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The myometrium undergoes substantial remodeling at the
time of labor including rearrangement of the cellular con-
tractile machinery. The regulation of this process in human
myometrium at the time of labor is poorly defined, but evi-
dence in other muscle types suggests modulation by small
heat shock proteins (sHSP). The aim of this study was to in-
vestigate whether similar changes in sHSP occur in the myo-
metrium at labor. Using a quantitative proteomic approach
(two-dimensional difference gel electrophoresis), we found a
69% decrease in the sHSP �B-crystallin in the myometrium at
labor plus multiple isoforms of HSP27. Immunoblotting using
phosphospecific HSP27 antibodies (HSP27-serine15, -78, and
-82) detected marked changes in HSP27 phosphorylation at

labor. Although total HSP27 levels were unchanged, HSP27-
Ser15 was 3-fold higher at labor. Coimmunoprecipitation
studies showed that HSP27 coprecipitates with �B-crystallin
and also smooth muscle �-actin. Coimmunofluorescence stud-
ies demonstrated a relocation of HSP27 from the perinuclear
region to the actin cytoskeleton at labor. The functional sig-
nificance of these changes was demonstrated in vitro where
myometrial strips stimulated to contract with oxytocin ex-
hibited increased HSP27-Ser15 phosphorylation. Our find-
ings provide data consistent with a novel pathway regulating
human myometrial contraction at labor and identify HSP27
and �B-crystallin as potential targets for future tocolytic
design. (Endocrinology 149: 245–252, 2008)

ACRITICAL ASPECT of normal human birth is the abil-
ity of uterine smooth muscle (myometrium) to re-

spond to contractile stimulants (uterotonics) and to produce
coordinated, forceful contractions. This involves a significant
remodeling process that includes increased connectivity (e.g.
the formation of gap junctions) between myocytes and
changes in myocyte excitability as well as major changes to
the cytoskeleton (1, 2).

Myometrial contractility is considered to be regulated pri-
marily by intracellular free calcium ion concentration
([Ca2�]i). Increased [Ca2�]i results in enhanced interaction
between calmodulin and myosin light chain kinase (MLCK).
Phosphorylation of MLC triggers cross-bridge cycling along
fibrillar actin filaments and the development of force nec-
essary for contraction (1, 3). Relaxation of the muscle is
thought to be a reversal of this process; that is, the removal
of [Ca2�]i induces dissociation of calmodulin from MLCK.
When myosin is dephosphorylated by MLC phosphatases, it
dissociates from the actin filament, and relaxation occurs.
Despite widespread acceptance of this model, discrepancies
remain. Smooth muscle contraction can be sustained in the
continued presence of a contractile agonist, although in-

creases in [Ca2�]i and MLC phosphorylation are transient (4,
5). This suggests that there are additional mechanisms in-
volved in the regulation of smooth muscle contractility.

Changes in the cytoskeletal machinery of smooth muscle
cells endow the cells with the structural and functional ca-
pacity to generate force and contract (6). The regulation of
this process in the human myometrium is unknown, but data
from other muscle cells suggest that small heat shock pro-
teins (sHSP), such as �B-crystallin and HSP27, play an im-
portant role. �B-crystallin and HSP27 are highly expressed in
muscle and can directly interact with each other to form
homo-oligomers as well as hetero-oligomeric complexes (7–
10). Furthermore, these proteins can interact with compo-
nents of the actin cytoskeleton to modulate actin filament
formation and thus contraction (11, 12). For example, HSP27
is a known actin-binding protein that can modulate actin
filament dynamics through actin polymerization inhibition
(13, 14). Additionally, overexpression of HSP27 in fibroblast
cells promotes the accumulation of fibrillar actin (F-actin)
(15).

The functional characteristics of sHSP are predominantly
determined by phosphorylation, which induces a change in
the tertiary structure of these proteins, thereby altering their
affinity to form homo- or hetero-oligomers or to interact with
the actin cytoskeleton. For example, phosphorylation in-
duces the dissociation of �B-crystallin (16) and HSP27 mul-
timers (17, 18) into small monomer and dimer subunits.
HSP27 has three predominant sites of phosphorylation,
serine residues 15, 78, and 82 (19, 20). The substitution of
these serine residues with glycine prevents the dissociation
of HSP27 oligomers and prohibits HSP27-mediated accumu-
lation of F-actin (21), thereby supporting a role for HSP27
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phosphorylation in actin filament stabilization. Moreover,
it has been proposed that the phosphorylation of HSP27 on
serine residue 15 increases its propensity to bind to and
stabilize actin filaments, in turn promoting contraction
(11, 18).

In this study, we hypothesized that human labor onset is
associated with changes in the abundance and posttransla-
tional modification (e.g. phosphorylation) of key regulatory
myometrial proteins. Specifically, we sought to characterize
labor-associated changes in the sHSP �B-crystallin and
HSP27 in human myometrium.

Materials and Methods
Experimental subjects

All experimental procedures performed in this study were approved
by the University of Newcastle Ethics Committee in accordance with the
institutional guidelines of the John Hunter Hospital, Australia, and the
KK Women’s and Children’s Hospital, Singapore. Informed consent was
obtained from women before elective or emergency cesarean section.
Myometrial tissue strips (5 � 10 mm) were sampled from the upper
margins of the lower uterine segment, freed of connective tissue, im-
mediately snap-frozen in liquid nitrogen, and either stored at �80 C or
prepared for bioassay and stored in saline at 4 C for up to 16 h. All
women undergoing cesarean section were examined clinically, and
those exhibiting signs of infection were excluded. Women who chose
elective cesarean section and showed no signs of labor (uterine con-
tractions and/or cervical changes) formed the nonlaboring group.
Women who entered spontaneous and established labor (at least 2 h) but
required emergency cesarean section formed the laboring group. Clin-
ical indications for emergency cesarean section included breech, fetal
distress, prolonged labor, and previous cesarean section. All subjects
were between 37 and 40 wk gestational age.

Extraction of myometrial proteins and depletion of human
serum albumin (HSA) and IgG

Myometrial tissue samples were crushed under liquid nitrogen and
then homogenized in a urea/CHAPS-based lysis buffer (7 m urea, 2 m
thiourea, 4% wt/vol 30 mm CHAPS, pH 8.5) at a ratio of 100 mg crushed
tissue/1 ml extraction buffer. The homogenate was centrifuged
(13,000 � g for 15 min at 4 C), and the resulting supernatant was
collected. Depletion of HSA and IgG was performed using the albumin
and IgG removal kit (GE Healthcare, Piscataway, NJ) according to the
manufacturer’s protocol. Briefly, extracts were incubated with an anti-
HSA/anti-IgG resin for 30 min at room temperature. Unbound proteins
were then separated from the absorption matrix using a mini-spin car-
tridge and centrifuging the sample at 1000 � g for 2 min. Concentration
and desalting of HSA/IgG-depleted samples was performed by acetone
precipitation. Four volumes of ice-cold acetone were added to each
sample, incubated for 3 h at �20 C, and then centrifuged (13,000 � g for
15 min at 4 C). Samples were resuspended in 50 �l extraction buffer.
Protein concentration estimation was performed using the 2-D Quant Kit
(GE Healthcare, Uppsala, Sweden).

Fluorescent cyanine (Cy)-dye labeling of samples

Before labeling, Cy dyes Cy2, -3, and -5 (GE Healthcare) were re-
constituted in anhydrous dimethylformamide. Nonlaboring (n � 6) or
laboring (n � 6) myometrial proteins (50 �g) were labeled with 400 pm
of either Cy3 or Cy5 dye on ice for 30 min in the dark. To account for
any dye binding bias, half of every sample group was labeled with Cy3,
whereas the remaining half was labeled with Cy5. An internal pooled
sample was created by mixing 25 �g of each sample and labeling as
above with Cy2. Dye labeling reactions were stopped with 10 mm lysine.
Cy3- and Cy5-labeled samples were mixed with the Cy2-labeled pooled
control and made up to 450 �l with rehydration buffer (7 m urea, 2 m
thiourea, 4% wt/vol CHAPS, 2 mg/ml dithiothreitol, and 1% vol/vol
pH 3–10 immobilized pH gradient buffer).

Two-dimensional difference gel electrophoresis (2D-DIGE)

In-gel rehydration of immobilized pH gradient strips (nonlinear, pH
3–10, 240 mm; GE Healthcare) was performed with the Cy-labeled sam-
ples overnight for 12 h at room temperature under mineral oil (Sigma
Chemical Co., St. Louis, MO). Isoelectric focusing was performed using
a Multiphor II unit (GE Healthcare) for a total of 58,800 Vh using the
following parameters: hold at 300 V for 900 Vh, ramp and hold at 1000
V for 3900 Vh, ramp and hold to 8000 V for 13,000 Vh, and hold at 8000
V for 41.000 Vh. Strips were then equilibrated and reduced in equili-
bration buffer (30% vol/vol glycerol, 2% wt/vol SDS, 7 m urea, trace
bromophenol blue) with 0.5% dithiothreitol for 15 min at room tem-
perature and then in equilibration buffer containing 4.5% iodoacetamide
for 15 min at room temperature. Strips were then placed on homoge-
neous 10% acrylamide gels (255 � 205 mm) cast in low-fluorescence
plates using the Ettan DALTsix Electrophoresis Casting System (GE
Healthcare). This produced six simultaneously cast gels using the same
batch of acrylamide gel stock solution for each gel. Second-dimensional
electrophoretic separation was carried out at 2.5 W/gel constant power
for 30 min and then 100 W (total) constant power using a peltier-cooled
Ettan DALT II electrophoresis unit (GE Healthcare) until the bromo-
phenol dye front reached the bottom of the gel.

Imaging and analysis of 2D-DIGE gels

Fluorescence image acquisition was performed using the Typhoon
9400 Variable Mode Imager (GE Healthcare). Each gel was scanned at
the following excitation/emission wavelengths: 480/530nm (Cy2), 520/
590nm (Cy3), and 620/680 nm (Cy5). Gel analysis was conducted using
the DeCyder version 5.0 Biological Variation software module (GE
Healthcare) for spot matching, quantitation, and standardization of pro-
tein spot data. Spot matching was validated by manual inspection of gel
spots. Statistically significant protein abundance changes were identi-
fied via Student’s t test. Proteins present in either all gels or at least in
all nonlaboring or laboring gels and whose abundance changed more
than 1.5-fold (P � 0.05) were chosen as proteins for identification.

Matrix-assisted laser desorption/ionization time-of-flight
(MALDI-ToF) protein sequencing

A preparative sequencing gel was prepared by performing 2D-PAGE
on 500 �g of pooled myometrium proteins. The gel was fixed in 50%
methanol/7% acetic acid for 30 min and then stained with SYPRO Ruby
(Invitrogen, Carlsbad, CA) overnight at room temperature. The gel was
then washed in 10% methanol/7% acetic acid, briefly rinsed in distilled
water, and visualized using a UV transilluminator. Target proteins were
excised and destained in 50 mm ammonium bicarbonate in 50% vol/vol
methanol for three washes of 40 min each. Gel plugs were dried at 37
C for 2 h and then incubated in 40 ng/�l trypsin (Promega, Madison,
WI) in 20 mm ammonium bicarbonate at 37 C for 3 h. Sequencing was
performed using an Ettan MALDI-ToF Pro (GE Healthcare). For this, 1
�l tryptic peptide was mixed with 1 �l �-cyano-4-hydroxycinnamic acid
matrix (5 mg/ml in 50% acetonitrile, 0.1% trifluoroacetic acid), and 1 �l
of this mixture was spotted in duplicate onto the MALDI target tray.
Peptide mass fingerprinting was performed alongside peptide stan-
dards in reflectron mode. Sequence data were used to interrogate the
Swiss-Prot and NCBInr databases. As an additional control measure, the
isoelectric point and molecular weight of identified proteins were
checked against the region of the pick gel from which they were excised.

One-dimensional (1D) SDS-PAGE and immunoblotting

Myometrial proteins (10 �g) were loaded on precast 12% NuPAGE
acrylamide gels (Invitrogen) and separated electrophoretically using the
Xcell SureLock Mini-Cell system at 190 V (constant) until the bromo-
phenol blue dye migrated to the bottom of the gel. Proteins were then
transferred to nitrocellulose (Hybond C; GE Healthcare) using the Xcell
II blot module (Invitrogen) at 30 V for 55 min. Membranes were blocked
with 5% skim milk in Tris-buffered saline supplemented with 0.01%
Tween 20 (TBST) for 2 h and then incubated with antibodies for �B-
crystallin (1:3000; Stressgen Bioreagents, Victoria, Canada), total HSP27
(1:2500), pHSP27-Ser15 (1:1000), pHSP27-Ser78 (1:2000), and pHSP27-
Ser82 (1:2000) in 5% skim milk/TBST for 2 h at room temperature. HSP20

246 Endocrinology, January 2008, 149(1):245–252 MacIntyre et al. • sHSP and Human Labor

 at Serials Sect-Auchmuty Library University of Newcastle on July 23, 2008 endo.endojournals.orgDownloaded from 

http://endo.endojournals.org


and HSP27 antibodies were purchased from Upstate Biotechnology
(Lake Placid, NY). Membranes were then washed five times (5 min per
wash) in TBST, and the appropriate secondary antibody (1:2000) was
added for 1 h at room temperature. Immunoreactive protein was de-
tected with enhanced chemiluminescence (GE Healthcare) using the
Intelligent Dark Box LAS-3000 Imager (Fuji Photo Film, Tokyo, Japan).
Membranes were stripped with 0.2 m NaOH and then reprobed with
�-smooth muscle actin (�-SMA, 1:2000; Sigma) as a loading control.
�-SMA abundance of actin protein in human myometrium remains
unchanged with and during pregnancy (22, 23). Similarly, in rat myo-
metrium, �-SMA mRNA and protein levels remain unchanged through-
out gestation and labor onset (24). HSP27 phosphorylation was also
standardized to �-SMA because its relative molecular mass (Mr � 42 �
103) differs from that of HSP27 and its phospho-forms (Mr � 27 � 103).
Thus, we were able to avoid any issues of inhibited interaction between
the antibody and the ligand during reprobing caused by residual HSP27
phospho-antibody binding. Specificity of immunoreactive bands was
assessed by probing with preimmune antisera followed by secondary
antibody and also secondary antibody alone. Densitometric analysis was
performed using Multi-Gauge (Fuji Photo Film) image analysis soft-
ware. Band intensity values of �B-crystallin and HSP27 were standard-
ized to those of �-SMA. Statistical analysis was performed with Graph-
Pad Instat version 3.0 (GraphPad Software, San Diego, CA).

Coimmunoprecipitation

Myometrial proteins (�100 mg, n � 5 for both nonlaboring and
laboring samples) were extracted in 1 ml Nonidet P-40 (NP40) lysis
buffer (150 mm NaCl, 50 mm Tris-HCl, 5 mm EDTA, 0.5% NP40). One
microgram of rabbit-anti-HSP27 antibody (Upstate Biotechnology) was
added to 50 �g extracted protein. As a control, 1 �g normal rabbit IgG
was added to 50 �g pooled nonlaboring and laboring myometrial pro-
tein extracts. The protein-antibody mixture was incubated overnight at
4 C, and then 20 �l protein A-agarose immunoprecipitation reagent was
added and incubated for 1 h at 4 C. The mixture was centrifuged at
1000 � g for 5 min at 4 C, and the resulting pellet was washed three times
for 5 min each with 1 ml NP40 lysis buffer. The pellet was resuspended
in 60 �l 1� lithium dodecyl sulfate buffer (Invitrogen) and heated at 70
C for 10 min. Samples were then centrifuged at 12,000 � g for 10 min
and the supernatant collected. Immunoprecipitated protein (20 �l) was
resolved by 1D SDS-PAGE, transferred to nitrocellulose, and probed
with antibodies for �B-crystallin, HSP27, and �-SMA.

Immunofluorescence microscopy and colocalization analysis

Myometrial tissue obtained at cesarean section (n � 6 for nonlaboring
and laboring) were immediately fixed in neutral-buffered formalin for
48 h and embedded in paraffin. Sections of 10 �m were attached to
low-fluorescence glass slides. Slides were deparaffinized by incubating
in the following solutions for 5 min each: 2� 100% xylene, 3� 100%
absolute alcohol, 80% ethanol, and 70% ethanol. Antigen retrieval was
performed by microwave heating the slides in citrate buffer (pH 6) at 95
C. Sections were blocked in 10% fetal calf serum in PBS for 30 min and
then incubated in �B-crystallin (1:400), HSP27 (1:400)m and �-SMA
(Sigma, 1:500) antibodies diluted in 10% fetal calf serum. Alexa Fluor 488
goat antimouse IgG and Alexa Fluor 594 goat antirabbit IgG (Invitrogen;
both 1:2000) were used as secondary antibodies. 4�,6-Diamidino-2-phe-
nylindole (300 nm) was used as a nuclear stain. As controls, sections were
incubated with preimmune sera and/or secondary antibodies alone.
Only specimens demonstrating low background with control staining
were used for analysis. Slides were mounted for imaging by adding 15
�l Vectorshield H-1000 (Invitrogen) mounting media. Immunofluores-
cence microscopy was performed using a Zeiss Axiocam MRm(v2) and
Axioplan 2 epifluorescent microscope (Carl Zeiss, Sydney, Australia).
Specimens were visualized using band pass filter sets that demonstrate
negligible spectral overlap. Image registration in each channel was cal-
ibrated using a Focalcheck fluorescence microscope test slide (no. 1;
Molecular Probes, Invitrogen). For each patient pair, nonsaturated im-
ages were collected with identical microscope and camera settings using
the Axiovision software package (version 4.4). Colocalization analyses
were then performed using the Colocalization Module of the software
that creates a scatterplot of each channel. Defining a threshold creates

a colocalization mask to represent high-intensity green and red pixels.
The same threshold values were used for each sample pair comparison.

Isometric tension recordings

Myometrial samples were dissected into strips (7 � 2 � 2 mm),
connected to a Grass FT03C force transducer (Grass Instruments,
Quincy, MA), and suspended in organ baths containing 15 ml Krebs’
physiological salt solution. Strips were maintained at 37 C and pH 7.4
and continuously gassed with 95% O2/5% CO2. Passive tension of 1 mN
was applied to each strip, and strips were allowed to equilibrate for
60–90 min until the development of spontaneous regular contractions.
Strips were then exposed to a single dose of oxytocin 10�7 m for 5–20 min
(until maximal tension reached) and immediately frozen in liquid ni-
trogen. Contractility was measured by integrating the area under the
tension curve, using a Maclab 8E data acquisition system with Chart
software (version 5; ADI, Melbourne, Australia). Responses to oxytocin
were compared as a percentage of spontaneous activity before treat-
ment. Total and phosphorylated HSP27 was assessed using immuno-
blotting as previously described.

Results

Protein profiles of term nonlaboring human myometria
(n � 6) and term spontaneously laboring myometria (n � 6)
were quantitatively compared using 2D-DIGE (25) (Fig. 1A).
One of the most prominent changes detected in protein abun-
dance was a 69% decrease (Student’s t test, P � 0.05) in the
sHSP �B-crystallin (accession no. P02511) in laboring myo-
metria (Fig. 1B and Table 1). Consistent with these results,
immunoblotting for �B-crystallin in a larger sample cohort
showed a 71% decrease (Mann-Whitney U test, P � 0.01) in
laboring myometria (n � 11) compared with nonlaboring
tissue (n � 13) (Fig. 1D). The 2D-DIGE study also identified
three isoforms of HSP27 (accession no. P04792) resolved in
the form of a charge-train, indicative of posttranslational
modification (Fig. 1C and Table 1).

To determine whether �B-crystallin and HSP27 interact as
reported for other tissues (7, 10), coimmunoprecipitation was
employed. HSP27 immunoprecipitates from nonlaboring (n �
5) and laboring myometria (n � 5) were resolved by 1D SDS-
PAGE, transferred to nitrocellulose, and probed with antibod-
ies for HSP27 and �B-crystallin (Fig. 2A). A single band of
approximate relative molecular mass (Mr) of 23 � 103 corre-
sponding to �B-crystallin was detected in nonlaboring and, to
a lesser extent, laboring myometria. In contrast, no band was
detected in the negative control (preimmune rabbit IgG), sug-
gesting specific association between �B-crystallin and HSP27 in
these samples. Because HSP27 is a known actin-binding protein
that may mediate smooth muscle contraction through stabili-
zation of the actin filaments, we also probed the HSP27 im-
munoprecipitates for �-SMA (Fig. 2A). A positive immunore-
action was observed in both nonlaboring and laboring
myometria, indicating specific interactions between HSP27 and
actin in the human myometrium at the time of labor.

Coimmunofluorescence was then performed to examine the
cellular localization of �B-crystallin, HSP27, and �-SMA in the
myometrium at labor. In nonlaboring myometria, �B-crystallin
was primarily localized to the perinuclear region (Fig. 2B). A
similar pattern of staining was observed for HSP27. By applying
a colocalization algorithm that identifies regions of costaining,
high levels of colocalization between �B-crystallin and HSP27
were demonstrated in the both the perinuclear and cytoplasmic
regions of nonlaboring myocytes. This result is consistent with
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the coimmunoprecipitation of these two proteins. This rela-
tionship was completely different in laboring samples where
HSP27 was detected in a fibrillar arrangement throughout the
perinuclear and cytoplasmic regions, which was highly colo-
calized with �-SMA (Fig. 2C). In these tissues, �B-crystallin was
barely detectable above background levels.

Phosphorylation of HSP27 has been shown to promote the
dissociation of sHSP oligomeric complexes (7, 9) and modulate
the ability of HSP27 to interact with actin (11, 18). We hypoth-
esized that changes in the relocation of HSP27 to the actin
cytoskeleton in the myometrium during labor are associated
with changes in its phosphorylation status. Immunoblotting
with phosphospecific antibodies (HSP27-Ser15, -78, and -82)
revealed marked changes in HSP27 phosphorylation at labor

relative to �-SMA (Fig. 3A). Although total abundance of
HSP27 was unchanged, HSP27-Ser15 was 3.0-fold higher in
laboring myometria (Mann-Whitney U test, P � 0.05; Fig. 3B).
In contrast, levels of HSP27-Ser82 were 85% less in laboring
myometria (Mann-Whitney U test, P � 0.01). There was no
significant change in HSP27-Ser78.

To confirm that the changes in HSP27 were related to con-
tractile events, phosphorylation of HSP27 was also measured in
vitro after treatment of nonlaboring myometrial strips with the
uterotonic oxytocin (Fig. 4). Oxytocin treatment showed an
average 206 � 64% (mean � sem, n � 5) increase in contractility
above baseline. This was associated with a significant increase
in HSP27-Ser15 phosphorylation compared with matched con-
trols (paired Student’s t test, P � 0.05; Fig. 4, B and C). Phos-

TABLE 1. MALDI-ToF mass spectrometry identification of sHSP in human myometrium

Protein ID Swiss-Prot
accession no.

Peptides matched
(% coverage)

Theoretical/
observed Mr

Theoretical/
observed pI

�B-crystallin P02511 3(14.3%) 20.14/�23 6.8/�8
HSP27 spot 1 P04792 5(26.3%) 22.76/�27 6/�6
HSP27 spot 2 P04792 7(48.8%) 22.76/�27 6/�6.1
HSP27 spot 3 P04792 7(46.5%) 22.76/�27 6/�6.4

Proteins were excised from preparative sequence gels, trypsinized, and sequenced using MALDI-ToF mass spectrometry. The observed
isoelectric point (pI) and relative molecular mass (Mr � 103) of sequenced proteins were compared with theoretical values.
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FIG. 1. 2D-DIGE analysis of human myometrium at labor onset. A, Representative 2D-DIGE gel showing comparison between protein profiles
of nonlaboring myometrium (Cy3, green) and laboring myometrium (Cy5, red). Proteins were extracted from nonlaboring (NL, n � 6) and laboring
(L, n � 6) myometrial biopsies and quantitatively compared using 2D-DIGE. B, One of the most marked changes in human myometrium after
labor onset was a 69% decrease (P � 0.05, Student’s t test) in the sHSP �B-crystallin (arrows), as identified using MALDI-ToF mass spectrometry.
C, 2D-DIGE combined with MALDI-ToF mass spectrometry also identified three (numbered 1, 2, and 3) highly abundant isoforms of HSP27.
D, Representative immunoblot of �B-crystallin in nonlaboring (NL, n � 13) and laboring (L, n � 11) myometria. Densitometric analysis of band
intensity showed a significant 71% decrease (P � 0.01) in the abundance of �B-crystallin in laboring myometria. Quantitation of �B-crystallin
immunoreactive bands was performed by standardizing to the band intensity of �-SMA. Mr, Relative molecular mass � 1000; M, molecular
weight marker.
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phorylation of HSP27-Ser78 and -Ser82 did not alter with oxy-
tocin treatment.

Discussion

We describe for the first time in the human myometrium
labor-associated changes in the sHSP �B-crystallin and HSP27.
We provide evidence that changes in these proteins are asso-
ciated with actin cytoskeletal remodeling at the time of labor
and use in vitro stimulation of myometrial muscle strips to show
these changes are directly related to contraction.

As revealed using 2D-DIGE, one of the most significant changes
in protein abundance in the human myometrium at labor is a 69%
decrease in �B-crystallin (Fig. 1A). Corroborative evidence was
provided using immunoblotting in a larger sample population

(Fig. 1B). Scant information exists regarding the function and reg-
ulation of �B-crystallin in smooth muscle; however, in skeletal
muscle, �B-crystallin acts as a chaperone protein providing cells
with cytoprotection during stress by preventing protein aggrega-
tion (26). Evidence suggests �B-crystallin may also be important in
the regulation of intermediate filaments (27–29). Mutations in the
�B-crystallin gene lead to the breakdown and aggregation of in-
termediate filaments and the development of skeletal and cardio-
myopathies (30–32). Decreased levels of �B-crystallin in actively
contracting myometria are not consistent with such observations
and suggest the protein may have a different function in myo-
metrial smooth muscle.

Specific interactions between �B-crystallin and HSP27 have
previously been reported in muscle cells (33). We found that
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FIG. 2. Interaction of HSP27 with �B-crystallin and �-SMA in nonlaboring (NL) and laboring (L) myometria. A, Myometrial protein extracts
immunoprecipitated (IP) with rabbit anti-HSP27 antibody were resolved by 1D SDS-PAGE and transferred to nitrocellulose. Immunoblotting
(IB) was then performed using antibodies for HSP27, �B-crystallin, and �-SMA. As a negative control (-ve), IP was also performed using
preimmune rabbit IgG. Associations between HSP27 and �B-crystallin, and HSP27 and �-SMA, were observed in both nonlaboring and laboring
myometria (n � 5 for both groups). B and C, Colocalization of HSP27 with �B-crystallin (B) and HSP27 with �-SMA (C) in nonlaboring (NL,
n � 5) and laboring (L, n � 5) myometria. Colocalization masks that highlight regions of costaining (yellow) were generated as described in
Materials and Methods. High levels of colocalization between HSP27 and �B-crystallin were observed in the perinuclear and cytoplasmic region
of nonlaboring myometria. This relationship was lost with the onset of labor. In nonlaboring myometria, low levels of colocalization between
HSP27 and �-SMA were observed. In contrast, HSP27 and �-SMA showed high levels of colocalization in laboring tissues particularly along
F-actin bundles. Scale bar, 20 �M. Mr, Relative molecular mass � 1000; M, molecular weight marker.
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these proteins interact primarily in the cytoplasm of nonlabor-
ing myometria (Fig. 2, A and B). Most likely due to decreased
levels of �B-crystallin, this interaction is almost completely lost
with labor (Fig. 2C). The functional significance of �B-crystal-
lin/HSP27 complexes in human myometria is unclear; how-

ever, we propose that decreased expression of �B-crystallin at
the time of labor liberates HSP27 enabling it to participate in
other cellular events such as cytoskeletal remodeling.

HSP27 can modulate cytoskeletal dynamics through the F-
actin stabilization and microfilament organization (11, 29, 34).
Phosphorylation of HSP27 in human platelets increases F-actin
formation (35), whereas HSP27 phosphorylation is required for
growth factor stimulation of F-actin formation in cultured cells
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FIG. 3. Immunoblot analysis of total and phosphorylated forms of
HSP27 in nonlaboring (NL) and laboring (L) myometria. A, Repre-
sentative immunoblots demonstrating the abundance of total and
phosphorylated forms of HSP27 (pHSP27-Ser15, pHSP27-Ser78, and
pHSP27-Ser82) in nonlaboring (NL, n � 13) and laboring (L, n � 11)
myometrium. B, Densitometric analysis of band intensity revealed
that pHSP27-Ser15 was 3-fold higher (*, P � 0.05, Mann-Whitney U
test) in laboring myometria. In contrast, pHSP27-Ser82 abundance
was decreased 84.62% (**, P � 0.01, Mann-Whitney U test) in laboring
samples. Abundance of pHSP27-Ser78 remained unchanged with la-
bor. Quantitation of HSP27 immunoreactive bands was performed by
standardizing to the band intensity of �-SMA. Mr, Relative molecular
mass � 1000; M, molecular weight marker.

FIG. 4. Changes in phosphorylation of HSP27 in oxytocin-stimulated
contractions in nonlaboring myometrial strips. A, Representative
tracing of spontaneous and oxytocin-stimulated contractions in non-
laboring myometrium. There was an increase in contractility of 206 �
64% (mean � SEM, n � 5) above baseline values. B, Immunoblotting
of pHSP27-Ser15 abundance in control (C) and matched oxytocin-
treated (T) myometrial muscle strips. C, Densitometric analysis of the
immunoblots revealed a significant 2.7-fold increase (P � 0.05) in
pHSP27-Ser15 after oxytocin treatment. Band intensity of pHSP27-
Ser15 was standardized to the band intensity of �-SMA. Mr, Relative
molecular mass � 1000; M, Molecular weight marker.
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(15, 21). This suggests HSP27-actin interaction is modulated by
phosphorylation. Consistent with a role in actin remodeling, we
found that HSP27 is relocated from the cytoplasm of nonla-
boring myometria, where it is associated with �B-crystallin, to
the actin cytoskeleton in laboring myometria (Fig. 2, B and C).
Moreover, we observed that this relocation occurs simulta-
neously with increased HSP27-Ser15 phosphorylation and con-
current HSP27-Ser82 dephosphorylation at labor. Similar re-
sults have been reported by in the rat myometrium where
HSP27-Ser15 phosphorylation is increased at the end of preg-
nancy (36). HSP27-Ser15 phosphorylation is thought to facilitate
binding to and subsequent stabilization of actin filaments (18),
a notion consistent with increased HSP27-Ser15 phosphoryla-
tion at labor. The significance of HSP27-Ser82 dephosphoryla-
tion in the myometrium is unknown but it is plausible that such
a modification would confer a conformational change upon the
protein, potentially modulating its interaction with other sHSP
and/or components of the actin cytoskeleton.

In vitro treatment of nonlaboring myometrial muscle strips
with the uterotonic oxytocin increased contractility 206% above
baseline (Fig. 4A). These samples exhibited significantly higher
levels of HSP27-Ser15 phosphorylation, confirming the associ-
ation between HSP27-Ser15 phosphorylation and myometrial
contraction. It has previously been reported that stimulation of
rat aortic vascular muscle contraction with angiotensin II in-
duces HSP27 phosphorylation (37). Likewise, the vasoconstric-
tor thrombin increases HSP27 phosphorylation in both mouse
cardiac myocytes (38) and aortic smooth muscle cells (39). Typ-
ically, these agonists have been shown to induce HSP27 phos-
phorylation via signal transduction cascades involving either
p38 MAPK and its downstream targets MAPK-activated pro-
tein kinase-2 and -3 (37, 40, 41) or through protein kinase C
activation (42). Consistent with a proposed role in smooth mus-
cle contraction, the inhibition of HSP27 phosphorylation in rat
aorta smooth muscle cells inhibits angiotensin II-induced con-
traction (37). Therefore, the evidence supports a critical role for
HSP27 phosphorylation in myometrial contraction.

Our results support the hypothesis that smooth muscle con-
traction is more than the regulation of intracellular Ca2� con-
centrations and the regulation of MLCK activity by second
messenger systems. Our findings suggest that modulation of
actin cytoskeletal assembly by sHSP may be an important ad-
ditional regulated step. This new knowledge could have im-
portant consequences as the pathways regulating the phos-
phorylation and synthesis of sHSP are uncovered in different
tissues. In the myometrium, it seems that an old uterotonic
oxytocin may have a new modus operandi as a regulator of
HSP27 phosphorylation.
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