

 

Results and Discussion 

The expression Eq. 4 for the effective diffusivity was first verified by making use of the Einstein-

Smoluchowski Equation:  

 

                               Deff = <R
2
> / 4t                                                                                    (5) 

                                                                

where R is the displacement of a given particle in time t and the Dirac brackets < > indicates an 

average over a large number of particles. Eq. 5 is readily realized in an equilibrium simulation 

wherein completely non-interacting particles are permitted to diffuse in a lattice containing random 

traps for a fixed number of jump attempts per particle (proportional to time) [2].  We explored the 
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situation where D1 is greater than D2 which is of course appropriate for the diffusion in the cer-met 

and, for completeness,  we also investigated the converse situation. A range of values of the 

segregation factor was investigated. As can be seen in Fig. 1, the LMC results reveal that the lattice-

based expression [6] for the effective long-time limit diffusivity in the presence of random traps is 

indeed correct.  

 

  
 

Figure 1. Calculated (symbols, Monte Carlo simulations) and theoretical values (solid lines, Eq. 4) 

for the ratios of the effective diffusivity Deff to D as a function of g – fraction of the random 

inclusions at several values of s.  

 

 

Next, we determined the oxygen concentration depth profiles for both in-diffusion and out-diffusion 

(with the constant source/sink boundary condition) of oxygen in the presence of random traps for 

reasonable values of the ratio of the matrix and trap diffusivities and segregation factor. For 

simulating the phenomenological process of in-diffusion from a constant surface source of oxygen 

into a solid we followed the procedure described in detail in [2,3]. For simulating the process of 

out-diffusion the procedure described in [2] was followed in general terms. We started with an 

equilibrium concentration of oxygen in the composite according to a specified value of the 

segregation factor. At diffusion times greater than zero the surface concentration of oxygen Ψ0 was 

set equal to zero. This ensured a net flux of oxygen out from the model composite. In both cases of 

in-diffusion and out-diffusion at relatively short diffusion times the finite lattice sample can be 

considered infinite in the sense that the standard solutions of the Diffusion Equation can be 

employed. These solutions are: 

 

In-diffusion 
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Out-diffusion 
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Figs. 2, 3 show results for the oxygen concentration profiles at different in-diffusion times and for s 

= 10 and 100 respectively. It is seen that there is generally very good agreement between the LMC 
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results (symbols) and the expression (Eq. 4) for the exact long-time limit effective diffusivity in the 

presence of traps and Eq. 6 (shown by lines). At short diffusion times, there are small deviations 

because the long-time limit effective diffusivity is then not appropriate (these deviations are 

exacerbated at larger degrees of trapping i.e. larger segregation factors).  

                       
Figure 2. Oxygen concentration profiles at different in-diffusion times and for s = 10. 

 

Fig. 4 shows results for the oxygen concentration profiles at different out-diffusion times for s = 

100 and a constant initial composition. Again it is seen that there is generally very good agreement 

between the LMC results (symbols) and the expression (Eq. 4) for the exact long-time limit 

effective diffusivity in the presence of traps and Eq. 7 (shown by lines). Again, there are small 

deviations at short diffusion times for the same reasons as given above.   

 

                                 
 

Figure 3. Oxygen concentration profiles at different in-diffusion times and for s = 100. 
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Figure 4. Oxygen concentration profiles at different out-diffusion times and for s = 100. 

 

 

Summary 

In this paper, we investigate oxygen in-diffusion and out-diffusion with respect to a cer-met 

composite where oxygen segregates at the interface between the metal matrix phase and the ceramic 

oxide phase. This phenomenological diffusion problem is treated by overlaying it with a fine-

grained lattice and making use of a Lattice Monte Carlo method. A little-known exact expression 

for the lattice-based effective diffusivity in the presence of random traps was also employed. It was 

shown that there is very good agreement for the oxygen concentration depth profiles between the 

Monte Carlo results and the exact expression. 
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