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Abstract

Verifiable conditions are given for the existence of efficient estimation in Smooth Threshold Autore-
gressive models of order 1. The paper establishes local asymptotic normality in the semi-parametric
setting which is then used to discuss adaptive and efficient estimates of the models. It is found that the
adaptation is satisfied if the error densities are symmetric. Simulation results are presented to compare
the conditional least squares estimate with the adaptive and efficient estimates for the models.
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1. Introduction

Consider the first-order Smooth Threshold Autoregressive (STAR) semiparametric model,
with delay parameter one, defined by

Xt = θ1Xt−1 +θ2Xt−1G
(

Xt−1− r
z

)
+ ε t , (1.1)

where r ∈ℜ is a threshold parameter, z ∈ℜ+ is a smoothing parameter, {ε t} is a sequence
of independent and identically distributed random variables with ε t independent of Xs, s < t,
and G is a distribution function. Let the distribution of εt belong to F, a class of Lebesgue
∗1559-8608/08-1/$5 + $1pp – see inside front cover
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densities. We assume that G, r and z are known.
This model was introduced by Chan and Tong (1986) as an extension of the SETAR

model. One of the applications of this model is in economics as discussed in a survey of
recent developments of this models by Dijk, et al (2002). This model allows for regime-
switching behaviour which is very beneficial for modelling economic time series.

In this paper we consider the problem of construction of an adaptive and efficient estima-
tor of θ = (θ1,θ2)T in the presence of the nuisance parameter φ , the unknown density of
the innovations, ε t , in the above model.

General theory on the construction of estimators of an Euclidean parameter θ that are
asymptotically efficient, in the presence of infinite dimensional nuisance parameters φ , has
been the focus of numerous researchers in the last three decades. To study what is best
possible asymptotically, one needs a bound on the asymptotic performance of estimators of
θ (Hȧjek (1970), Fabian and Hannan (1982)). Hȧjek(1970) established a lower bound for
the local asymptotic minimax risk of a sequence of estimators for Locally Asymptotically
Normal(LAN) models. A large majority of models are LAN, and when this holds the Hȧjek-
Le Cam convolution theorem yields an appropriate lower bound for the variance of the
estimator. On an ad hoc basis, it is often possible to find estimators of θ that have the right
rate of consistency. Typically, such estimators may be used to construct efficient estimators
which attain the bound of the convolution theorem. If this bound is the same as in the
parametric model with φ known, then such estimators are called adaptive.

Adaptive estimation in nonlinear time series models is considered by Linton (1993), Koul
and Schick (1996), Drost and Klaassen (1997) and Drost, Klaassen and Werker (1997). Koul
and Schick (1997) also discussed efficient estimation for a class of nonlinear time series
models with unknown error densities. They gave several methods for constructing efficient
estimates and these results were then applied for SETAR, EXPAR and ARMA models. It
is shown that adaptation is not possible in SETAR models with asymmetric error densities.
They also considered the construction of adaptive estimators in time series models with time
varying location. Eventhough this is less general than the models considered by Drost, et.al
(1997), they obtained efficient estimates, with general error models, that are automatically
adaptive under the symmetry conditions.

This paper addresses, as in Koul and Schick (1997), adaptive and efficient estimation
problems for the STAR model. STAR model is a more general than SETAR model, and
the adaptive and efficiency results for SETAR model do not imply the corresponding results
for STAR model. The conditions given in Koul and Schick (1997) were used to derive our
main results as presented in Propositions 2.1 and 2.2, Lemma 2.1, Theorems 2.1, 3.1 and
3.2 respectively.

The paper is organised as follows. Section 2 discusses local asymptotic normality of the
above STAR semiparametric model. Section 3 addresses the question of adaptive estima-
tion of θ , where the necessary condition for adaptive estimation, given in Koul and Schick
(1997) is used to prove that the STAR model is adaptive followed by the construction of
an efficient estimator. In Section 4, two examples are presented to compare the conditional
least squares estimate with the adaptive and efficient estimates for the STAR model. Finally,
the conclusion is given in Section 5. This paper uses much of the notations, definitions and
results given in Koul and Schick (1997).



Efficient Estimation in Smooth Threshold Autoregressive(1) Models 85

2. Local Asymptotic Normality

By redefining G, the model (1.1) can be rewritten as

Xt = θ1Xt−1 +θ2Xt−1G(Xt−1)+ ε t . (2.1)

In this section we show that the above model is LAN using the sufficient conditions given
in Theorem 2.4 of Koul and Schick (1997). First we set up the required terminology. Let
F = F+

0 be the set of all positive Lebesgue densities with zero-mean, finite variances and
finite Fisher information for location, and let

Θ = {θ ∈ℜ2 : θ1 < 1, θ1 +θ2 < 1, θ1(θ1 +θ2) < 1}. (2.2)

By Theorem 2.2 (Nur, 1998), (2.2) is the sufficient condition for (2.1) to be ergodic and
there is a unique stationary process satisfying the model (see Proposition 2.1 of Chan and
Tong (1986)).

For j ≥ 0, let

H j(θ) = θ1X j−1 +θ2X j−1G(X j−1), (2.3)

and define the partial derivative vector, Ḣ j(θ), by

Ḣ j(θ) =
(

∂
∂θ

H j(θ)
)

=

(
X j−1

X j−1G(X j−1)

)
. (2.4)

Let P = {Pθ ,φ : (θ ,φ) ∈ Θ×F} be a family of probability measures. Under each Pθ ,φ ∈ P,
we assume that the random vector X0 has a Lebesgue density gθ ,φ , and the random variables

ε j(θ) = X j−H j(θ), j = 1,2, . . . ,

are independent with common density φ and are independent of X0.

Let θ0 = (θ01,θ02) and φ0 be the true parameter values of θ and φ respectively. We
fix these values throughout the paper. A sequence {θn} in Θ such that

√
n(θn − θ0) is

bounded, is called a local sequence. For a local sequence {θn}, a sequence {an} of positive
numbers and a sequence of random variables {Yn} we write Yn = oθn(an)(Oθn(an)) denoting
a sequence of random variables {Yn} such that a−1

n Yn converges to 0 (is bounded) in Pθn -
probability.

The following provides sufficient assumptions, given by Koul and Schick (1997), for a
nonlinear time series to be LAN.

Assumption 2.1. The density φ0 has finite Fisher information for location, i.e. φ0 is abso-
lutely continuous with a.e-derivative φ (1)

0 and

J =
∫

l2dF < ∞, where l =−φ (1)
0
φ0

. (2.5)

Moreover,
∫
|gθ ,φ (x)−gθ0,φ (x)|dx→ 0, as θ → θ0, (2.6)
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where gθ ,φ is a Lebesgue density of X0 under Pθ ,φ ∈ P.

Assumption 2.2. There exists a ν ∈ℜ2, a positive definite 2×2 matrix M and measurable
functions ḣ j from ℜ j×Θ to ℜ2, j = 1,2, . . . such that for all local sequences 〈ϑn〉 and 〈θn〉

n

∑
j=1
|H j(ϑn)−H j(θn)− (ϑn−θn)T Ḣ j(θn)|2 = oθn(1), (2.7)

max
1≤ j≤n

1√
n
‖Ḣ j(θn)‖= oθn(1), (2.8)

1
n

n

∑
j=1

Ḣ j(θn) = ν +oθn(1), (2.9)

1
n

n

∑
j=1

Ḣ j(θn)ḢT
j (θn) = M +oθn(1), (2.10)

where Ḣ j(θ) = ḣ j(X j,θ) for j = 1,2, . . . and θ ∈Θ.

The following definition, taken from Koul and Schick (1997), gives a parametrization of
the error density.

Definition 2.1. A mapping η 7→ fη from a neighbourhood ∆ of the origin in ℜs into F

such that f0 = φ0 is called an s-dimensional path. Let ξ be a measurable function from
ℜ to ℜs such that

∫ ‖ξ‖2dF < ∞,
∫

ξ ξ T dF is nonsingular. The path η 7→ fη is said to be
ξ -smooth if

∫ (√
fη(x)−

√
φ0(x)− 1

2
ηT ξ (x)

√
φ0(x)

)2

dx = o(‖η‖2). (2.11)

The path η 7→ fη is said to be ξ -regular if it is ξ -smooth and if
∫
|gθ , fη (x)−gθ0,φ0(x)|dx→ 0, as θ → θ0 and η → 0. (2.12)

By Theorem 2.4 in Koul and Schick (1997), in order to prove that the model (2.1) is LAN,
we need to show that Assumptions 2.1 and 2.2 hold, the smooth path η 7→ fη is ξ -regular
and the existence of a positive-definite variance covariance matrix V (ξ ). In Proposition 2.1
we prove that Assumption 2.2 holds. The Assumption 2.1 and the regularity of the path
are proved using some sufficient conditions given by the above authors. These sufficient
conditions are given in the Proposition 2.2. Verification of these sufficient conditions, in
terms of a measurable function ψ , is detailed in Lemma 2.1.

Proposition 2.1. Consider the STAR model (2.1) with Θ given in (2.2) and let F = F+
0 .

Then there exists a ν ∈ ℜ2, a positive definite 2× 2 matrix M and measurable functions
ḣ j from ℜ j×Θ to ℜ2, j = 1,2, . . . such that for all local sequences 〈ϑn〉 and 〈θn〉 Assumption
2.2 is satisfied.
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Proof. By Remark 2.6 of Koul and Schick (1997), under uniformity condition, it is enough
to verify that conditions (2.7)-(2.10) hold with θn = θ0 and that

1
n

n

∑
j=1
‖Ḣ j(ϑn)− Ḣ j(θ0)‖2 = oθ0(1).

As Ḣ j(θ), given in (2.4), does not depend on the parameter θ the above condition is obvi-
ously satisfied.

The linearity of H j(.) in θ also shows (2.7), trivially.
To prove (2.8), one needs to show that

Pθn

[
max

1≤ j≤n

1√
n

√
X2

j−1

(
1+G2(X j−1)

)
> ε

]
→ 0.

Let |Yj−1| = |X j−1
√

(1+G2(X j−1))|. As G(x) ≤ 1 for any x ∈ ℜ, it follows that |Yj−1| ≤
2|X j−1|, ∀ j≥ 1. Under the assumption that {X j} is stationary and ergodic, and that EX2

j−1 <

∞, we have EY 2
j−1 < ∞. Then by using a conditional Chebyshev inequality and the station-

arity of the process we have,

Pθn

(
max

1≤ j≤n

|Yj−1|√
n

> ε
)
≤ Pθn

(
max

1≤ j≤n

|X j−1|√
n

>
ε
2

)

≤ 4
ε2n

n

∑
j=1

E
[

X2
j−1I

(
|X j−1|> ε

√
n

2

)]

=
4
ε2 E

[
X2

0 I
(
|X0|> ε

√
n

2

)]
.

The above expression tends to 0 as n→ ∞ due to the fact that EX2
0 < ∞.

To prove condition (2.9) and (2.10), we need to prove that, as n→ ∞,




1
n ∑n

j=1 X j−1

1
n ∑n

j=1 X j−1G(X j−1)


 p−→ ν ,

and



1
n ∑n

j=1 X2
j−1

1
n ∑n

j=1 X2
j−1G(X j−1)

1
n ∑n

j=1 X2
j−1G(X j−1) 1

n ∑n
j=1 X2

j−1G2(X j−1)


 p−→M,

where

ν =

( Eθ0 X0

Eθ0(X0G(X0))

)
, M =




Eθ0X2
0 Eθ0(X

2
0 G(X0))

Eθ0(X
2
0 G(X0)) Eθ0(X

2
0 G2(X0))


 . (2.13)

By the ergodicity assumption these results follow from Theorem 5.5 and Theorem 5.6 of
Karlin and Taylor (1975).
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Koul and Schick (1997), in Remark 2.7 gave a sufficient condition for a stationary and
ergodic NLAR(1) process to satisfy Assumption 2.1 and for a smooth path to be regular
in the following proposition. These results are summarised for our case in the following
Proposition 2.2.

Proposition 2.2. Consider the STAR model (2.1) with Θ given in (2.2) and let F = F+
0 . For

θ = (θ1,θ2) ∈Θ, let h(x,θ) = θ1x+θ2xG(x), x ∈ℜ. Assume that there exists a measurable
non-negative function ψ, positive constants A,C and δ , for all θ close to θ0, such that

|h(x,θ)| ≤ Aψ(x), x ∈ℜ, (2.14)

|h(x,θ)−h(x,θ0)| ≤ ‖θ −θ0‖Aψ(x), x ∈ℜ, (2.15)
∫

ψ(y+h(x,θ))φ(y)dy≤C +(1−2δ )ψ(x), x ∈ℜ, (2.16)

Then the condition (2.6) in Assumption 2.1 is satisfied. Also, if η 7→ fη , is a ξ -smooth path
then

limsup
θ→θ0,η→0

Eθ , fη ψ(X0) < ∞,

and the path is regular.

By the above Proposition to prove that STAR is LAN it is enough to show that there
exists a function ψ satisfying (2.14)-(2.16). The choice of the function ψ(x) depends on the
value of θ . From Nur (1998), it is possible to choose positive constants c,d,e with e < 1,
satisfying

−d
c

< θ1 < e, − c
d

< θ1 +θ2 < e, (2.17)

for all θ ∈Θ.

Lemma 2.1. Define the non-negative measurable function ψ as

ψ(x) =

{
cx, x > 0

−dx, x≤ 0.

Then ψ satisfies the conditions (2.14)-(2.16).

Proof. Proof of (2.14) follows from the fact that

|h(x,θ)|= |θ1x+θ2xG(x)|= |θ1 +θ2G(x)||x| ≤ Aψ(x),

for some positive constant A. Similarly,

|h(x,θ)−h(x,θ0)| = |(θ1−θ01)x+(θ2−θ02)xG(x)|
= |(θ1−θ01 θ2−θ02)(x xG(x))T |
≤ ‖θ −θ0‖Aψ(x), x ∈ℜ,
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for some constant A, and (2.15) follows. To prove (2.16) ( see the proof of ergodicity in Nur
(1998)) we have, for x ∈ℜ,

E(ψ(Xt)|Xt−1 = x)

=
{

cx(θ1 +θ2G(x))+(c+d)E[h(x,θ)+ ε t ]−, x > 0

−dx(θ1 +θ2G(x))+(c+d)E[h(x,θ)+ ε t ]+, x≤ 0

≤ ψ(x)(θ1 +θ2G(x)) + (c+d)E|h(x,θ)+ ε t |,
≤ eψ(x)+(c+d)E|h(x,θ)+ ε t |,

as θ1 + θ2G(x) < e from (2.17). From the condition (2.14) and that E(ε2
t ) < ∞, it is clear

that

E|h(x,θ)+ ε t | ≤ |h(x,θ)|+E|ε t | ≤ Aψ(x)+E|ε t |< ∞, x ∈ℜ.

Therefore condition (2.16) is satisfied with (c+d)E|h(x,θ)+ ε t | ≤C, x ∈ℜ and δ = 1−e
2 .

By taking F = F+
0 , the condition (2.6) in the Assumption 2.1 holds. Hence by combining

the Propositions 2.1 and 2.2, and the Lemma 2.1 we have proved the following.

Theorem 2.1. Let F = F+
0 . Then the STAR model (2.1) is LAN.

3. Adaptivity

In this section we show that the STAR is adaptive with respect to a suitable class of
functions F. By Koul and Schick (1997) Stein’s necessary condition for adaptivity is

ν
∫

lξqdF = 0, ∀ q ∈ Q, (3.1)

where ν is given in (2.13) and Q is the set of regular paths and, for q ∈ Q, ξq is the smooth-
ness parameter, that is, q is ξq-regular. For the STAR model,

ν =

(
Eθ0 X0

Eθ0(X0G(X0))

)
6= 0.

Hence we need to choose our F such that
∫

lξqdF = 0 is satisfied. An appropriate class for
this is F = F+

S , the set of all positive Lebesgue densities which are symmetric, having zero
means, finite variances and finite Fisher information for location.

In order to show that the STAR model is adaptive, we use the sufficient conditions given
in Remark 5.4 of Koul and Schick (1997). The conditions require that there exists a function
ψ such that

Eθ0ψ(X0) < ∞ (3.2)

ψ(x)≥ sup
‖θ−θ0‖<δ

‖ḣ(x,θ)‖2, for all x ∈ℜ and some δ > 0 (3.3)
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Following Koul and Schick (1997) we construct an adaptive estimator θ̂n for the STAR(1)
model as follows. Let 〈cn〉 be a sequence of positive numbers tending to infinity and 〈θn〉 be
a local sequence for θ . The truncated function Ḣ j(θ̃n)) is defined by

Ḣn, j = Ḣ j(θn)I
[‖Ḣ j(θn)‖ ≤ cn

]
+ cn

Ḣ j(θn)
‖Ḣ j(θn)‖

I
[
Ḣ j(θn) > cn

]
, (3.4)

where Ḣ j(θn) as defined in (2.4). Let εn, j = ε j(θ̃n), l̂n the estimate of the score function, Ĵn =
1
n

n
∑

j=dn

l̂2
n(εn, j),and Mn = 1

n

n
∑

j=dn

Ḣn, jḢT
n, j. Let θ̃n be a discretized

√
n-consistent estimator of

θ0. With this as the initial estimator we define the estimator θ̂n as

θ̂n = θ̃n +(ĴnMn)−1 1
Nn

n

∑
j=dn

Ḣn, j l̂n(εn, j). (3.5)

Theorem 3.1. Consider the STAR(1) model given in (2.1), and let F = F+
S .

(a) For A > 2, let ψ(x) = Ax2, x ∈ℜ. Then the conditions (3.2) and (3.3) are satisfied.

(b) The estimator θ̂n is adaptive.

Proof. (3.2) follows from the fact that Eθ0 X2
0 < ∞. To prove (3.3) note that

sup
‖θ−θ0‖<δ

‖ḣ(x,θ)‖2 = sup
‖θ−θ0‖<δ

x2(1+G2(x))≤ Ax2

for x ∈ℜ and for some δ > 0, A > 2. Part(b) follows from Remark 5.4 and Theorem 5.2 of
Koul and Schick (1997).

The construction of an efficient estimator for STAR(1) models is similar to the one for
SETAR(2;1,1) given in Example 3.5 of Koul and Schick (1997) by taking F = F+

0 . The
construction of an efficient estimate using a sample splitting technique as follows. Let
〈dn〉 and 〈mn〉 be sequences of positive integers such that dn ≤ mn ≤ n,dn/n → 0 and
mn/n → 1/2 and choose 〈an〉 and 〈bn〉 to be sequences of positive numbers converging
to 0 such that n−1a−3

n b−1
n → 0. Let 〈θ̃n〉 be a preliminary estimate of θ which is dis-

cretized and
√

n-consistent. Set εn, j = ε j(θ̃n), j = 1, . . . ,n, N′
n = mn−dn +1, N′′

n = n−mn,
en,1 = (εn,dn , . . . ,εn,mn) and en,2 = (εn,mn+1, . . . ,εn,n).

Let

ψ̂n, j =

{
Ḣ j(θ̃n)LN′′n (εn, j,en,2)− ν̂2,nL∗,Nn”(εn, j,en,2) if j = dn, . . .mn,

Ḣ j(θ̃n)LN′n(εn, j,en,1)− ν̂1,nL∗,N′n(εn, j,en,1) j = mn +1, . . .n.

The functions Ln(.) and L∗,n(.) are defined in (4.4) and (4.5) of Koul and Schick (1997) and

ν̂1,n =
1

N′
n

(
∑mn

j=dn
X j−1

∑mn
j=dn

X j−1G(X j−1)

)
and ν̂2,n =

1
N′′

n

(
∑n

j=mn+1 X j−1

∑n
j=mn+1 X j−1G(X j−1)

)
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whereas Ḣ j(θ̃n) is defined in (2.4). Define the efficient estimates as

θ̂n = θ̃n +

(
1
n

n

∑
j=dn

ψ̂n, jψ̂T
n, j

)−1
1
n

n

∑
j=dn

ψ̂n, j. (3.6)

Theorem 3.2. Consider the STAR(1) model given in (2.1), and let F = F+
0 . Then θ̂n given

in (3.6) is efficient.

Remark. For the STAR model, if F = F+
S , then Stein’s condition for adaptivity is satisfied.

Hence the efficient estimator is also adaptive. Whereas, if F = F+
0 then Stein’s condition is

not satisfied. Hence θn is efficient but not adaptive. In other words, in the class of symmetric
error densities, an adaptive estimator is always efficient, and an efficient estimator is also
adaptive. But for a general class of error densities, an efficient estimator is optimal but not
adaptive.

4. Examples

This section presents two examples to complement the theoretical results developed in
the previous sections. The necessary computations were written in Fortran 77, with a few
subroutines included from the Nag-library. We first present a simulation study in which the
adaptive and efficient estimators for the STAR(1) are constructed and compared to condi-
tional least squares estimator. The adaptive estimator is constructed without the truncation
of Ḣ j(θn). The efficient estimators are constructed using a sample splitting technique as
explained in the previous section and non-splitting method as in Koul and Schick (1997).

4.1. Simulation

The data come from a first-order STAR model

Xt =−2.0Xt−1 +1.6Xt−1G
(

Xt−1−5.0
0.5

)
+ ε t ,

where θ0 = (θ01,θ02) = (−2.0,1.6), (r,d,z) = (5.0,1,0.5) and G(.) is a standard Normal
distribution function. We generate 2500 independent replications each with sample size 200.
The following five densities of the errors ε t were chosen:

φ1(x) = (0.5/
√

2π)exp(−(x−3)2/2)+(0.5/
√

2π)exp(−(x+3)2/2),

φ2(x) = (0.05/
√

50π)exp(−x2/50)+(0.95/
√

2π)exp(−x2/2),

φ3(x) ∼ t5, φ4(x)∼ t7, φ5(x)∼ t9.

Here φ1,φ2 are mixture normal densities and φ3,φ4 and φ5 are t-densities functions. Note
that all these densities belong to F = F+

S . The densities φ1,φ2 are commonly used for study-
ing the behaviour of estimators in autoregressive models (Kreiss, 1987) and t-densities are
used for GARCH models (Drost, et al, 1997).
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For each series, conditional on (r,d,z) = (5.0,1,0.5), different estimates θ̂ = (θ̂1, θ̂2), of
the parameter coefficients θ0 = (θ01,θ02) are obtained using three methods, viz, conditional
least squares, adaptive and efficient estimation. The preliminary estimate θ̃ , used as the
initial value for these estimators, is a discretized estimate obtained by the conditional least
squares method. Note that θ̃ is a

√
n-consistent estimator by the results given in Nur (1998).

The adaptive estimates, θ̂Ad , is constructed by using (3.4) and (3.5) without truncation,
i.e. cn → ∞. The efficient estimate θ̂E f 1, as defined in (3.6), is constructed using a sample
splitting technique (Theorem 4.1 of Koul and Schick (1997)) whereas θ̂E f 2, is constructed
using a non-splitting technique given in Koul and Schick (1997). The value (θ̂1(C), θ̂2(C))
given in Table 1 is the usual conditional least squares estimator. For all estimates, we used
standardised logistic kernels with a bandwidth in the interval 0.5≤ an ≤ 0.9.

The simulation results are constructed for an = 0.5,0.6,0.7,0.8,0.9. For each bandwidth,
the average values of estimates from 2500 independent replications are given for different
error densities. The sample mean squared error (MSE) is given in the ( ) parentheses. For
convenience, the numerical results are presented only for an = 0.7 in Table 1 whereas we
briefly summarise the results for others which was given in details in Nur (1998).

Generally for all values of an the adaptive estimates give the smallest sample MSE com-
pared to others when the error densities are t5, t7, t9. The second smallest sample MSE were
given either by the CLS estimator or the efficient estimates without splitting the sample. As
it is expected from a moderate sample size of 200, for all densities, the efficient estimate
using splitting technique gives greater sample MSE compare to others. On the other hand,
the smallest bias is obtained by the adaptive estimates followed by the CLS and the efficient
estimates.

Table 1. Average values of estimates and their sample mean squared error for an =
0.7. The indexes C stands for conditional least squares, Ad for adaptive, E f 1 for
efficient estimates with splitting the sample and E f 2 for efficient estimates without
splitting the sample

Estimate φ1 φ2 φ3 φ4 φ5

θ̂1(C) −1.99943 −1.99972 −2.00096 −1.99937 −1.99964
(0.000225) (0.000403) (0.0006699) (0.000563) (0.000505)

θ̂2(C) 1.59947 1.59985 1.60206 1.60055 1.60016
(0.000291) (0.000515) (0.000879) (0.000717) (0.000668)

θ̂1,Ad −1.99950 −1.99992 −2.00099 -2.00001 −2.00015
(0.000241) (0.000423) (0.000529) (0.000527) (0.000491)

θ̃2,Ad 1.59843 1.59902 1.60088 1.60013 1.59967
(0.000318) (0.000548) (0.000699) (0.000672) (0.000652)

θ̂1,E f 1 −1.99921 −1.99989 −2.00104 -1.99913 −1.99918
(0.000466) (0.000702) (0.000968) (0.000879) (0.000857)

θ̃2,E f 1 1.59914 1.60020 1.60245 1.60068 1.60033
(0.001005) (0.001326) (0.001757) (0.001569) (0.001556)

θ̃1,E f 2 −2.00107 −2.00126 −2.00248 -2.00118 −2.00142
(0.000275) (0.000446) (0.000576) (0.000561) (0.000536)

θ̃2,E f 2 1.60182 1.60188 1.60394 1.60271 1.60243
(0.000393) (0.000596) (0.000840) (0.000779) (0.000756)
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4.2. Canadian lynx data

The second study is based on the well-known Canadian lynx data which consists of
the annual record of the numbers of the lynx trapped in MacKenzie River, Canada for the
period 1821 to 1934 inclusively. Tong (1990) presented a complete review of analysis of
lynx data using different models which includes AR(2) model and SETAR(2;7,2) model.
The best fitted STAR model for the data is of order 1 with d = 2 (Nur, 1998). In order to be
consistent with the theoretical results given previously, a STAR model order 1 with d = 1
was fitted to the logarithmic transformation of the original data as in the previous studies of
the data set. Here we take the error distribution ε t as t5. We fitted the STAR order 1 model
with d = 1, r̂ = 3.83 and ẑ = 0.721, taken from Tong (1983, 1990), with the cumulative
distribution function G as the Gaussian distribution. The estimated variances obtained by
each estimation method are given in Table 2 below. It shows that the CLS method performs
as well as the adaptive estimates followed by the efficient estimates without splitting the
sample and with splitting the sample. Similar results were obtained for other densities, with
the CLS and the adaptive estimates methods outperforming others, and are omitted here.

Table 2. Estimated variances for the the lynx data with an = 0.5. CLS stands for Con-
ditional Least Squares, E f 1 stands for efficient estimates with splitting the sample
and E f 2 stands for efficient estimates without splitting the sample

Method CLS Adaptive E f 1 E f 2
ˆvar 0.2250 0.2255 0.2272 0.2260

5. Conclusion

In conclusion, we have shown that a first-order STAR model with delay parameter one
is locally asymptotically normal by Theorem 2.1. The adaptive estimator of this model
only exists for a class of symmetric and positive Lebesgue densities with zero-mean, finite
variances and finite Fisher information for location as given in Theorem 3.1. The efficient
estimates of this model exist for a class of all positive Lebesgue densities with zero-mean,
finite variances and finite Fisher information for location as shown in Theorem 4.1. The sim-
ulation results were presented to compare conditional least squares, adaptive and efficient
estimators, employing a sample splitting and a non splitting methods. The error densities
chosen were mixture normals, t5, t7 and t9. The simulation study leads to the conclusion that,
in general, the adaptive estimates or efficient estimates without splitting the sample perform
better in terms of MSE than the CLS for the t-densities. The CLS estimates, however,
perform better in MSE for mixture normals. For the Canadian lynx data, the CLS and the
adaptive estimates perform better than other methods.
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