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Abstract

Interconnection networks form an important research area which has received much

attention, both in theoretical research and in practice. Design of interconnection

networks is much concerned with the topology of networks. The topology of a net-

work is usually studied in terms of extremal graph theory. Consequently, from the

extremal graph theory point of view, designing the topology of a network involves

various extremal graph problems. One of these problems is the well-known fun-

damental problem called the degree/diameter problem, which is to determine the

largest (in terms of the number of vertices) graphs or digraphs of given maximum

degree and given diameter. General upper bounds, called Moore bounds, exist for

the largest possible order of such graphs and digraphs of given maximum degree

∆ (respectively, out-degree d) and diameter D. However, quite a number of open

problems regarding the degree/diameter problem do still exist. Some of these prob-

lems, such as constructing a Moore graph of degree ∆ = 57 and diameter D = 2,

have been open for over 50 years.

Another extremal graph problem regarding the design of the topology of a network

is called the construction of EX graphs, which is to obtain graphs of the largest size

(in terms of the number of edges), given order and forbidden cycle lengths. In this

thesis, we obtain large graphs whose sizes either improve the lower bound of the size

of EX graphs, or even reach the optimal value.

We deal with designing the topology of a network, but we are also interested in

the issue of fault tolerance of interconnection networks. This leads us to another

extremal graph problem, that is, connectivity. In this thesis, we provide an overview

of the current state of research in connectivity of graphs and digraphs. We also

present our contributions to the connectivity of general regular graphs with small

diameter, and the connectivity of EX graphs.
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Chapter 1

Introduction

The design of large interconnection networks has become of growing interest due

to recent advances in very large scale integrated technology. Our study has been

focusing on designing static networks, that is, networks that are established and

grow according to a topological design. For this static type of network, research

concentrates mainly on discovering optimal designs for network topology and then

developing algorithms that take advantage of the topology.

It is well known that an interconnection network can be modelled by a graph, or a

directed graph. In this case, the vertices of the graph, or directed graph, represent

the nodes of the interconnection network, and the edges of the graph, or the arcs

of the directed graph, represent the connections between the nodes in the network.

The degree of a vertex is the number of vertices connected to it. This corresponds

to a constraint on the number of connections from any one node. The diameter of

the graph, or directed graph, measures the maximum data communication delay.

Since the purpose of having a communication network is to exchange information

efficiently, so the performance is one of the important aspects that are taken into

consideration when designing a network. In order to have a good performance when

we design the topology of an interconnection network, many requirements should be

considered. In this thesis we restrict ourselves to focus on two main requirements.

Firstly, the number of nodes, such as computers and switching devices, should be as

1



Introduction 2

large as possible; secondly, the connections between the nodes should be as many

as possible.

Consequently, from the point of view of extremal graph theory, which is a branch

of graph theory, these two main requirements correspond to the two well-known

fundamental extremal graph problems:

• Degree/diameter Problem:

For given integer numbers ∆ and D, construct graphs of maximum degree ∆

and diameter ≤ D with the largest possible number of vertices n∆,D.

• EX Graph Problem:

For given integer numbers n and t, construct graphs of given order n and girth

≥ t + 1 with the largest possible number of edges ex(n; t).

The directed version of the degree/diameter problem differs only in that ‘degree’ is

replaced by ‘out-degree’ in the statement of the problem:

• Degree/diameter Problem:

For given integer numbers d and D, construct digraphs of maximum out-degree

d and diameter ≤ D with the largest possible number of vertices nd,D.

The directed version of the EX graph problem could also be formulated but we do

not include it here. There are many other related open problems concerning the

degree/diameter problem. There are large gaps between the best current lower and

upper bounds on the largest possible order in graphs and digraphs. Furthermore,

due to the fact that the extremal Moore graphs and Moore directed graphs (Moore

digraphs) do not exist, with a few exceptions, we are interested in finding graphs

and digraphs that are close to being Moore. The development of optimization algo-

rithms, such as Simulated Annealing and Genetic Algorithms, to handle designing

network topologies has been receiving much attention, especially in the last decade.

For instance, the well known travelling salesman problem is NP-hard. However,

solutions that are very close to optimal can be obtained by using Simulated An-

nealing and Genetic Algorithms. We believe that there is a great scope to gain
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improved solutions or even optimal results in the degree/diameter problem using

clever optimization algorithms.

Apart from performance, reliability is another important aspect to be considered in

designing a network. Network nodes and communication links sometimes fail and

must be removed from service. When components fail, the network should continue

to function, even if with reduced capacity. Many parameters, such as connectiv-

ity, have been introduced to measure the resilience of a network and its ability to

continue operation despite disabled components. Among these parameters, a very

important parameter is the connectivity of the network. Connectivity of graphs is

defined as the minimum number of nodes or links that must fail in order to partition

the network into two or more disjoint networks. Connectivity of digraphs means the

minimum number of nodes or arcs such that these nodes can be partitioned into two

parts V1, V2 in such a way that there are no arcs from V1 to V2, but arcs from V2 to

V1 can exist. Naturally, it is desirable to have high network connectivity.

It is well known that Moore digraphs exist only for regular degree d = 1 or diameter

D = 1. In Chapter 4, we present our new results in constructing large digraphs,

called ‘nearly Moore digraphs’, which are in some way ‘close’ to Moore digraphs, by

relaxing the maximum out-degree d. Since no Moore graphs exist for ∆ ≥ 3 and

D ≥ 3, we list some open problems in constructing large graphs, called nearly Moore

graphs, which are in some way ‘close’ to Moore graphs, by relaxing the maximum

degree ∆.

Apart from constructing nearly Moore graphs and digraphs, we have also tried to

construct ‘EX graphs’, that is, graphs having as many edges as possible, for given

order and given forbidden cycle lengths. Obtaining the value of the size of EX

graphs is known as a difficult task. In Chapter 6, we present our contribution to the

construction of EX graphs when 5 ≤ t ≤ 7, and some new upper bounds on the size

of EX graphs and in some cases the exact values of size of EX graphs is provided.

In order to construct reliable and fault-tolerant networks we are interested in finding

sufficient conditions for graphs and digraphs to satisfy large connectivity, such as the
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cardinality of a minimum vertex-cut of a graph G being not less than the minimum

degree δ of G. Apart from the construction of EX graphs, we have been interested

in the connectivity of EX graphs. In Chapter 7, we show our contribution to the

connectivity of EX graphs. Furthermore, we present new general results on the

connectivity of regular graphs with a small diameter D.

To summarize, this thesis is organized as follows.

Chapter 1 (this chapter) gives an introduction of the thesis.

In Chapter 2 we introduce basic concepts of Graph Theory which will be used

throughout this thesis.

In Chapter 3 we present an overview of several known extremal graph problems

concerning Moore bounds, girth, and connectivity. Furthermore, in Chapter 3, we

show the details of some extremal graph problems based on these three parameters.

The degree/diameter problem will be discussed in Section 3.2. Constructing EX

graphs based on forbidden smallest cycles will be shown in Section 3.3. The cur-

rent knowledge of minimal vertex-cut and minimal edge-cut of graphs in terms of

connectivity is given in Section 3.4.

In Chapter 4, we discuss the problem of finding nearly Moore graphs and nearly

Moore digraphs, which are in some way ‘close’ to Moore graphs and digraphs, and

we present new results on nearly Moore digraphs.

In Chapter 5 we give a summary of the current knowledge of the construction of

cages. In the second part of this chapter, two main conjectures are discussed for

directed cages.

In Chapter 6 we construct some large graphs with given order and girth, whose sizes

increase the best currently known lower bounds on the size of EX graphs. Moreover,

when order n ≤ 40, we improve some upper bounds on the size of EX graphs. In

addition, some exact value of the size of EX graphs are obtained.

In Chapter 7 we prove that regular graphs of small diameter D are superconnected.

In addition, we show that a graph G ∈ EX(n; t) is edge-superconnected, and when
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t is even, G is at least δ-connected, where δ is the smallest degree in G. When t is

odd, we prove that G is at least 4-connected.

In Chapter 8, we present conclusions and some open problems arising from this

thesis.

Apart from research in the topology of networks, during my PhD candidature I also

conducted research in optimization algorithms. In Appendix A, the performance

of algorithms is discussed, including simulated annealing (SA), genetic algorithms

(GA) and a hybrid of simulated annealing and genetic algorithms (HSAGA).

All original results, mainly to be found in Chapters 4, 6 and 7, are marked with ∗.



Chapter 2

Basic Concepts

2.1 Basic concepts

In this chapter, we introduce basic concepts, definitions and notations in graph the-

ory which will be used throughout this thesis. Those notations and concepts which

are only used in a particular chapter will be defined thereof. For other concepts,

definitions and notations not covered in this chapter, see [46]. We give the basic

definitions for undirected graphs and directed graphs in separate sections.

2.2 Undirected graphs

A graph G is defined to be a pair of sets (V (G), E(G)), where V (G) is a finite

nonempty set of elements, called vertices, and E(G) is a set (possibly empty) of

unordered pairs {u, v} of vertices u, v ∈ V (G), called edges. The set V (G) is called

the vertex-set of G and E(G) is called the edge-set of G. For the sake of brevity,

an edge between u and v is often denoted by uv. In this thesis we only focus on

simple graphs, so we will not consider loops, that is, edges of the form {v, v}, or

multiple edges, that is, edges which occur more than once between a particular pair

of vertices. The order of a graph G is the number of vertices in G. Figure 2.1 shows

an example of a graph of order 8 with vertex set {v1, v2, v3, v4, v5, u1, u2, u3} and

edge set {v1u1, v2u1, v3u1, v4u1, v2u2, v3u2, v5u2}.

6
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Let u and v be vertices of a graph G. We say that u is adjacent to v if there is an

edge e between u and v, that is, e = uv. Then we call v a neighbour of u. The set

of all neighbours of u is called the neighbourhood of u and is denoted by N(u). We

then also say that both vertices u and v are incident with e. The set of all edges

incident with vertex u is denoted by E(u). For example, in Figure 2.1, vertex v1

is adjacent to vertex u1, vertex u1 is incident with edges v2u1, v2u1, v3u1 and v4u1,

then E(u1) = {u1v1, u1v2, u1v3, u1v4}.

Figure 2.1: Example of a graph.

The degree of a vertex v of G, denoted by d(v), is the number of vertices adjacent

to v, that is, the number of all the neighbours of v. If a vertex v has degree 0, which

means that v is not adjacent to any other vertex, then v is called an isolated vertex,

or an isolate. A vertex of degree 1 is called an end vertex. In Figure 2.1, d(u1) = 4,

u3 is an isolated vertex, and v5 is an end vertex. We also have d(u2) = 3, d(v1) = 1,

d(v2) = 2, d(v3) = 2 and d(v4) = 1. Given a graph G, a degree sequence, denoted by

D = D(G), is a monotonic non-increasing sequence of the degrees of all the vertices

in G. In Figure 2.1, the degree sequence D = (4, 3, 2, 2, 1, 1, 1, 0). If a graph contains

many vertices, the degree sequence of this graph can be written in the superscript

notation. In Figure 2.1, the degree sequence D = (4, 3, 22, 13, 0). Furthermore, if

every vertex of a graph G has the same degree then G is called regular. In the graph

of Figure 2.2, we have d(v1) = d(v2) = d(v3) = d(v4) = d(u1) = d(u2) = d(u3) = 4.

Therefore, the graph in Figure 2.2 is regular of degree 4. The minimum degree of
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a graph G is denoted by δ(G) = δ. Similarly, the maximum degree of a graph G is

denoted by ∆(G) = ∆.

Figure 2.2: Example of a regular graph.

A v0 − vl walk in a graph G is a finite alternating sequence v0, e1, v1, e2, ..., el, vl of

vertices and edges in G, where ei = vi−1vi, for each i, 1 ≤ i ≤ l. Such a walk may

also be denoted by v0, v1...vl. The length of a walk is the number of edges in the

walk. A v0 − vl walk is closed if v0 = vl. If all the vertices of a v0 − vl walk are

distinct, then the walk is called a path. A v0 − vl walk is called a cycle if v0 = vl. In

Figure 2.2, v6v5v3v7v6v2 is a walk of length 5 which is not a path, v6v5v3v7 is a path

of length 3, and v6v5v3v7v6 is a cycle of length 4, this cycle is denoted by C4. The

smallest length of cycles is called girth.

The distance from vertex u to vertex v in G, denoted by dG(u, v), is the length

of a shortest path from u to v. For example, the distance from v1 to v6 of the

graph in Figure 2.3 is 2. Similarly, the distance from vertex u to a set of vertices

X in G, denoted by d(u, X) = dG(u, X), is the length of a shortest path from u

to the set X. The set Nr(v) = {w ∈ V : d(w, v) = r} denotes the neighborhood

of v at distance r. For S ⊂ V , the neighborhood of S at distance r is denoted by

Nr(S) = {w ∈ V : d(w, S) = r}. Observe that N0(v) = v and N0(S) = S. When

r = 1, we write N(v) and N(S), instead of N1(v) and N1(S).

The eccentricity e(u) of a given vertex u of a graph G is e(u) = maxv∈V (G)d(u, v),

that is, the distance between u and a vertex furthest from u. For instance, the

eccentricity of vertex v1 in Figure 2.3 is e(v1) = 3, while e(v2) = 3, e(v3) = 4,



Basic Concepts 9

e(v4) = 2, e(v5) = 2, e(v6) = 3, e(v7) = 4 and e(v8) = 3. Given a graph G, the

eccentricity sequence, denoted by E = E(G), is a monotonic non-increasing sequence

of the eccentricities of the vertices of G. In Figure 2.3, the eccentricity sequence

E = E(G) = (4, 4, 3, 3, 3, 3, 2, 2). If a graph contains many vertices, the eccentricity

sequence of the graph can be written in the superscript notation. For example,

in Figure 2.3, the eccentricity sequence E = (42, 34, 22). The radius of G is the

minimum eccentricity among all the vertices of G. A vertex is central if its greatest

distance from any other vertex is equal to the radius of G. For example, the radius of

the graph in Figure 2.3 is 2, and vertices v4 and v5 are central vertices. The diameter

D = D(G) of a graph G is the maximum eccentricity among all the vertices of G.

In other words, the longest distance between any two vertices in G is the diameter

of G. For instance, the graph in Figure 2.3 has diameter 4.

Figure 2.3: Example of a walk and a path in a graph.

A graph G is connected if, for any two distinct vertices u and v of G, there is a path

between u and v. Otherwise, G is disconnected. A graph H is a subgraph of G if

its edges and vertices form subsets of the vertex and edge sets of G. A maximal

connected subgraph of G is called a component of G. Thus a disconnected graph

contains at least two components. For example, the graph in Figure 2.2 is connected,

but the graph in Figure 2.1 is disconnected (because there is no path between u3

and any other vertex).

A bipartite graph G is a graph whose vertex set V can be partitioned into two

subsets V1 and V2 such that every edge of G joins V1 with V2. If G contains every

possible edge joining V1 and V2 then G is a complete bipartite graph; if V1 and V2
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have m and n vertices, respectively, then we write G = Km,n.

Two graphs G1 and G2, each with n vertices, are said to be isomorphic if there exists

a one-to-one mapping f : V (G1) → V (G2) which preserves all the adjacencies, that

is, f(u) and f(v) are adjacent in G2 if and only if u and v are adjacent in G1. In

Figure 2.4, graphs G1 and G2 are isomorphic under the mapping f(ui) = vi, for

every i = 1, 2, . . . , 6. However, graphs G1 and G3 are not isomorphic because graph

G1 is bipartite, and graph G3 is not bipartite. Consequently, there cannot be any

one-to-one mapping preserving adjacencies.

(a) G1 (b) G2 (c) G3

Figure 2.4: Isomorphism and non-isomorphism in graphs.

An automorphism of a graph G is an isomorphism where G1 = G2 = G, that is, a

one-to-one mapping f : V (G) → V (G) which preserves all the adjacencies, that is,

f(u) and f(v) are adjacent if and only if u and v are. For example, consider the graph

G2 in Figure 2.4 under the mapping f , defined by f(v1) = v5, f(v4) = v3, f(v6) = v2.

Then f is an automorphism of the graph G2.

A complete graph on n vertices, denoted Kn, is a graph in which every vertex is

adjacent to every other vertex. Thus Kn has n(n−1)
2

edges. Figure 2.5 shows an

example of a complete graph, K6. A clique is a proper subgraph of a graph G such

that every vertex is connected to every other vertex in the subgraph.

The adjacency matrix of a graph G with vertex-set V (G) = {v1, v2, . . . , vn} is the
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Figure 2.5: Complete graph K6.

n × n matrix A = [aij ], where

aij =







1 if vivj ∈ E(G),

0 otherwise.

Figure 2.6 shows a graph of order 6 with its adjacency matrix.

(a) (b)

Figure 2.6: Graph G and its adjacency matrix A.

2.3 Directed graphs

A directed graph or a digraph G is a pair of sets G = (V (G), A(G)), where V (G) is a

finite nonempty set of distinct elements called vertices and A(G) is a set of ordered

pairs u, v of vertices (u, v) ∈ V (G), called arcs. The set V (G) is called the vertex-set

of G and A(G) is called the arc-set of G. For brevity, an arc (u, v) is often denoted by

uv. Similarly to the undirected case, the number of vertices in G is called the order
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of the digraph G. The set of all the arcs incident from vertex u is denoted by A+(u)

and the set of the arcs incident to vertex u is denoted by A−(u). Figure 2.7 shows an

example of a digraph G of order 8 with vertex-set V (G) = {v1, v2, v3, v4, v5, u1, u2, u3}
and arc-set A(G) = {(v1, u1), (u1, v2), (u1, v3), (u1, v4), (v2, u2), (v3, u2), (u2, v5)} =

{v1u1, u1v2, u1v3, u1v4, v2u2, v3u2, u2v5}; A+(u1) = {u1v2, u1v3, u1v4} and A−(u1) =

{v1u1}.

Figure 2.7: Example of a digraph.

An in-neighbour (respectively, out-neighbour) of a vertex v in G is a vertex u (re-

spectively, w) such that (u, v) ∈ A(G) (respectively, (v, w) ∈ A(G)). The set of

all the in-neighbours (respectively, out-neighbours) of a vertex v is called the in-

neighbourhood (respectively, out-neighbourhood) of v, denoted by N−(v) (respec-

tively, N+(v)). The in-degree (respectively, out-degree) of a vertex v, denoted by

d−(v) (respectively, d+(v)), is the number of all its in-neighbours (respectively, out-

neighbours). If every vertex of a digraph G has the same in-degree (respectively,

out-degree) then G is said to be in-regular (respectively, out-regular). If a digraph

G is in-regular of in-degree d and out-regular of out-degree d, then G is called a

diregular digraph of degree d (or d-regular). For example, the digraph G1 in Figure

2.8 is diregular of degree 2 but the digraph G2 is not diregular (G2 is out-regular but

not in-regular). The minimum in-degree of digraph G is represented by δ− = δ−(G)

(respectively, the minimum out-degree of G is denoted by δ+ = δ+(G). Similarly, the
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maximum in-degree of digraph G is represented by ∆− = ∆−(G) (respectively, the

maximum out-degree of G is denoted by ∆+ = ∆+(G). Furthermore, the minimum

degree of a digraph G is defined as δ(G) = min{δ−, δ+}. Similarly, the maximum

degree of a digraph G is defined as ∆(G) = max{∆−, ∆+}.

(a) G1 (b) G2

Figure 2.8: Diregular digraph and non-diregular digraph.

For digraph G2 in Figure 2.8, we have N+(v1) = {v4, v5}, N+(v2) = {v1, v3},
N+(v3) = {v2, v5}, N+(v4) = {v3, v5}, N+(v5) = {v1}. Furthermore, d+(v1) = 2,

d+(v2) = 2, d+(v3) = 2, d+(v4) = 2 and d+(v5) = 1. Given a digraph G, its out-

degree sequence, denoted by D+ = D+(G), is a monotonic non-increasing sequence

of the out-degrees of its vertices. In Figure 2.7, the out-degree sequence D+ =

(3, 1, 1, 1, 1, 0, 0, 0). If a digraph contains many vertices, the out-degree sequence of

this digraph can be written in the superscript notation. For example, in Figure 2.7,

the out-degree sequence D+ = (3, 14, 03). Given a digraph G, an in-degree sequence,

denoted by D− = D−(G), is a monotonic non-increasing sequence of the in-degrees

of the vertices in G. In Figure 2.7, we have N−(u1) = {v1}, N−(u2) = {v2, v4},
N−(u3) = ∅, N−(v1) = ∅, N−(v2) = {u1}, N−(v3) = {u1}, N−(v4) = {u1} and

N−(v5) = {u2}, and the in-degree sequence of G is D− = (2, 1, 1, 1, 1, 1, 0, 0). The

in-degree sequence of a digraph can be written in the superscript expression. For

example, in Figure 2.7, the in-degree sequence is D− = (2, 15, 02).

The directed versions of the terms walk and path are defined in the expected manner.

A v0 − vl directed path is called a directed cycle denoted by
−→
Cl if v0 = vl. The
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smallest length of directed cycle in G is called the directed girth of G. A concept

that is unique to digraphs is the semi-walk, which is a finite, alternating sequence

v0v1 . . . vl beginning with vertex v0 and ending with vertex vl, such that either vi−1vi

or vivi−1 is an arc in A(G), for each i, 0 ≤ i ≤ l. For instance, in Figure 2.8(a),

v4v5v1v5v2v1 is a semi-walk of length 5. If all vertices are distinct then we call the

semi-walk a semi-path. For example, in Figure 2.7, v1u1v2u2v5 is a semi-path of

length 4.

The distance from vertex u to vertex v, denoted by d(u, v), is the length of the

shortest directed path from u to v, if any; otherwise d(u, v) = ∞. Note that d(u, v)

is not necessarily equal to d(v, u). The set N−
r (v) = {w ∈ V : d(w, v) = r} and

N+
r (v) = {w ∈ V : d(v, w) = r} are the in-neighborhood and the out-neighborhood,

respectively, of v at distance r. The distance from vertex w to a set of vertices S in

G, denoted by d(w, S) = dG(w, S), is the length of a shortest path from w to any

vertex in S. Similarly, the distance from a set of vertices S to a vertex w in G,

denoted by d(S, w) = dG(S, w), is the length of a shortest path from any vertex in

S to w. For S ⊂ V , the in-neighborhood and out-neighborhood of S at distance r is

denoted by N−
r (S) = {w ∈ V : d(w, S) = r} and N+

r (S) = {w ∈ V : d(S, w) = r}.
Observe that N−

0 (v) = N+
0 (v) = {v} and N−

0 (S) = N+
0 (S) = S. When r = 1,

we write N−(v), N+(v), N−(S) and N+(S), instead of N−
1 (v), N+

1 (v), N−
1 (S) and

N+
1 (S).

The in-eccentricity e−(v) of a vertex v in a digraph G is e−(v) = maxu∈G d(u, v),

that is, the distance from a vertex u furthest to v. For instance, the in-eccentricity

of vertex v1 in the digraph G2 in Figure 2.8 is e−(v1) = 2, also we have e−(v2) = 2,

e−(v3) = 3, e−(v4) = 2 and e−(v1) = 2. Similarly, The out-eccentricity e+(v)

of a vertex v in a digraph G is e+(v) = maxu∈G d(v, u), that is, the distance

from the a vertex v furthest to a vertex u. For example, the out-eccentricity of

vertex v1 in the digraph G2 in Figure 2.8 is e+(v1) = 2. Also we have e+(v2) = 2,

e+(v3) = 3, e+(v4) = 2 and e+(v5) = 2. Given a digraph G, an in-eccentricity

sequence (respectively, out-eccentricity sequence) of G, denoted by E− = E−(G)

(respectively, denoted by E+ = E+(G)), is a monotonic non-increasing sequence of
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the in-eccentricities (respectively, out-eccentricities) of the vertices in G. In Figure

2.8, the in-eccentricity sequence E− = (3, 2, 2, 2, 2) = (3, 24), and the out-eccentricity

sequence E+ = (3, 2, 2, 2, 2) = (3, 24)). The in-radius (respectively, out-radius) is the

minimum in-eccentricity (respectively, out-eccentricity). The radius of a digraph is

the minimum value between in-radius and out-radius among all vertices in G. The

in-diameter (respectively, out-diameter) of a digraph G is the maximum value of

in-eccentricity (respectively, out-eccentricity). The diameter of a digraph G is the

maximum value of in-eccentricity and out-eccentricity among all the vertices in G.

In other words, the diameter is the longest distance between any two vertices in G.

For example, the digraph G1 in Figure 2.8 has diameter 2.

From now on, we denote by G(n, d, k) the set of all digraphs G, not necessarily

diregular, of order n, maximum out-degree d, and diameter k.

We say that a vertex v is reachable from a vertex u in a digraph G if there is a

directed path from u to v. The underlying graph of a digraph G is obtained from

replacing each directed arc with an undirected edge. A digraph G is connected if

there is a path between any pair of vertices in underlying graph of G. A digraph

G is called strongly connected if, for any two distinct vertices of G, each vertex is

reachable from the other. For example, the digraph G1 in Figure 2.9 is strongly

connected but the digraph G2 in Figure 2.9 is connected but not strongly connected

because the underlying graph is connected but v5 is not reachable from vertices

v1, v3, v4 and v6.

(a) G1 (b) G2

Figure 2.9: A strongly connected digraph G1 and a non-strongly connected digraph
G2.
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Two digraphs G1 and G2, each with n vertices, are said to be isomorphic, if there

exists a one-to-one mapping f : V (G1) → V (G2) which preserves all the adjacencies,

that is, f(u) is adjacent to f(v) if and only if u is adjacent to v. Otherwise, G1 is

said to be non-isomorphic to G2. In Figure 2.10, digraphs G1 and G2 are isomorphic

under the mapping f(ui) = vi, for every i = 1, 2, . . . , 8. However, digraphs G1 and

G3 are not isomorphic because G3 contains two vertices of in-degree 3 while G1 does

not and consequently there is no one-to-one mapping preserving adjacencies.

(a) G1 (b) G2 (c) G3

Figure 2.10: Isomorphism and non-isomorphism in digraphs.

A complete digraph on n vertices, denoted
−→
Kn, is a digraph that has every pair

of distinct vertices adjacent to each other. Thus
−→
Kn has n(n − 1) arcs and

−→
Kn is

diregular of degree n − 1. A directed clique is a subdigraph of a digraph G such

that every vertex is connected to and from every other vertex in the subdigraph.

A bipartite digraph G is a digraph whose vertex set V can be partitioned into two

subsets V1 and V2 such that every arc of G joins a vertex of V1 with a vertex of V2.

If G contains every possible arc joining vertices in V1 and V2, then G is a complete

bipartite digraph. If V1 and V2 have m and n vertices, we write G =
−−−→
Km,n for the

complete bipartite graph. The adjacency matrix of a digraph G with vertex-set

V (G) = {v1, v2, . . . , vn} is the n × n matrix A = [aij ], where

aij =







1 if vivj ∈ A(G),

0 otherwise.
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(a) G1 (b) G2

Figure 2.11: Digraph G and its adjacency matrix A.

Figure 2.11 shows a digraph G of order 5 and its adjacency matrix A(G).



Chapter 3

Extremal Graph Theory

3.1 Introduction

Extremal graph theory is a branch of graph theory concerned with inequalities

among functions of graph invariants, such as order, size, connectivity, minimum

or maximum degree, girth, etc., and the structures that demonstrate that these

inequalities are best possible. Since the first major result by Turán in 1941 [84], nu-

merous mathematicians have contributed to make extremal graph theory a vibrant

and deep subject.

There are many interesting problems in extremal graph theory. In this chapter, we

list some classic extremal graph problems as follows.

(i) Moore graphs and digraphs. One of the interesting questions we are asking

when designing a network is the following: how to design a network which

reaches its maximum capacity under limited budget and satisfies a desired

performance? One way of stating this question in extremal graph theory

terminology could be as follows: what is the maximum possible order n∆,D

of a graph with given maximum degree ∆ and diameter at most D? This

problem is known as the ‘degree/diameter problem’. The directed version of

‘degree/diameter problem’ is defined as: what is the maximum possible order

nd,D of a digraph with given maximum out-degree d and diameter at most D?

18
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(ii) Girth. In connection with cycle lengths, we are especially interested in the

length of a shortest cycle, that is, the girth of the graph. Concerning the girth

of graphs, two important unsolved problems will be discussed. One problem

is the construction of graphs with the smallest possible order n, given regular

degree d and girth g. Such graphs are called cages. The directed version of

cages problem is defined as: find digraphs with the smallest possible order n,

given regular degree d and directed girth g. Another famous problem about

girth is constructing graphs with the largest possible number of edges, given

order n and given the lengths of forbidden cycles, called EX graphs problem. In

this thesis, the directed version of EX graphs problem has not been considered.

Possibly, this problem could be interesting as a future research direction.

(iii) Connectivity. Reliability, such as fault tolerance, is a very important aspect to

be considered when designing a network. Network nodes and connection links

sometimes fail but the rest of the network should continue to function. From

the standpoint of extremal graph theory, we investigate what is the minimum

cardinality of a ‘cut set’ if G is a connected graph or digraph, where cut set

is defined as the number of vertices whose removal disconnects the graph or

digraph.

In this thesis, we focus on studying three problems of extremal graph theory, namely,

Moore graphs and digraphs, girth and connectivity. Next, we will discuss these three

problems in detail.

3.2 Moore bounds

The two problems below are extremal graph problems in terms of the maximum

order of graphs and digraphs. As mentioned before, these problems are called the

degree/diameter problems for undirected and for directed graphs.

Problem 3.2.1 For given numbers ∆ and D, construct graphs of maximum degree

∆ and diameter ≤ D, having the largest possible number of vertices n∆,D.
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Problem 3.2.2 For given numbers d and D, construct digraphs of maximum out-

degree d and diameter ≤ D, with the largest possible number of vertices nd,D.

Research activities related to the degree/diameter problem fall into two main areas.

The first is search for proofs of non-existence of graphs or digraphs of orders close to

the general upper bounds, known as the Moore bounds. The other area is the con-

struction of large graphs or digraphs, in order to improve the current lower bounds

on n∆,D (respectively, nd,D). In this section, we present our current knowledge of

the degree/diameter problem.

3.2.1 Moore graphs

There is a natural upper bound on the largest possible order n∆,D of a graph G of

maximum degree ∆ and diameter at most D. If ∆ = 1 then D = 1 and n1,1 = 2.

Hence, we assume that ∆ ≥ 2 in the rest of this section. Let x be a vertex of the

graph G and let ni, for 0 ≤ i ≤ D, be the number of vertices at distance i from x.

Then ni ≤ ∆(∆ − 1)i−1, for 1 ≤ i ≤ D (see Figure 3.1).

Figure 3.1: Illustration of the Moore bound for an undirected graph.

Therefore,
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n∆,D =
D

∑

i=0

|Ni(x)| ≤ 1 + ∆ + ∆(∆ − 1) + · · · + ∆(∆ − 1)D−1

= 1 + ∆(1 + (∆ − 1) + · · ·+ (∆ − 1)D−1)

=







2D + 1 if ∆ = 2

1 + ∆ (∆−1)D−1
∆−2

if ∆ > 2
(3.1)

The value of the right-hand side of (3.1) is called the Moore bound and is denoted

by M∆,D. The Moore bound was first mentioned by Hoffman and Singleton [48] and

named after E. F. Moore. A graph of maximum degree ∆ and diameter at most

D whose order is equal to the Moore bound M∆,D is called a Moore graph; such a

graph is necessarily regular of degree ∆.

Moore graphs exist only in a few cases:

• There are Moore graphs with degree ∆ ≥ 1 when diameter D = 1. These

Moore graphs are the complete graphs K∆+1.

• There are Moore graphs, namely, the cycle C5 (see Figure 3.2), Petersen graph

(see Figure 3.3), and Hoffman-Singleton graph when diameter D = 2 and de-

gree ∆ = 2, 3, 7. The existence of these Moore graphs was proved by Hoffman

and Singleton [48]. Furthermore, it is not known if there exists a Moore graph

with D = 2 and ∆ = 57.

• The only other Moore graphs, when D ≥ 3, are the cycles on 2D + 1 vertices

C2D+1. This was proved independently by Damerell [28] and by Bannai and

Ito [10].

3.2.2 Moore digraphs

Similarly to the case of undirected graphs, there is a natural upper bound nd,D on

the order of digraphs, maximum out-degree d and given diameter D. By considering

a directed spanning tree of the digraph with maximum out-degree d and diameter

D from a vertex in the digraph (see Figure 3.4), it is easy to derive the following

bound.
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Figure 3.2: Graph of order n =
M2,2: C5.

Figure 3.3: Graph of order n = M3,2:
the Petersen graph.

Figure 3.4: Illustration of the Moore bound for a directed graph.
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nd,D =
D

∑

i=0

|N+
i (x)| ≤ 1 + d + d2 + · · · + dD

=







D + 1 if d = 1

dD+1−1
d−1

if d > 1
(3.2)

This upper bound is called the Moore bound for digraphs, denoted by
−−−→
Md,D. A

digraph of out-degree d and diameter at most D whose order reaches the Moore

bound is called a Moore digraph. Moore digraphs exist in the following cases:

• when d = 1 (directed cycles of length D + 1,
−−−→
CD+1, for any D ≥ 1),

• when D = 1 (complete digraphs of order d + 1,
−−−→
Kd+1, for any d ≥ 1).

For d ≥ 2 and D ≥ 2, there do not exist any Moore digraphs of degree d and

diameter D. This was first proved by Plesńık and Znám [72], and in a simpler

way by Bridges and Toueg [21] in 1980. Since there are no Moore digraphs with

maximum out-degree d ≥ 2 and diameter D ≥ 2, the research in large digraphs

focuses on digraphs whose order is close to the Moore bounds, that is, digraphs of

order n =
−−−→
Md,D − s, where the defect s is as small as possible.

3.3 Girth

3.3.1 EX graphs

The extremal number, denoted by ex(n; t) = ex(n; {C3, C4, . . . , Ct}), is the maximum

number of edges in a graph of order n and girth at least g ≥ t+1, and by EX(n; t) =

EX(n; {C3, C4, C5, . . . , Ct}) we denote the set of graphs of order n, girth at least

t + 1, having the number of edges equal to ex(n; t). Such graphs are called EX

graphs.

Basically, we fix the length of the largest forbidden cycle and order of these EX

graphs, but an EX graph need not be regular.
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It is well known that ex(n; 3) = ⌊n2/4⌋, and the extremal graph is K⌊n/2⌋,⌈n/2⌉. In

1975, Erdős [30] introduced the problem of determining the values of ex(n; 4), the

maximum number of edges in a graph of order n with girth at least 5. He also

conjectured that ex(n; 4) = (1/2 + o(1))3/2n3/2. The current best known result [41]

regarding this problem is

1

2
√

2
n3/2 ≤ ex(n; 4) ≤ 1

2
n3/2.

It is known (see page 158 of the book by Bollobás [18]) that if e > 90sn1+1/s then

the graph contains a cycle of length 2s. Therefore, ex(n; 2s) ≤ 90sn1+1/s.

A result proved by Erdős [76] gives the lower bound of ex(n; t) ≥ ctn
1+1/(t−1), for

some positive constant ct. Lazebnik et al. [57] improved this lower bound, con-

structing a family of graphs which shows that for an infinite sequence of values of n

the extremal number is lower bounded, ex(n; 2s + 1) ≥ dsn
1+2/(3s−3+ǫ), where ǫ = 0

if s ≥ 3 is odd and ǫ = 1 if s ≥ 2 is even. To our knowledge, this is the best

asymptotic lower bound for the greatest number of edges in a graph of order n and

girth g, g ≥ 5, g 6= 11, 12. For g = 11, 12, a better bound is given by the regular

‘generalized hexagon’, which is defined in Chapter 5.

In a graph of girth g and an average degree d̄, Alon et al. [2] proved the Moore

bound for irregular graphs, denoted by M(d̄, g):

Theorem 3.3.1 [2] Let g ≥ 3 and d̄ ≥ 2. Then

M(d̄, g) =



























1 + d̄

g−3

2
∑

i=0

(d̄ − 1)i if g is odd.

2d̄

g−2

2
∑

i=0

(d̄ − 1)i if g is even.

In a graph G ∈ EX(n; t), we know that G has girth g ≥ t + 1 and order n. Then

using Theorem 3.3.1, we can obtain the maximum possible value of the average
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degree d̄ if g = t + 1 and the order of an EX graph n is given. According to the

definition of EX graphs, we know t ≥ 3. For small values of t, such as t = 3, 4, we

have:

n = n(d, t) =







2d̄2 if t is 3.

1 + d̄2 if t is 4.

When t ≥ 5, we obtain:

n = n(d, t) =







1 + d̄
d̄−2

((d̄ − 1)s − 1) if t is even and s = t
2
.

2d̄
d̄−2

((d̄ − 1)s − 1) if t is odd and s = t+1
2

.

Note that, an upper bound of an extremal number in terms of the maximum possible

value of average degree d is obtained as ⌊d̄n/2⌋.

The lower bound of ex(n; t) is denoted by exl(n; t). In [40], Garnick et al. obtained

the following lower bounds of ex(n; 4).

Theorem 3.3.2 [40] Let G ∈ EX(n; 4), and let q be the largest prime power such

that 2nq ≤ n, and nq = q2 + q + 1. Then exl(n; 4) ≥ 2n + (q − 3)nq.

However, when t ≥ 5 we do not have a general lower bound of ex(n; t).

Constructing EX graphs is not easy because most values of the extremal number are

not known. It would be helpful to know some structural properties of EX graphs.

Regarding the girth of extremal graphs, several authors have obtained some results.

In 1993, Garnick et al. [41] and Kwong et al. [56] independently proved that for

n ≥ 5, the girth of G ∈ EX(n; 3) is 4 and, for n ≥ 9, the girth of G ∈ EX(n; 4)

is 5. In 1997, Lazebnik and Wang [58] proved several results regarding the girth of

EX graphs; these results are summarised below.

Theorem 3.3.3 [58] Let G ∈ EX(n; t), t ≥ 3 and n ≥ t + 1. Then

(i) For n ≥ 8, the girth of G ∈ EX(n; 5) is 6.

(ii) There exists an extremal graph G of girth t + 1; and if n 6= t + 2, there exists

an extremal graph G with minimum degree δ ≥ 2 and girth t + 1.
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(iii) For t ≥ 12, ex(2t + 2; t) = 2t + 4, and there exists an extremal graph G with

girth t + 2.

(iv) If ∆(G) ≥ t then the girth of G is girth t + 1.

Recently, in 2007, Balbuena and her collaborators obtained more results about the

girth of extremal graphs, these results are summarised below.

Theorem 3.3.4 Let G ∈ EX(n; t), t ≥ 3 and n ≥ t + 1. Then

(i) [6] For n ≥ 12, n 6∈ {15, 30, 80, 170}, the girth of G ∈ EX(n; 6) is 7, and there

exists an extremal graph G of 15 vertices having girth 8.

(ii) [8] If ∆(G) ≥ ⌈(t + 1)/2⌉ and δ(G) ≥ 2 then the girth of G is g(G) ≤ t + 2.

(iii) [8] For t ≥ 7 and n ≥
(

2(t − 2)t−2 + t − 5
)

/(t − 3) + 1, the girth of G is

g(G) = t + 1.

(iv) [8] Let x = ⌈(t + 1)/2⌉. For t ≥ 7 and n ≥
(

2(x− 2)t−2 + x− 5
)

/(x− 3) + 1,

the girth of G is g(G) ≤ t + 2.

We know that, for particular values of girth and order, there do exist some graphs

with largest number of edges having minimum degree 1, for example, there exist

graphs in EX(11, 4) with the degree sequences {41, 39, 1}, as well as {310, 2} or

{4, 38, 22}, on the other hand, in general, it is believed that the degrees are not far

from the average degree [87]. This observation relates the problem of constructing

EX graphs to the problem of constructing cages. However, as pointed out in many

papers, these two classes of graphs are not the same. For example, the (5; 5)-cage

has order n = 30, and 75 edges, while EX(30; 4) has 76 edges. An example of a

degree sequence of EX(30; 4) is {66, 520, 44} [87].

Another extremal problem in graph theory regarding the girth is the construction of

Cage. A (d; g)-graph is a d-regular graph of girth g. A (d; g)-cage is a (d; g)-graph

with the smallest possible number of vertices. The term cage is used to mean a

(d; g)-cage for any values of d and g.
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Although some cages were discussed by Tutte [85] already in 1947, these graphs

have been intensively studied only after Erdös and Sachs [32] showed the existence

of cages for all d and g, and Hoffman and Singleton [48] showed the nonexistence of

certain Moore graphs.

3.4 Connectivity

This thesis deals with strong connectivity. From now on, by connectivity we shall

mean strong connectivity. Connectivity is one of the basic concepts of graph theory.

It is divided into two areas, namely ‘vertex-connectivity’ κ and ‘edge-connectivity’

(respectively, ‘arc-connectivity’ in case of directed graphs) λ. Vertex-connectivity,

or simply, connectivity, is defined as the minimum number of vertices that must

be removed in order to disconnect a graph or a digraph. Analogously, the edge-

connectivity (respectively, arc-connectivity) equals the minimum number of edges

(respectively, arcs), whose removal disconnects the graph (respectively, digraph).

Naturally, it is desirable to have large connectivity for graphs and digraphs. In

order to construct reliable and fault-tolerant networks, we are interested in finding

sufficient conditions for graphs and digraphs to possess large connectivity. In this

chapter, we summarize the known sufficient conditions on some parameters for a

graph or a digraph to have large connectivity. The parameters that we consider are

order n, girth g, minimum degree δ, maximum degree ∆, and diameter D.

3.4.1 Undirected graphs

Recall that a graph G is connected if there is a path between any two vertices of

G. A vertex-cut (respectively, edge-cut) of a connected graph G is a set of vertices

(respectively, edges), whose removal disconnects the graph. Every graph that is

not complete has a vertex-cut. The connectivity κ = κ(G) of a graph G is the

minimum cardinality of a vertex-cut of G if G is not a complete graph, and we define

κ(G) = r − 1 if G = Kr. Similarly, the edge-connectivity, denoted by λ = λ(G), is

the minimum number of edges whose deletion disconnects the graph. A well-known
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result [42] relating connectivity to the minimum degree δ(G) states

κ(G) ≤ λ(G) ≤ δ(G).

Thus, a graph with minimum degree δ(G) is maximally connected (respectively,

maximally edge-connected) if κ(G) = δ(G) (respectively, λ(G) = δ(G)).

One area of major interest for researchers in extremal graph theory has been provid-

ing sufficient conditions to guarantee lower bounds of κ (respectively, lower bounds

of λ). Several results in this area gave sufficient conditions on the degree of pairs of

vertices, on the minimum degree in terms of the order, and on the diameter. The

following theorem summarizes some of the most relevant results, which appeared in

various papers, as indicated.

Theorem 3.4.1 Let G be a connected graph of order n with minimum degree δ ≥ 3

and maximum degree ∆, diameter D, and connectivity parameters λ and κ. The

following statements hold.

(i) [25] If δ ≥ ⌊n
2
⌋ then λ = δ.

(ii) [59] If d(u) + d(v) ≥ n − 1, for every nonadjacent vertices u, v, then λ = δ.

(iii) [71] If D ≤ 2 then λ = δ.

In 1985 and 1987, Soneoka et al. [80, 81] provided sufficient conditions on the

diameter of a graph in terms of its girth. Notice that an improved version of Theorem

3.4.2 (iii) will be given in Chapter 7.

Theorem 3.4.2 Let G be a connected graph of order n with minimum degree δ ≥ 3

and maximum degree ∆, diameter D, girth g, and connectivity parameters λ and κ.

The following statements hold.

(i) [81] If







D ≤ g − 1, g odd

D ≤ g − 2 g even
then λ = δ.



Extremal Graph Theory 29

(ii) [80] If







D ≤ g − 2, g odd

D ≤ g − 3 g even
then κ = δ.

The notion of superconnectedness of undirected graphs was proposed independently

in [13, 16, 17], and this notion aims at advancing the analysis of connectivity proper-

ties of graphs beyond the original notion of connectivity. A graph is superconnected,

for short, super-κ, if every minimal vertex-cut is the neighbourhood of one vertex,

see Boesch [16], and Tindell [17] and Fiol, Fàbrega and Escudero [37]. Observe that

a superconnected graph is necessarily maximally connected, κ = δ, but the converse

is not true. For example, a cycle Cg of length g, with g ≥ 6, is a maximally connected

graph that is not superconnected. Analogously, a graph is edge-superconnected if

the deletion of every minimal edge-cut isolates a vertex of degree δ. Lesniak [59],

Soneoka [78] and Fiol [36] bring some results that guarantee a graph to be edge-

superconnected in terms of the degree of pairs of vertices, or the order, or the

diameter.

Theorem 3.4.3 Let G be a connected graph of order n, with minimum degree δ,

maximum degree ∆, diameter D. Then G is edge-superconnected if any one of the

following statements holds:

(i) [59] d(u) + d(v) ≥ n + 1, for every pair of nonadjacent vertices u, v.

(ii) [78] n > δ( (∆−1)D−1−1
∆−2

+ 1) + (∆ − 1)D−1.

(iii) [36] D = 2 and G contains no clique Kδ+1.

(iv) [36] δ ≥ ⌊n/2⌋ + 1.

In this thesis, we are more interested in ‘trivial versus non-trivial vertex-cut’. A triv-

ial vertex-cut X is defined as a vertex-cut X that contains the whole neighbourhood

N(u) of some vertex u 6∈ X. Similarly, an edge-cut S of G is called a trivial edge-cut

if S contians E(u) of a vertex u, where u ∈ V . Otherwise, the vertex-cut is called

a non-trivial vertex-cut (respectively, the edge-cut is called a nontrivial edge-cut).

There exist some superconnected graphs for which every vertex-cut or edge-cut is



Extremal Graph Theory 30

trivial. For example, in a complete bipartite graph Kx,y, with x, y ≥ 2, every vertex-

cut is trivial. In addition, some graphs contain both non-trivial and trivial vertex-

cuts (respectively, edge-cuts). Provided that some non-trivial vertex-cut exists, the

superconnectivity of G, denoted by κ1, respectively, the edge-superconnectivity of G,

denoted by λ1, were defined in [5, 37] as

(a) κ1 = κ1(G) = min{|X| : X ⊂ V is a nontrivial vertex-cut}

(b) λ1 = κ1(G) = min{|S| : S ⊂ E is a nontrivial edge-cut}

A nontrivial vertex-cut X is called a κ1-cut if |X| = κ1 (respectively, a nontrivial

edge-cut S is called a λ1-cut if |S| = λ1). Notice that if κ1 ≤ δ, then κ1 = κ and

that κ1 > δ is a sufficient and necessary condition for G to be super-κ. Similarly, if

λ1 ≤ δ, then λ1 = λ, and λ1 > δ is a sufficient and necessary condition for G to be

super-λ. In 1989, Fàbrega and Fiol [34] showed that a graph is superconnected if

D ≤ 2⌊(g − 1)/2⌋ − 2 (respectively, edge-superconnected if D ≤ 2⌊(g − 1)/2⌋ − 1).

Theorem 3.4.4 [34] Let G be a connected graph of minimum degree δ ≥ 3, diameter

D, girth g, and the cardinality of the minimum nontrivial vertex-cut κ1 and the

cardinality of the minimum nontrivial edge-cut λ1. Then

λ1 > δ if







D ≤ g − 2, g odd

D ≤ g − 3 g even
(3.3)

κ1 > δ if







D ≤ g − 3, g odd

D ≤ g − 4 g even
(3.4)

In 1990, Fàbrega and Fiol [37] proved that if D ≤ 2⌊(g − 1)/2⌋ − 2 then a graph is

superconnected and κ1 ≥ 2δ − 2 (respectively, if D ≤ 2⌊(g − 1)/2⌋− 1 then a graph

is edge-superconnected and λ1 ≥ 2δ − 2).

Theorem 3.4.5 [37] Let G be a connected graph with minimum degree δ ≥ 3, di-

ameter D, girth g, the cardinality of the minimum nontrivial vertex-cut κ1 and the
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cardinality of the minimum nontrivial edge-cut λ1. Then

λ1 ≥ 2δ − 2 if







D ≤ g − 2, g odd

D ≤ g − 3 g even
(3.5)

κ1 ≥ 2δ − 2 if







D ≤ g − 3, g odd

D ≤ g − 4 g even
(3.6)

In 2006, Balbuena et al. [9] showed that if D ≤ g − 2 then a graph is edge-

superconnected and λ1 is equal to 2δ − 2.

Theorem 3.4.6 [9] Let G be a connected graph with minimum degree δ ≥ 2, di-

ameter D, girth g, the cardinality of a minimum nontrivial vertex-cut κ1, and the

cardinality of a minimum nontrivial edge-cut λ1. Then

λ1 = 2δ − 2 if D ≤ g − 2. (3.7)

Recently, Balbuena et al. [7] improved Theorem 3.4.5 as follows.

Theorem 3.4.7 [7] Let G be a connected graph with minimum degree δ ≥ 2, di-

ameter D, girth g, the cardinality of a minimum nontrivial vertex-cut κ1, and the

cardinality of a minimum nontrivial edge-cut λ1. Then

κ1 ≥ 2δ − 2 if D ≤ g − 3. (3.8)

3.4.2 Directed graphs

In this section we deal with digraphs. We allow loops but not parallel arcs. Recall

that when there exists a u → v path for any pair u, v ∈ V (G) = V , a digraph

G is said to be strongly connected. A subset of vertices F , whose deletion results

in a digraph G − F that is not strongly connected, will be referred to as a vertex-

disconnecting set, or simply a vertex-cut. If G is not a complete digraph, the strong
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vertex-connectivity of G, κ = κ(G), is the minimum cardinality of a vertex-cut.

Analogously, an arc-cut is a subset S ⊂ A(G) whose deletion from G results in a

nonstrongly connected digraph G − S, and the arc-connectivity, λ = λ(G), is the

minimum cardinality of an arc-cut.

Recall that

κ(G) ≤ λ(G) ≤ δ(G). (3.9)

For more details, see the results provided by Geller and Harary [42]. When κ = δ

(respectively, λ = δ), the digraph is said to be maximally connected (respectively,

maximally arc-connected).

Results of digraphs being maximally connected (respectively, maximally arc-connecte

d) are often presented as sufficient conditions on the diameter of a digraph in terms

of its girth, order, minimum or maximum degree. The following theorem summa-

rizes some of the most relevant results given by Ayoub and Frisch [3], Jolivet [51]

and Imase et al. [49].

Theorem 3.4.8 Let G be a connected digraph of order n, with minimum degree

δ ≥ 2, maximum degree ∆, diameter D, girth g, and connectivity parameters λ and

κ. The following statements hold.

(i) [3] If g ≥ 3 and δ ≥ ⌊n+2
4
⌋ then λ = δ.

(ii) [51] If D ≤ 2 then λ = δ.

(iii) [49] If n > (δ − 1)∆D−1+∆2−2
∆−1

then λ = δ.

(iv) [49] If n > (δ − 1)∆D+∆2−∆−1
∆−1

then κ = δ.

A vertex-cut F ⊂ V is called trivial if either N+(x) or N−(x) is contained in F ,

for some vertex x ∈ V \ F . An arc-cut S ∈ A(G) is called trivial if S is the

arc set A+(x) or A−(x) of some x ∈ V . A vertex-cut (respectively, arc-cut) that

is not trivial will be called nontrivial. A maximally connected (respectively, arc-

connected) digraph with minimum degree δ is superconnected, for short, super -κ



Extremal Graph Theory 33

(respectively, arc-superconnected, for short, super -λ) if all its disconnecting sets of

minimum cardinality (respectively, arc-disconnecting sets of minimum cardinality),

with cardinality equal to δ, are trivial; see Boesch and Tindell [17] and Fábrega and

Fiol [34]. The study of arc-superconnected digraphs has a particular significance in

the design of reliable networks [16] because attaining arc-superconnectivity implies

minimizing the number of minimum arc-disconnecting sets [79]. In 1992, Fiol [36]

provided results on the diameter of a digraph and the degree of a pair of vertices,

defined as sum of degrees of a pair of vertices that are sufficient for a digraph to be

arc-superconnected.

Theorem 3.4.9 [36] Let G be a connected digraph of order n, with minimum degree

δ, maximum degree ∆, and diameter D. Then G is arc-superconnected if either of

the following statements holds.

(i) d+(u) + d−(v) ≥ n + 1, for every pair of nonadjacent vertices u, v.

(ii) D = 2 and G contains no directed clique
−−−→
Kδ+1.

There exist some superconnected digraphs in which every vertex-cut is trivial, in

other words, such a digraph has no nontrivial vertex-cuts. For example, the com-

plete symmetric digraph
−→
Kn and the complete symmetric bipartite digraph

−−−→
Kn,m

are of this type [45]. In a certain sense, such digraphs can be regarded as opti-

mally superconnected, since they cannot possibly be disconnected unless one vertex

is isolated. For this reason, we only consider digraphs containing both nontriv-

ial and trivial vertex-cuts (respectively arc-cuts). Thus we consider the following

parameters, defined in [37] and also in [5]:

(a) κ1 = κ1(G) = min{|F | : F ⊂ V is a nontrivial vertex-cut},

(b) λ1 = λ1(G) = min{|S| : S ⊂ A is a nontrivial arc-cut}.

Notice that if κ1 ≤ δ (respectively, λ1 ≤ δ) then κ1 = κ (respectively, λ1 = λ).

The condition κ1 > δ (respectively, λ1 > δ) means that all the minimum vertex-

cuts of cardinality equal to δ must be trivial, and the digraph G is superconnected
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(respectively, arc-superconnected). Hence, κ1 (respectively, λ1) can be seen as a

measure of the superconnectivity (respectively, arc-superconnectivity) of G.

In order to study the connectivity of digraphs, a new parameter related to the

number of shortest paths was introduced in [34] called ‘parameter ℓ’, which has

recently received the more descriptive name of ‘semigirth’, see The Handbook of

Graph Theory [43]:

Definition 3.4.1 Let G be a digraph without loops, of diameter D. Then the

semigirth ℓ = ℓ(G), 1 ≤ ℓ ≤ D, is defined as the greatest integer so that, for any

two vertices u, v,

(a) if d(u, v) < ℓ then the shortest u → v path is unique and there is no x → y

path of length d(u, v) + 1;

(b) if d(u, v) = ℓ then there is only one shortest u → v path.

More generally, we have

Definition 3.4.2 Let G be a digraph of diameter D, and let π ≥ 0 be an integer.

The π-semigirth ℓπ = ℓπ(G), 1 ≤ ℓπ ≤ D, is defined as the greatest integer so that,

for any two vertices u, v,

(a) if d(u, v) < ℓπ then the shortest u → v path is unique and there are at most π

paths u → v of length d(u, v) + 1,

(b) if d(u, v) = ℓπ then there is only one shortest u → v path.

Clearly, according to the definition, semigirth and 0-semigirth have the same mean-

ing.

In terms of semigirth ℓ, various sufficient conditions on the diameter D and order

n have been studied in order to give a lower bound for the connectivity or super-

connectivity parameters. In 1989, Fábrega and Fiol [34] provided some sufficient

conditions for maximum connected and maximum arc-connected digraphs.
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Theorem 3.4.10 [34] Let G be a connected digraph, diameter D, semigirth ℓ =

ℓ(G), connectivity κ and arc-connectivity λ. Then

(i) λ = δ if D ≤ 2ℓ.

(ii) κ = δ if D ≤ 2ℓ − 1.

Theorem 3.4.11 Let G be a connected digraph of order n and size m, with min-

imum degree δ ≥ 3, diameter D and semigirth ℓ = ℓ(G), superconnectivity κ1 and

arc-superconnectivity λ1.

(i) κ1 ≥ 2δ − 2 and G is superconnected if any of the following conditions holds

(a) [37] D ≤ 2ℓ − 2.

(b) [35] G is bipartite, ℓ ≥ 2, and D ≤ 2ℓ − 1.

(ii) λ1 ≥ 2δ−2 and G is arc-superconnected if any of the following conditions holds:

(a) [37] D ≤ 2ℓ − 1.

(b) [35] G is bipartite, ℓ ≥ 2, and D ≤ 2ℓ.

In terms of ℓπ, various sufficient conditions on the diameter have been studied in

order to give a lower bound for connectivity or superconnectivity parameters. Some

of them are summarized in the following proposition.

Theorem 3.4.12 Let G be a connected digraph with minimum degree δ, diameter D

and π-semigirth ℓπ. Then, for any integer π, such that 0 ≤ π ≤ δ − 2, the following

assertions hold.

(i) [60] For either δ ≥ 7 and 1 ≤ π ≤ ⌊δ/2⌋, or δ ≤ 6 and 1 ≤ π ≤ ⌊(δ − 1)/2⌋,
we have

κ = δ if D ≤ 2ℓπ − 2 and ℓ ≥ 2; and

λ = δ if D ≤ 2ℓπ − 1.

(ii) [69] For δ ≥ 4, ℓ ≥ 2 and π = 1, we have

κ1 ≥ 2δ − 2 if D ≤ 2ℓ1 − 3; and

λ1 ≥ 2δ − 2 if D ≤ 2ℓ1 − 2.
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(iii) [60] For δ ≥ 5 and 1 ≤ π ≤ ⌊(δ − 2)/2⌋, we have

κ1 ≥ 2(δ − π) if D ≤ 2ℓπ − 2 and ℓ ≥ 2; and

λ1 ≥ 2(δ − π) if D ≤ 2ℓπ − 1.

Observe that κ = δ or λ = δ can be also assured through Theorem 3.4.10 (i) and

(ii), whenever (i) π = 0, or (ii) π = 1, provided that the corresponding condition

on the diameter holds. Moveover, Theorem 3.4.10 (iii) improves (i) and (ii), since

it holds also for π ≥ 2 (if δ ≥ 5). Observe also that if δ ≥ 5 and π = 1, then the

sufficient conditions on the diameter in (v) guaranteeing either κ1 ≥ 2(δ − π) or

λ1 ≥ 2(δ − π) are less restrictive than (iv) of Theorem 3.4.10.

Next, we will consider the connectivity of a ‘line digraph’. The line digraph (L(G))

of a digraph G is defined as follows. In the line digraph L(G) of a digraph G, each

vertex corresponds to an arc of G. Thus, V (L(G)) = {uv : (u, v) ∈ A(G)}. A vertex

uv is adjacent to a vertex wz iff v = w, that is, when the arc (u, v) is adjacent to

the arc (w, z) in G. The k-iterated line digraph, Lk(G), is defined recursively by

Lk(G) = L(Lk−1(G)). Let G = (V, A) be a digraph different from a cycle. It is well

known that, for any integer k ≥ 1, the relationship between the diameters is

D(Lk(G)) = D(G) + k. (3.10)

For more details about line digraphs, see, for instance [38]. From the definition of

L(G), it is clear that δ(Lk(G)) = δ(G) = δ for any k ≥ 1. Also, it can be shown

that

κ(L(G)) = λ(G), (3.11)

and therefore, by (3.9),

κ(G) ≤ λ(G) = κ(L(G)) ≤ λ(L(G)) ≤ δ. (3.12)

Hence, line digraph iteration tends to increase both connectivities. Of course, when
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κ(G) = λ(G) = δ, (3.12) gives

κ(L(G)) = λ(L(G)) = δ (3.13)

for any order of the iteration k.

Proposition 3.4.1 [34] For any digraph G without loops and different from a cycle,

ℓ(Lk(G)) = ℓ(G) + k. (3.14)

The interest in considering k-iterated line digraphs stems from the fact that, if k is

large enough, the conditions on the diameter in (i) of Theorem 3.4.10 are satisfied.

More precisely, from (3.10) and (3.14),

D(Lk(G)) ≤ 2ℓ(Lk(G)) iff k ≥ D(G) − 2ℓ(G); (3.15)

D(Lk(G)) ≤ 2ℓ(Lk(G)) − 1 iff k ≥ D(G) − 2ℓ(G) + 1.

From (3.15) and Theorem 3.4.10, it follows

Corollary 3.4.1 [34] The connectivities of the iterated line digraphs Lk(G) satisfy

λ(Lk(G)) = δ if k ≥ D − 2ℓ; (3.16)

κ(Lk(G)) = δ if k ≥ D − 2ℓ + 1.

From (3.10), (3.14) and Theorem 3.4.11, it follows

Corollary 3.4.2 [37] Let G be a connected digraph with no loops, minimum degree

δ ≥ 3, ℓ(G) = ℓ, and diameter D. Let κ1(L
k(G)) be the minimum cardinality of a

nontrivial vertex-cut of Lk(G) and λ1(L
k(G)) be the minimum of a nontrivial arc-cut
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of Lk(G). Then

λ1(L
k(G)) ≥ 2δ − 2 if k ≥ D − 2ℓ + 1; (3.17)

κ1(L
k(G)) ≥ 2δ − 2 if k ≥ D − 2ℓ + 2.

Proposition 3.4.2 [34] For any digraph G different from a cycle,

ℓπ(Lk(G)) = ℓπ(G) + k. (3.18)

As before, if k is large enough, the conditions on the diameter of (i) of Theorem

3.4.10 are satisfied. More precisely, from (3.10) and (3.18), we get

D(Lk(G)) ≤ 2ℓπ(Lk(G)) if k ≥ D(G) − 2ℓπ(G); (3.19)

D(Lk(G)) ≤ 2ℓπ(Lk(G)) − 1 if k ≥ D(G) − 2ℓπ(G) + 1.

Last but not least, we provide a link in connectivity between directed graphs and

undirected graphs. Let us deal with a (simple) undirected graph G by considering its

associated symmetric digraph G∗, that is, the digraph obtained from G by replacing

each edge (x, y) ∈ E(G) by the two arcs (x, y) and (y, x) forming a ‘digon’. The

basic relationship is that κ(G∗) = κ(G) and λ(G∗) = λ(G), since a minimum arc-

disconnecting set cannot contain digons. Observe that if G is a graph with girth

g(G), then the semigirth of the associated symmetric digraph is

ℓ(G∗) = ⌊(g(G) − 1)/2⌋ (3.20)

while the girth g(G∗) = 2.

In particular, according to (3.20), for any digraph, Theorem 3.4.10 (i) and (ii) can

be rewritten as Theorem 3.4.2 (i) and (ii), for any graph.



Chapter 4

Construction of Graphs and

Digraphs Close to Moore

4.1 Introduction

As mentioned in Chapter 3, Moore graphs exist only for diameter D = 1 and

maximum degree ∆ ≥ 1, or D = 2 and ∆ = 2, 3, 7 and possibly 57. Moore digraphs

exist only for d = 1 or D = 1. Consequently, we are interested in studying the

existence of large graphs and digraphs which are in some way ‘close’ to Moore graphs

and digraphs. It is possible to relax in turn one or two of the three parameters,

namely, the order n, the maximum degree ∆ (respectively, maximum out-degree

d for digraphs) and the diameter D, in order to get close to Moore graphs and

digraphs. For constructions of some graphs and digraphs of orders which are close

to the Moore bounds, see Sections 4.2 and 4.5. Relaxing the diameter, Knor [55]

proved that there exist regular radially Moore digraphs, which have the maximum

possible order n, regular degree d, radius s, and diameter D that does not exceed

s + 1. In this chapter, we will discuss relaxation of maximum degree in graphs

of order equal to the Moore bound (respectively, maximum out-degree in digraphs

of order equal to the directed Moore bound), in order to construct ‘nearly Moore

graphs’ (respectively, ‘nearly Moore diagraphs’), which have n = M∆,D (respectively,

Mδ,D) and diameter D.

39
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4.2 Graphs of order close to the Moore bound

Since Damerell [28] showed that no Moore graphs exist for ∆ ≥ 3 and D ≥ 3,

the study of the existence of large graphs of given diameter and maximum degree

focuses on graphs whose order is ‘close’ to the Moore bound, that is, graphs of order

M∆,D − s. The parameter s is called the defect. The most usual understanding of

‘small defect’ is that s ≤ ∆. For convenience, by a (∆, D)-graph we will understand

any graph of maximum degree at most ∆ and of diameter D; if such a graph has the

number of vertices equal to M∆,D − s then it will be referred to as a (∆, D)-graph

of defect s.

Erdős, Fajtlowitcz and Hoffman [31] proved that there are no graphs of degree ∆,

diameter 2 and defect 1, that is, of order one less than the Moore bound, except the

cycle C4. Bannai and Ito [11] generalised this to all diameters. For ∆ = 2, (∆, D)-

graphs are the cycles C2D, and for all ∆ ≥ 3, there are no (∆, D)-graphs of defect

1. It follows that, for ∆ ≥ 3, we have n∆,D ≤ M∆,D − 2. At present, there are only

five known graphs of order n = M∆,D − 2, maximum degree ∆. Two (3, 2)-graphs

of order 8 (see Figure 4.1 and 4.2), one (4, 2)-graph of order 15 (see Figure 4.4) [66],

one (3, 3)-graph of order 20 (see Figure 4.3) [66], and one (5, 2)-graph of order 24

(see Figure 4.5) [66].

Figure 4.1: (3, 2)-graph of defect 2. Figure 4.2: (3, 2)-graph of defect 2.

The study of the existence of graphs with defects larger than two is still going on

and a few results are known. For example, Jorgensen [52] proved that a graph with

maximum degree 3 and diameter D ≥ 4 cannot have defect 2, which shows that
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Figure 4.3: (3, 3)-graph of defect 2. Figure 4.4: (4, 2)-graph of defect 2.

Figure 4.5: (5, 2)-graph of defect 2.
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n3,D ≤ M3,D −3 if D ≥ 4. Molodtsov [67] showed that the upper bound of the order

on a graph with maximum degree 6 and diameter D = 2, n2,6, is equal to M6,2 − 5.

Conde and Gimbert [27] proved that when 7 ≤ ∆ ≤ 50, there does not exist any

graph of order M∆,2 − 2. In addition, Buset [23] proved that a graph of maximum

degree 3 and diameter D = 4 cannot have defect 7, which gives n3,4 ≤ M3,4−8. Since

graphs with n = M3,4 − 8, degree 3 and diameter 4 exist, we have n3,4 = M3,4 − 8.

We summarise our current knowledge about the upper bound of n∆,D on the order

of graphs of degree ∆ and diameter D in Table 4.1.

Diameter D Maximum Degree ∆ n∆,D

1 ≥ 1 M∆,1

2 2, 3, 7 M∆,2

4, 5 M∆,2 − 2

6 27

57 ≤ 3250

7 ≤ ∆ ≤ 50 ≤ M∆,2 − 3

other ∆ ≥ 2 ≤ M∆,2 − 2

3 2 7

3 20

≥ 4 ≤ M∆,3 − 2

4 2 9

3 46

≥ 4 ≤ M∆,4 − 2

≥ 5 2 2D + 1

3 ≤ M3,D − 3

≥ 4 ≤ M∆,D − 2

Table 4.1: Current best upper bounds for the order of graphs of maximum degree
∆ and diameter D.
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4.3 Constructions of large graphs

Another way to study graphs close to the Moore bound is to construct large graphs

in order to improve the current lower bound of n∆,D, the maximum possible order

of graphs of given ∆ and D.

Table 4.2 gives a summary of the order of the current largest known graphs for

degree ∆ ≤ 16 and diameter D ≤ 10. This table can be found on the website

‘http://www-mat.upc.es/grup de grafs/grafs/taula delta d.html’, which is kept and

updated regularly by Francesc Comellas.

4.4 Nearly Moore graphs

The problem of relaxing the maximum degree to get close to Moore graphs is still

open. Here we would like to look for graphs which are ‘close’ to Moore graphs, by

relaxing the maximum degree ∆ and having some particular degree sequences. This

type of degree sequence is defined as: D = ((∆ + x)tx , . . . , (∆ + 2)t2 , (∆ + 1)t1 , ∆t0).

Let define a graph called (n,D, D)-graph.

Definition 4.4.1 A graph G is called a (n,D, D)-graph if G has order n, diameter

D and degree sequence D.

Next, we introduce some further notation used throughout the rest of this section.

In a (n,D, D)-graph G, G has β vertices of degree larger than ∆, β = tx+. . .+t2+t1,

and the degree excess is α = t1 + 2t2 + . . . + xtx. We are interested not only in α,

but also in the distribution of these excess degrees in the graph.

For (n,D, D)-graphs, we are interested in the following problems.

(a) What is the minimum value α of a (n,D, D)-graph with n = M∆,D vertices

and given diameter D?

(b) What is the minimum value β of a (n,D, D)-graph with n = M∆,D vertices

and given diameter D?
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D 2 3 4 5 6 7 8 9 10
∆

3 10 20 38 70 132 196 336 600 1250

4 15 41 96 364 740 1 320 3 243 7 575 17 703

5 24 72 210 624 2 772 5 516 17 030 53 352 164 720

6 32 110 390 1 404 7 917 19 282 75 157 295 025 1 212 117

7 50 168 672 2 756 11 988 52 768 233 700 1 124 990 5 311 572

8 57 253 1100 5 060 39 672 130 017 714 010 4 039 704 17 823 532

9 74 585 1 550 8 200 75 893 270 192 1 485 498 10 423 212 31 466 244

10 91 650 2 223 13 140 134 690 561 957 4 019 736 17 304 400 104 058 822

11 98 715 3 200 18 700 156 864 971 028 5 941 864 62 932 488 250 108 668

12 133 786 4 680 29 470 359 772 1 900 464 10 423 212 104 058 822 600 105 100

13 162 851 6 560 39 576 531 440 2 901 404 17 823 532 180 002 472 1 050 104 118

14 183 916 8 200 56 790 816 294 6 200 460 41 894 424 450 103 771 2 050 103 984

15 186 1 215 11 712 74 298 1 417 248 8 079 298 90 001 236 900 207 542 4 149 702 144

16 198 1 600 14 640 132 496 1 771 560 14 882 658 104 518 518 1 400 103 920 7 394 669 856

Table 4.2: Order of the current largest known graphs of maximum degree ∆ and
given diameter D.
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(c) With respect to β, one extreme case is when β = 1, that is, when the graph

has one vertex of maximum degree ∆+α, and the rest of the vertices all have

degree ∆. The corresponding degree sequence can be described as

D1 = (∆ + α, ∆M∆,D−1).

(d) With respect to ∆ + x, one extreme case is when the graph has β vertices of

degree ∆+1, and the rest of the vertices all have degree ∆. The corresponding

degree sequence is

D2 = ((∆ + 1)β, ∆M∆,D−β).

In particular, we propose two open problems of obtaining (n,D, D)-graphs with

either one above special degree sequence D1 or another above extreme special degree

sequences D2. A graph G ∈ (n,D, D)-graph is called nearly Moore graphs if G has

the degree sequence D1 and α is smallest possible (respectively, the degree sequence

D2 and β is smallest possible).

Problem 4.4.1 What is the minimum value of α, if G is a (n,D, D)-graph with

M∆,D vertices, given diameter D, and degree sequence D1 = (∆ + α, ∆M∆,D−1)?

Problem 4.4.2 What is the minimum number of vertices, denoted by β, if G is a

(n,D, D)-graph with M∆,D vertices, given diameter D, and degree sequence D2 =

((∆ + 1)β, ∆M∆,D−β)?

Using our algorithm HSAGA (for details, see Appendix A), we obtained a graph G,

which is close to a nearly Moore graph, of order 17, two vertices of degree 10, and

the rest of the vertices of degree 4, and diameter 2, denoted by G(17, (102, 415), 2)

(see Figure 4.6).
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Figure 4.6: G ∈ G(17, (102, 415), 2)

Due to Bannai and Ito [11], we know that there are no graphs of degree ∆ ≥ 2,

diameter D ≥ 2 and order one less than the Moore bounds, apart from the cycle

C2D. Hence we know that a graph with order 9, maximum degree 3 and diameter 2

does not exist. Similarly, a graph with order 16, maximum degree 4, diameter 2 does

not exist. If we allow to have one vertex of larger degree than the others, we are able

to obtain an optimal graph G of order 9, one vertex of degree 4, and the rest of the

vertices of degree 3, and diameter 2, denoted by G ∈ G(9, (4, 38), 2) (see Figure 4.7).

Furthermore, we obtain a graph of order 16, one vertex of degree 10, and the rest

of the vertices of degree 4, and diameter 2, denoted by G ∈ G(16, (10, 415), 2) (see

Figure 4.8). Restricting the value of the maximum degree to ∆+1, we have obtained

a graph of order 16 that has 6 vertices of degree 5, and the rest of the vertices of

degree 4, with diameter still equal to 2, the graph is denoted by G ∈ G(16, (56, 410), 2)

(see Figure 4.9).
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Figure 4.7: G ∈ G(9, (4, 38), 2)

4.5 Digraphs of order close to the Moore bound

Currently, the best general upper bound for the maximum order of a digraph of

maximum out-degree d and diameter D is
−−−→
Md,D − 1. A digraph G is called almost

Moore digraph for a pair d ≥ 2 and D ≥ 2 if G has maximum out-degree d, diameter

at most D, and order
−−−→
Md,D − 1.

There are some results on the existence or nonexistence of almost Moore digraphs

for small values of d or D. When D = 2, almost Moore digraphs exist for all

d ≥ 1. When D ≥ 3, Miller and Fris [64] proved that there are no almost Moore

digraphs of maximum out-degree 2, for any D ≥ 3. Furthermore, Baskoro et al. [12]

showed that there are no almost Moore digraphs of maximum out-degree 3 and any

diameter greater than or equal to 3. The question of whether or not equality can

hold in nd,D ≤ −−−→
Md,D − 1, for d ≥ 4 and D ≥ 4, is still widely open.

The study of the existence of large digraphs continues by considering the existence

of digraphs of order two less than the Moore bound. We call such digraphs digraphs
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Figure 4.8: G ∈ G(16, (10, 415), 2)
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Figure 4.9: G ∈ G(16, (56, 410), 2)
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of defect two. Early research focused on the study of digraphs of defect two with

out-degree d = 2. Miller and Širáň [65] proved that digraphs of defect two do not

exist for out-degree d = 2 and all D ≥ 3. For the remaining values of D ≥ 3 and

d ≥ 3, the question of whether digraphs of defect two exist or not remains widely

open.

Our current knowledge of the upper bound of nd,D, the maximum order of digraphs

of out-degree d and diameter at most D, is summarized in Table 4.3.

Diameter D Maximum Out-degree d nd,D

1 ≥ 1
−−→
Md,1

2 1 3

≥ 2 ≤ −−→
Md,2 − 1

≥ 3 1 D + 1

2
−−−→
M2,D − 3

3
−−−→
M3,D − 2

≥ 4 ≤ −−−→
Md,D − 1

Table 4.3: Current best upper bounds on the order of digraphs of out-degree d and
diameter D.

4.6 Constructions of large digraphs

The current best lower bound of nd,D, the order of maximum digraphs of out-degree

d and diameter D, is as follows. For out-degree d ≥ 2 and diameter D ≥ 4,

nd,D ≥ 25 × 2D−4. (4.1)

This lower bound is obtained from the Alegre digraph of out-degree 2, diameter 4

and order 25 (see Figure 4.10 [66]), and from its iterated line digraphs. For the

remaining values of out-degree and diameter, a general lower bound is
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nd,D ≥ dD + dD−1. (4.2)

This bound is obtained from Kautz digraphs, denoted by KD
d , which is a directed

graph of degree d and diameter D, with dD + dD−1 vertices labeled by all possible

strings s0, . . . , sD−1 of length D, which are composed of characters si chosen from an

alphabet A containing d+1 distinct symbols, subject to the condition that adjacent

characters in the string cannot be equal (si 6= si+1). Notice that a Kautz digraph

KD
d has dD+1 +dD arcs [53]. For example, Figure 4.11 [66] shows the Kautz digraph

of out-degree 2, diameter 4 and order 24 [77].

Figure 4.10: the Alegre digraph.

Table 4.4 from [65] gives a summary of the current largest known digraphs for

maximum out-degree d ≤ 13 and diameter at most D ≤ 11.

4.7 Nearly Moore digraphs

The approach of relaxing the out-degree to get close to the non-existent Moore

digraphs is new. Here we would like to find digraphs which are ‘close’, by relaxing

the maximum out-degree d. This type of out-degree sequence is defined as: D+ =
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D 2 3 4 5 6 7 8 9 10 11
d

2 6 12 25 50 100 200 400 800 1 600 3 200

3 12 36 108 324 972 2 916 8 748 26 244 78 732 236 196

4 20 80 320 1 280 5 120 20 480 81 920 327 680 1 310 720 5 242 880

5 30 150 750 3 750 18 750 93 750 468 750 2 343 750 11 718 750 58 593 750

6 42 252 1 512 9 072 54 432 326 592 1 959 552 11 757 312 70 543 872 423 263 232

7 56 392 2 744 19 208 134 456 941 192 6 588 344 46 118 408 322 828 856 2 259 801 992

8 72 576 4 608 36 864 294 912 2 359 296 18 874 368 150 994 944 1 207 959 552 9 663 676 416

9 90 810 7 290 65 610 590 490 5 314 410 47 829 690 430 467 210 3 874 204 890 34 867 844 010

10 110 1 100 11 000 110 000 1 100 000 11 000 000 110 000 000 1 100 000 000 11 000 000 000 110 000 000 000

11 132 1 452 15 972 175 692 1 932 612 21 258 732 233 846 052 2 572 306 572 28 295 372 292 311 249 095 212

12 156 1 872 22 464 269 568 3 234 816 38 817 792 465 813 504 5 589 762 048 67 077 144 576 804 925 734 912

13 182 2 366 30 758 399 854 5 198 102 67 575 326 878 479 238 11 420 230 094 148 462 991 222 1 930 018 885 886

Table 4.4: Order of the largest known digraphs of maximum out-degree d and diameter D.



Construction of Graphs and Digraphs Close to Moore 52

Figure 4.11: a Kautz digraph.

((d + x)tx , . . . , (d + 2)t2 , (d + 1)t1 , dt0). Similarly to the undirected case, we have the

following definition of a (n,D+, D)-digraph.

Definition 4.7.1 A digraph G is called a (n,D+, D) − digraph, if G has order n

and diameter D, and out-degree sequence D+.

Next, we introduce some further notation used throughout the rest of this section.

In a (n,D+, D)-digraph G, G has β vertices of out-degree larger than d, β = tx +

. . . + t2 + t1, and the total number of out-degree excess is α = t1 + 2t2 + . . . + xtx.

We are interested not only in the number of out-degree excess α, but also in the

distribution of the out-degree excess.

For (n,D+, D)-digraphs, we are particularly interested in the following problems.

(a) What is the minimum value α of a (n,D+, D)-digraph with n =
−−−→
Md,D vertices

and given diameter D?

(b) What is the minimum value β of a (n,D+, D)-digraph with n =
−−−→
Md,D vertices

and given diameter D?

(c) With respect to β, one extreme case is when β = 1, that is, when the digraph

has one vertex of maximum out-degree d + α, and the rest of the vertices all
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have out-degree d. The corresponding out-degree sequence can be described

as

D+
1 = (d + α, d

−−−→
Md,D−1).

(d) With respect to d + x, one extreme case is when the digraph has β vertices of

out-degree d+1, and the rest of the vertices of out-degree d. The corresponding

out-degree sequence is

D+
2 = ((d + 1)β, d

−−−→
Md,D−β).

In particular, we are interested in the problem of obtaining (n,D+, D)-digraphs

with either above extreme special sequences D+
1 or D+

2 . A digraph G ∈ (n,D+, D)-

digraph is called nearly Moore digraph if G has degree sequence D+
1 and α is smallest

possible (respectively, degree sequence D+
2 and β is smallest possible).

Problem 4.7.1 What is the minimum value α, if G is a (n,D+, D)-digraph with
−−−→
Md,D vertices and given diameter D, and out-degree sequence D+

1 = (d+α, d
−−−→
Md,D−1)?

Problem 4.7.2 What is the minimum number of vertices, denoted by β, if G is a

(n,D+, D)-digraph with
−−−→
Md,D vertices, given diameter D, and out-degree sequence

D+
2 = ((d + 1)β, d

−−−→
Md,D−β)?

To construct nearly Moore digraphs, we have developed an optimization algorithm

method [83]: the Hybrid Simulated Annealing and Genetic Algorithm (HSAGA) (see

Appendix A for a detailed description). Here we give only an overall of HSAGA and

its performance. The general idea of HSAGA is that a random graph is created at

the beginning, and used as the initial graph input into Simulated Annealing, denoted

by SA. If the iteration reaches the maximum generation of attempted moves at the

last step of reaching the maximum frozen then SA will terminate and the current

population will be transferred to the Genetic Algorithm, called GA. Otherwise, a

candidate solution will be obtained and be saved into the population. Furthermore,

the set of elite individuals of the population is chosen by a selection procedure of GA
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according to their evaluation fitness values, following genetic operations consisting

of crossover and mutation.

We use HSAGA to construct nearly Moore digraphs. In order to make comparisons

with other important optimization algorithms, including Simulating Annealing (SA)

and Genetic Algorithm (GA), which could be used to attack the degree/diameter

problems, we have performed various experiments. The best experimental results

that we have obtained are given in Table 4.5. A central vertex, denoted by ce, is a

vertex of eccentricity equal to the radius of the digraph. It is easy to observe that

neither SA nor GA alone has been effective for the degree/diameter problem. In

other words, SA and GA used separately have not given us the minimum diameter

and maximum number of central vertices for orders greater than 10. However, com-

bining simulated annealing and genetic algorithm has produced more encouraging

results.

Using HSAGA, we have obtained nearly Moore digraphs of diameter 2 ≤ D ≤ 6

and most, but not all, vertices with out-degree d = 2 and with order equal to the

Moore bound M2,D. For example, see the nearly Moore digraphs in Figures 4.12 -

4.14. Notice that the nearly Moore digraph in Figure 4.12 is optimal when order

n = 7 and diameter D = 2. Interestingly, we found three non-isomorphic nearly

Moore digraphs with the same out-degree sequences, diameter D = 3 and order 15,

but with different in-degree sequences (see Figure 4.14).

In order to summarise the results concerning our nearly Moore digraphs and the

current results on the order-relaxed Moore digraphs, we present Table 4.6. In this

table, given out-degree d = 2 and diameter D, with 2 ≤ D ≤ 6, we list current

regular large digraphs of order n, together with the gap, denoted by γ, between this

order and
−−−→
Md,D. We also show nearly Moore digraphs of order

−−−→
Md,D, and either

the current minimum number of extra arcs α or the current minimum number β of

vertices of degree d + 1, plus their corresponding out-degree sequences D+.
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SA GA HSAGA

n ce D ce D ce D

1 0 0 0 0 0 0

2 2 1 2 1 2 1

3 3 1 3 1 3 1

4 4 2 4 2 4 2

5 4 3 5 2 5 2

6 6 2 6 2 6 2

7 7 3 7 3 7 3

8 8 3 8 3 8 3

9 9 3 9 3 9 3

10 9 4 9 4 10 3

11 7 4 6 4 11 3

12 5 4 5 4 12 3

13 12 5 13 4 13 4

14 14 4 14 4 14 4

15 13 5 14 5 15 4

16 11 5 14 5 16 4

17 10 5 9 5 17 4

18 8 5 10 5 18 4

Table 4.5: The number of central vertices and the minimum value of diameter D
obtained from our tests when d = 2 and n ≤ 18.
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Figure 4.12: G ∈ G(7, (3, 26), 2).
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Figure 4.13: G ∈ G(15, (33, 212), 3).



Construction of Graphs and Digraphs Close to Moore 57

6

6

6

5

4

3

2

1

0

1
4

1
3

1
2

1
1

9

1
0

8

7

(a) G1

6

6

6

5

4

3

2

1

0

1
4

1
3

1
2

1
1

9

1
0

8

7

(b) G2

6

6

6

5

4

3

2

1

0

1
4

1
3

1
2

1
1

9

1
0

8

7

(c) G3



Construction of Graphs and Digraphs Close to Moore 58

Out-Degree-Relaxed Order-Relaxed
−−−→
M2,D D+ α β D γ

7 (3, 26) 1 1 2 1

15
(33, 212) 3 3

3 3
(5, 214) 3 1

31
(34, 227) 4 4

4 6
(10, 214) 8 1

63 (36, 257) 6 6 5 13

127 (39, 2118) 9 9 6 27

Table 4.6: Current results on nearly Moore digraphs and order-relaxed Moore di-
graphs of out-degree 2 an diameter D, 2 ≤ D ≤ 6.

4.8 Relaxing the out-degree of digraphs of order

n, when ld,D < n ≤ ud,D

There are usually large gaps between the best current lower and upper bounds on

the order nd,D. Let ld,D represent the current best lower bound for nd,D, and let ud,D

represent the current best upper bound for nd,D. We are interested in improving

the lower bounds to decrease these gaps by obtaining digraphs of order equal to

values between ld,D and ud,D, given diameter and maximum out-degree. However,

we have not been able to obtain such digraphs and so we begin by obtaining large

digraphs, of orders equal to values between ld,D and ud,D, having a given diameter

D. Obtaining these large digraphs is expected to produce structures which may be

useful in the construction of new digraphs in order to improve the lower bounds for

the maximum order of digraphs.

We present in Tables 4.7, 4.8 and 4.9, the outstanding potential values of orders

larger than those obtained so far, for diameter D up to 10, and for maximum out-

degree d = 2, 3 and 4. The ‘Largest Known Order’ column gives the order of the

current largest known digraph of the given maximum out-degree d and diameter D.
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The possible larger orders, between the current known lower bounds and current

best upper bounds, are listed under the heading ‘Possible Larger Values of Order’.

D Largest Known Order Feasible Larger Values of Order

2 6 −
3 12 −
4 25 26 - 28

5 50 51 - 60

6 100 101 - 124

7 200 201 - 252

8 400 401 - 508

9 800 801 - 1,020

10 1,600 1,601 - 2,044

Table 4.7: Feasible values of n2,D for 2 ≤ D ≤ 10.

Definition 4.8.1 A digraph G is an out-degree-relaxed digraph, denoted by

(n,D+, D)-digraph, if G has n vertices, ld,D < n ≤ ud,D, given diameter D, and

D+ = ((d + x)tx , . . . , (d + 2)t2 , (d + 1)t1 , dt0).

Currently, we are dealing with special out-degree sequences D+ in the (n,D+, D)-

digraph. Let G have β vertices of out-degree larger than d, β = (t1 + . . . + (tx),

minimum out-degree d and maximum out-degree d+x, 0 < x ≤ n−d−1. The out-

degree sequence D+ can then be described as (d + x)tx , . . . , (d + 2)t2 , (d + 1)t1 , dn−β.

The number of extra arcs in a (n,D+, D)-digraph is α = t1 + 2t2 + . . . + xtx.

Problem 4.8.1 What is the minimum value of α if G is a (n,D+, D)-digraph, with

ld,D < n ≤ ud,D, and the out-degree sequence D+ = (d + α, dn−1)?

Problem 4.8.2 What is the minimum number of vertices, denoted by β, if G is a

(n,D+, D)-digraph, with ld,D < n ≤ ud,D, and the out-degree sequence

D+ = ((d + 1)β, dn−β)?
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D Largest Known Order Feasible Larger Values of Order

2 12 −
3 36 37 - 38

4 108 109 - 119

5 324 325 - 362

6 972 973 - 1,091

7 2,961 2,962 - 3,278

8 8,748 8,749 - 9,839

9 26,244 26,245 - 29,522

10 78,732 78,733 - 88,571

Table 4.8: Feasible values of n3,D for 2 ≤ D ≤ 10.

D Largest Known Order Feasible Larger Values of Order

2 20 −
3 80 81 - 84

4 320 321 - 340

5 1,280 1,281 - 1,364

6 5,120 5,121 - 5,460

7 20,480 20,481 - 21,844

8 81,920 81,921 - 87,380

9 327,680 327,681 - 349,524

10 1,310,720 1,310,721 - 1,398,100

Table 4.9: Feasible values of n4,D for 2 ≤ D ≤ 10.
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Using HSAGA, we have obtained some interesting out-degree-relaxed digraphs, given

diameter D = 4. For example, we obtained an out-degree-relaxed (26, (5, 225), 4)-

digraph. Another outcome found by HSAGA is out-degree-relaxed (26, (32, 224), 4)-

digraphs (see Figures 4.15 - 4.18).

Figure 4.15: G ∈ G(26, (32, 224), 4).
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Figure 4.16: G ∈ G(26, (5, 225), 4).

Figure 4.17: G ∈ G(27, (33, 224), 4).
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Figure 4.18: G ∈ G(27, (6, 226), 4).
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To summarize, we list the current minimum number of extra arcs α, current mini-

mum β, and the corresponding out-degree sequence D+, in Table 4.10.

Out-degree-Relaxed

n D+ α β

26
(32, 224) 2 2

(5, 225) 3 1

27
(33, 224) 3 3

(6, 226) 4 1

28
(33, 225) 3 3

(8, 227) 6 1

Table 4.10: The current minimum number of extra arcs α, current minimum β, and
the out-degree sequence D+, where d = 2, D = 4 and n, such that l2,4 < n ≤ u2,4.



Chapter 5

Construction of Cages

5.1 Introduction

Since we know little about the structure or even the number of vertices in a cage,

it is very interesting to study the existence of graphs of given girth and regular

degree, of order as close as possible to the unknown order of cages. Although so far

research in directed cages is not very popular compared to the interest in undirected

cages, we still believe it is worth mentioning the current knowledge of directed cages,

including two conjectures in the last section of this chapter.

5.2 Lower and upper bounds on the order of cages

Let n(d; g) be the number of vertices in a cage. In general, computing the value of

n(d; g) is very difficult. A lower bound of n(d; g) when d ≥ 3, denoted by nl(d; g),

was given by Tutte [86] and Bollobás [19] as follows.

nl(d; g) =

{

(d(d − 1)(g−1)/2 − 2)/(d − 2) for g odd

(2(d − 1)g/2 − 2)/(d − 2) for g even
(5.1)

Note that in the context of cages, some researchers call the lower bounds of cages:

Moore bounds for both odd girth g and even girth g, although Moore bounds cor-

65
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respond only to odd girths.

Any cage that actually meets these lower bounds is very special - it is a Moore graph

if g is odd and a ‘generalized polygon’ if g is even.

The definition of a generalized polygon or (x-gon):

Let P (the set of vertices) and B (the set of edges) be disjoint non-empty sets, and

let I (the vertex-edge incidence relation) be a subset of P × B. Let I = (P, B, I),

and let G(I) be the associated bipartite graph on P ∪ B with edges joining the

vertices from P to their incident edges in B (p ∈ P is adjacent to b ∈ B whenever

(p, b) ∈ I). The ordered triple (P, B, I) is said to be a generalized polygon subject

to the following four regularity conditions:

• There exist s ≥ 1 and h ≥ 1 such that every edge is incident to exactly s + 1

vertices and every vertex is incident to exactly h + 1 edges.

• Any two distinct edges intersect in at most one vertex and there is at most

one edge through any two distinct vertices.

• The diameter of the incidence graph G(I) is x.

• The girth of G(I) is 2x.

For example, a 2-gon is a complete bipartite graph Ks+1,h+1. Figure 5.1 shows a

complete bipartite graph G ∈ K2,3, the diameter of G is 2 and the girth of G is 4.

Figure 5.1: 2-gon when s = 1 and h = 2.

The existence of cages was proved by Erdős and Sachs [32] and they obtained the

first upper bound for n(d; g).
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So far, the best current upper bound, denoted by nu(d; g), was given by Sauer [74].

nu(3; g) =

{

4/3 + (29(2(g−2))/12) for g odd

2/3 + (29(2(g−2))/12) for g even
(5.2)

nu(d; g) =

{

2(d − 1)(g−2) for g odd and d ≥ 4

4(d − 1)(g−3) for g even and d ≥ 4
(5.3)

5.3 Graphs of order close to cages

We list some family of known cages with small values of d and g.

• For d = 2, the (2; g)-cage is the g-cycle.

• For g = 2, the (d; 2)-cage has just two vertices and they are joined by exactly

d edges.

• For g = 3, the (d; 3)-cage is the complete graph Kd+1.

• For g = 4, the (d; 4)-cage is the complete bipartite graph Kd,d.

From now on, we focus on (d; g)-cages with d ≥ 3 and g ≥ 5. In this chapter, we

present two tables of the current best upper bounds on n(d; g).

The following two tables, which are kept by Royle [73], list the current knowledge of

cages or smallest known graphs close to either the Moore graphs whose order are the

lower bounds on the order of cages with odd girth, or generalized polygons whose

order are the lower bounds on the order of cages with even girth.

Table 5.1, lists the current best values for the order of graphs close to cubic cages.

For certain small values of g, the cages themselves are all known, and are written

with bold font. For larger values of g, a range is given: the lower value, denoted by

“Current lower bound”, is either the Moore bound nl(3; g) or a bound which has

been laboriously increased by extensive computation. The higher value, denoted by

‘Current upper bound’, is simply the order of the smallest known cubic graph of
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that girth, which is given explicitly. Under the column labeled ‘Number’, we list the

number of known non-isomorphic graphs known that meet the upper bound.

In some cases, there exists unique cages for given degree d and girth g. For example,

the Number of (3; 5)-cages is 1, and the unique (3; 5)-cage is the Petersen graph

with 10 vertices. In other cases, there exist multiple cages for a given combination

of d and g. For instance, there are three non-isomorphic (3; 10)-cages, each with 70

vertices. Numbers that are not known to be exact are followed by the + symbol

(so 1+ means that one example is known, but there may be more). In this table,

the known cubic cages start from g = 4 and go up to g = 12. For instance, for the

(3; 11)-cage, the lower bound was 94, but this lower bound has been increased by

McKay et al. [62] who, using standard backtracking technique, demonstrated that

a (3; 11)-cage must have exactly 112 vertices. They showed in 2003 [73] that the

(3; 11)-cage is unique. The fact that an 11-cage has order 112 was known some time

earlier by Balaban [4]. For g > 14 of cubic cages, the smallest known graphs of

regular degree and fixed girth, whose order is as close as currently possible to the

corresponding cubic cages, are shown in Table 5.1. For example, for (3; 13)-cages,

computations by McKay et al. [62] have lifted the lower bound of the order from

190 to 202. The best current upper bound on the order of (3; 13)-cages is 272, found

by Hoa, and described by Biggs [15].

The Table 5.2 summarizes the best known upper bounds for degree d ≤ 14 and girth

g up to 12, and some of them are the smallest values of n(d; g). This table can be

found on the website “http://people.csse.uwa.edu.au/gordon /cages/allcages.html”,

which is kept by Royle [73]. Most of the values in this table are exact, either meeting

the Moore bound or calculated by extensive computations. These exact values are

represented by bold font, for example, the unique (4; 5)-cage, with 19 vertices, called

the Robertson graph. The values displayed in italic font represent the order of the

current smallest graph, which has regular degree and fixed girth and order close to

the corresponding Moore bound. For instance, the lower bound on the order of a

(4; 7)-cage is 53, the first (4; 7)-graph on 70 vertices is due to McKay and Yuanshen

[73]. In 2007, Exoo et al. improved on this by producing a (4; 7)-graph of order
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(d;g) Current upper bound Current lower bound Number

(3;3) 4 4 1

(3;4) 6 6 1

(3;5) 10 10 1

(3;6) 14 14 1

(3;7) 24 24 1

(3;8) 30 30 1

(3;9) 58 58 18

(3;10) 70 70 3

(3;11) 112 112 1

(3;12) 126 126 1

(3;13) 272 202 1+

(3;14) 384 258 1+

(3;15) 620 382 1+

(3;16) 960 510 1+

(3;17) 2 176 766 1+

(3;18) 2 640 1 022 1+

(3;19) 4 324 1 534 1+

(3;20) 6 048 2 046 1+

(3;21) 16 028 3 070 1+

(3;22) 16 206 4 094 1+

(3;23) 49 482 6 142 1+

(3;24) 49 608 8 190 1+

(3;25) 109 010 12 286 1+

(3;26) 109 200 12 286 1+

(3;27) 285 852 24 574 1+

(3;28) 415 104 32 766 1+

(3;29) 1 143 408 49 150 1+

(3;30) 1 227 666 65 534 1+

(3;31) 3 649 794 98 302 1+

(3;32) 3 650 304 131 070 1+

Table 5.1: Cubic cages of small girth.
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d\g 5 6 7 8 9 10 11 12

3 10 14 24 30 58 70 112 126

4 19 26 67 80 275 384 728

5 30 42 152 170 2 730

6 40 62 294 312 7 812

7 50 90

8 80 114 800 39 216

9 98 146 1 170 74 898

10 126 182 1 640 132 860

11 160 240

12 203 266 2928 354 312

13 240

14 312 366 4760 804 468

Table 5.2: Current best upper bounds on the order of cages.

67 [73]. A blank cell in Table 5.2 means that any known (d; g)-graphs for given

degree d and girth g have order that is far from the lower bounds on the order of a

(d; g)-cage.

5.4 Directed cages

In Section 5.3, we have discussed the problem of finding undirected cage graphs.

The situation with regard to directed cage graphs is quite different. For simplicity,

the digraphs we consider here contain no circuits of length less than three (directed
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or otherwise) [20]. We say that a d -regular digraph G has directed girth g if each

vertex has in-degree and out-degree d and if the shortest directed cycle is of length

g. A directed (d; g)-cage is thus a smallest d-regular digraph of girth g.

In the undirected case, there are many results on cage graphs. See Wang’s survey

[88], and Royle’s web site [73]. However, there are not many results on directed cage

graphs. An upper bound on the number of vertices of directed cages, denoted by

nu(d; g), has been known from Behzad et al. [14].

Theorem 5.4.1 [14] For each d ≥ 1 and g ≥ 2, the number nu(d; g) exists, and

nu(d; g) ≤ d(g − 1) + 1.

They also provided a lower bound on the number of vertices of directed cages, called

nl(d; g), for girth g = 4.

Theorem 5.4.2 [14] For d > 1, nl(d, 4) ≥ (5d + 4)/2.

Moreover, they conjectured that nu(d; g) = d(g − 1) + 1 for directed cages. An

equivalent formulation of their conjecture is as follows:

Conjecture 5.4.1 [14] Let G be a d-regular digraph on n vertices. Then the directed

girth of G is at most ⌈n/d⌉.

Caccetta and Häggkvist [24] proposed a generalization of the above conjecture.

Conjecture 5.4.2 [24] Let G be a digraph on n vertices, each vertex with out-degree

at least d. Then the directed girth g of G is at most ⌈n/d⌉.

This last conjecture has been verified in several particular cases, namely, for

• d = 1 (trivial);

• d = 2, by Caccetta and Häggkvist [24];

• d = 3, by Hamidoune [44];

• d = 4, 5, by Hoàng and Reed [47];



Construction of Cages 72

• d ≤
√

n/2, by Shen [75].

In the next chapter, we consider graphs that are related to cages, called EX graphs.



Chapter 6

Construction of EX Graphs

6.1 Introduction

Let us recall the definitions given in Section 3.3.1. In particular, let ex(n; t) =

ex(n; {C3, C4, . . . , Ct}) denote the maximum number of edges in a graph of order n

and girth g ≥ t+1. By EX(n; t) = EX(n; {C3, C4, C5, . . . , Ct}) we denote extremal

graphs of order n, girth at least t + 1, having the number of edges equal to ex(n; t).

The notation exl(n; t) means the best current lower bound on the size of extremal

graphs, and exu(n; t) represents the best current upper bound on the size of extremal

graphs.

In this chapter, we construct some large graphs of given order n and girth at least t+

1, and with size larger than the previous best lower bounds of ex(n; t). Additionally,

we prove that the extremal number ex(29; 6) = 45, and we improve upper bounds

of ex(n; 6) and ex(n; 7), when n ≤ 40.

6.2 Constructing graphs close to EX graphs

In general, constructing EX graphs has been known to be hard and has turned out

to be useful in different problems in extremal graphs theory, for instance, in studies

of graphs with a high degree of symmetry [22]; and in the design of communication

networks [26].

73
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The exact value of ex(n; t) is known only for small values of t or n, for example,

ex(n; 3) = ⌊n2/4⌋, and the corresponding graphs are K⌊n/2⌋,⌈n/2⌉. Even for t = 4, the

conjecture by Erdős [30] stating that ex(n; 4) = (1/2+o(1))3/2n3/2 is still open. Re-

cently, researchers have obtained some constructive lower bounds of ex(n; 4); these

lower bounds resulted in improvements to the previous lower bounds for ex(n; 4).

In [56] Garnic et al. developed algorithms which combined hill-climbing and back-

tracking techniques to generate graphs with order up to 201 and t = 4. The size

of these graphs gives support to Erdős’ conjecture. Wang et al. [?] used simulated

annealing to generate graphs for several values of n and t. For t ≥ 5, most values

of ex(n; t) are unknown, except in 2007, Abajo and Diánez [1] proved a few exact

values of ex(n; t) when t ≥ 5.

Theorem 6.2.1 [1] Given integers n and k such that n ≥ 4 and k ≥ 0, we define

nk(t) = min{n; ex(n; t) − n = k}. Then the following equalities hold.

(i) n0(t) = t + 1.

(ii) n1(t) = ⌊3t/2⌋ + 1.

(iii) n2(t) = 2t.

(iv) n3(t) =







⌈9t/4⌉ if t is even.

⌊9t/4⌋ if t is odd.

(v) n4(t) =







⌈(8t − 2)/3⌉ if t is even when t 6= 4.

⌊(8t − 2)/3⌋ if t is odd.

(vi) n6(4) = 12, n6(5) = 14, n6(6) = 19, n6(7) = 21.

The software HSAGA described in Appendix A.1 was first developed for constructing

nearly Moore digraphs. However, with some modifications, we are able to make use

of HSAGA in the construction of EX graphs. The basic processes of HSAGA and

the details of each process are described in Appendix A.1. Each result provided

by HSAGA consists of three parts, namely, the maximum number of edges, the

adjacency list and the degree sequence; see the output in Table 6.1.
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Adjacency List

{0, 1} {0, 10} {0, 23}
{1, 0} {1, 2} {1, 29}
{2, 1} {2, 3} {2, 8} {2, 16}
{3, 2} {3, 11} {3, 13}
{4, 12} {4, 20} {4, 21}
{5, 9} {5, 24} {5, 28}
{6, 9} {6, 10} {6, 18} {6, 27}
{7, 15} {7, 22} {7, 23}
{8, 2} {8, 9} {8, 14}
{9, 5} {9, 6} {9, 8}
{10, 0} {10, 6} {10, 19}
{11, 3} {11, 24} {11, 26}
{12, 4} {12, 14} {12, 23}
{13, 3} {13, 15} {13, 18}
{14, 8} {14, 12} {14, 17}
{15, 7} {15, 13} {15, 25}
{16, 2} {16, 21} {16, 22}
{17, 4} {17, 25} {17, 26}
{18, 6} {18, 13} {18, 20}
{19, 10} {19, 21} {19, 25}
{20, 4} {20, 18} {20, 29}
{21, 4} {21, 16} {21, 19}
{22, 7} {22, 16} {22, 27}
{23, 0} {23, 7} {23, 12} {23, 24}
{24, 5} {24, 11} {24, 23}
{25, 15} {25, 17} {25, 19} {25, 28}
{26, 11} {26, 17} {26, 27}
{27, 6} {27, 22} {27, 26}
{28, 5} {28, 25} {28, 29}
{29, 1} {29, 20} {29, 28}

Table 6.1: A graph on 30 vertices with girth 7 and 47 edges. This graph has the
degree sequence D = {44, 326}.
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Using HSAGA, we produced a graph on 30 vertices, degree sequence D = {44, 326},
size e = 47, having girth 7 (see Figure 6.1).

Figure 6.1: Graph with n = 30, g = 7 and e = 47.

Then a question asked in [8] as to whether the (3; 8)-cage does or does not belong

to EX(30; 6) is answered as stated in the next observation.

* Observation 6.2.1 ex(30; 6) ≥ 47 and so the (3; 8)-cage does not belong to

EX(30; 6).

From Theorem 3.3.4 (i) and Observation 6.2.1 the following corollary is immediate.

* Observation 6.2.2 For n ≥ 12, n 6∈ {15, 80, 170}, the girth of G ∈ EX(n; 6) is

7, and there exists a graph in EX(15; 6) with 18 edges and girth 8.
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Some of the obtained extremal graphs are cages. For instance, in Table 4.5, if n = 14,

the corresponding graph is the (3; 6)-cage, and if n = 26, the corresponding graph is

the (4; 6)-cage. Furthermore, in Table 6.3, if n = 24, the corresponding graph is the

(3; 7)-cage, and in Table 6.4, if n = 30, the corresponding graph is the (3; 8)-cage.

This shows that the computed lower bounds by using HSAGA are reasonable.

After we produced new results for extremal graphs with small girth, we also ran the

program for large girths. For example, it is known that for m ≥ 12, ex(t+2; t)=2t+4,

and there exists G ∈ EX(n; t) with g(G) = t + 2 (see Theorem 3.3.3(iii)). Wang et

al. [87] used pure simulated annealling to generate an optimal solution in the above

case for n ≥ 15 and g(G) ≥ t + 1. By using HSAGA, we also generated optimal

solutions for t ≥ 12, n = t + 2 and g(G) = t + 2.

6.3 Upper bounds on the size of EX graphs

Since the maximum degree is at least as big as the average degree, we obtain

∆(G) ≥ ⌈d̄⌉ = ⌈2e(G)/n(G)⌉. (6.1)

We have constructed a graph of order n = 29, girth g = 7, and size 45, giving

exl(29; 6) = 45 (see Table 6.3). Next we will prove that ex(29; 6) = 45.

* Theorem 6.3.1 Let G ∈ EX(29; 6). Then e(G) = ex(29; 6) = 45.

Proof First we show that exu(29; 6) ≤ 46. Assume that a graph G ∈ EX(29; 6)

has 47 edges. Notice that δ(G) ≥ 4, otherwise, if there is a vertex x of degree 3,

then G − {x} would have 44 edges, contradicting ex(28; 6) = 43 [82]. Then the

number of edges in G would be at least (nδ)/2 = 58, which is a contradiction to our

assumption.

Next we show that ex(29; 6) 6= 46.

Assume that a graph G ∈ EX(29; 6) has 46 edges. In this case, δ = δ(G) ≥ 3,

otherwise, if there were a vertex x of degree 2, then G − x would have 44 edges,
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contradicting ex(28; 6) = 43 [82]. If x has degree 1, then G − x has 45 edges, again

a contradiction to ex(28; 6) = 43 [82]. Also δ ≤ 3, otherwise, if δ ≥ 4 then G would

have at least (nδ)/2 = 58 edges. Therefore, δ = 3.

Furthermore, ∆ = ∆(G) ≥ 4 by (6.1). If ∆ ≥ 5, let x be a vertex with d(x) ≥ 5.

Since there is no cycle of length less than 7 in G, within at most 3 steps, x must

reach at least n(G) ≥ 1 + |N(x)|+ |N2(x)|+ |N3(x)| ≥ 1 + 5 + 10 + 20 = 36 distinct

vertices, a contradiction with n = 29. Hence, ∆ = 4.

Therefore, δ = 3, ∆ = 4, and the graph G contains 24 vertices of degree 3 and 5

vertices of degree 4. These vertices of degree 4 are called special vertices.

Now we provide a claim which will be useful in finishing the proof of the theorem.

* Claim 1 If a graph G ∈ EX(29; 6) and e(G) = 46, then the eccentricity of any

special vertex must be 3.

The justification of Claim 1 is that if a spanning tree of graph G starts from any

special vertex, say y, then n(G) = 1 + |N(y)| + |N2(y)| + |N3(y)| = 29, that is, all

the vertices of G are within distance 3 from each special vertex.

In particular

* Claim 2 If a graph G ∈ EX(29; 6) and e(G) = 46, then every vertex of degree 3

is within 3 steps from any special vertex.

In the following figures, a vertex of degree 3 is represented by a triangle △, a vertex

of degree 4 is denoted by a cycle ©, and a vertex of degree either 3 or 4 is shown

as a square box.

All the five special vertices have to appear in a spanning tree T because of Claim 1.

Consider a vertex x of degree 3. Let N(x) = {x1, x2, x3}. All the five special vertices

cannot appear at distance 3 from x. Assume otherwise (see Figure 6.2). Consider

the tree of depth 3 from vertex x3. In view of Claim 1, we can place at most 4

special vertices at distance at most 3 from x3 without creating a cycle of length less

than 7 (see Figure 6.3).
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Figure 6.2: Tree T with all special vertices at N3(x).

Figure 6.3: Tree started from x3 with at most 4 special vertices.

Therefore, for each vertex x of degree 3, there must be a special vertex in N(x) or

N2(x). Since it is not possible for all 24 vertices of degree 3 to be adjacent to a

special vertex, to prove the theorem it suffices to show that it is not possible to have

a vertex of degree 3 at distance 2 from a special vertex.

Let x be a vertex of degree 3 which is not adjacent to a special vertex in the

spanning tree T . Assume that there is a special vertex in N2(x) (see Figure 6.4).

It is easy to see that each subtree Xi in T − x(with root vertex xi) of T contains

at most two special vertices because of Claim 1. Hence, there exists one subtree

of T containing only one special vertex because the tree T has three subtrees and

there are only five special vertices in total. Consider one special vertex in N2(x),
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denoted by p, belonging to the subtree X3, which only has one special vertex p. In

Figure 6.4: Tree T when there exists a special vertex p in N2(x).

the tree starting from vertex x3, there exist two special vertices in the vertex set

M = (N(x) ∪ N2(x)) ∩ (X1 ∪ X2), by Claim 1 and Claim 2. This implies two cases

should be considered.

Case 1. There is one special vertex in N(x) ∩ X1, and another special vertex is

located at N2(x)∩X2 (see Figure 6.5). This implies the subtree X2 must have three

special vertices, which is a contradiction, by Claim 1.

Figure 6.5: Case 1

Case 2. There is one special vertex in N2(x)∩X1, denoted by m, and another special

vertex in N2(x) ∩X2, represented by o. Consider a vertex z such that the degree of

z is 3 and z ∈ N(x1) \ {m, x} (see Figure 6.6). Consider the tree starting from the
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Figure 6.6: Case 2

vertex z (see Figure 6.7). The middle subtree, denoted by Z2, must contain three

special vertices, which is impossible by Claim 1.

Figure 6.7: A tree starting from vertex z in Case 1b.

Therefore, ex(29; 6) = 45.

Next we improve upper bounds of exu(n; t), for some particular values of n and t.

* Theorem 6.3.2 The following statements hold.

(i) exu(30; 6) = 48;

(ii) exu(31; 6) = 51;
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(iii) exu(37; 7) = 58;

(iv) exu(38; 7) = 60.

Proof (i) Suppose there exists a graph G ∈ EX(30; 6) with 49 edges. In this case,

δ ≥ 3, ∆ ≤ 4, and the number of vertices of degree 3 is 22. Further, G cannot

contain a pair of adjacent vertices x and y each having degree 3, since G − {x, y}
would have 44 edges, contradicting ex(28; 6) = 43. Hence, the set of three edges

incident at each of the 22 vertices of degree 3 of G are pairwise disjoint, implying

that e(G) ≥ 66, which is a contradiction.

(ii) Let us assume that a graph G ∈ EX(31; 6) has 52 edges. Since exu(30; 6) = 48,

then δ(G) ≥ 4. Therefore, the number of edges in G is at least 62, which is a

contradiction with our assumption.

(iii) Let us assume that a graph G ∈ EX(37; 7) has 59 edges. Since ex(36; 7) = 55,

then δ(G) ≥ 4. Therefore, the number of edges in G is at least 74, which is a

contradiction with our assumption.

(iv) Assume that a graph G ∈ EX(38; 7) has 61 edges. In this case, δ = 3, ∆ = 4.

Further, G cannot contain a pair of adjacent vertices x and y each having degree

3, since G − {x, y} would have 56 edges, contradicting ex(36; 7) = 55. Let us draw

a spanning tree of the graph G starting with an edge xy such that d(x) = 4 and

d(y) = 3. We obtain that n(G) ≥ 2+ |N1(x)|+ |N2(x)|+ |N3(x)|+ |N1(y)|+ |N2(y)|+
|N3(y)| ≥ 49, a contradiction.

6.4 Summary tables of EX graphs

To construct extremal graphs of given order n and no cycles of length ≤ t, we used

the hybrid simulated annealing and genetic algorithm (HSAGA), originally developed

to create graphs of given order, diameter and maximum degree or maximum out-

degree. For details of HSAGA, see Appendix A.1. We have modified the HSAGA

algorithm, and then used it with different values of the parameters cooling rate and
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crossover rate. We present the new results for t = 6 we have obtained in Tables 6.2,

6.3 and 6.4.

Tables 6.2, 6.3 and 6.4 give the exact value of extremal numbers ex(n; 5), ex(n; 6)

and ex(n; 7), for n < 40. In these tables, n represents the order of graphs; ex(n; t)

written with bold font denotes the value of the extremal number of EX graphs of

given n and t. We use italics and bold font for the value of ex(29; 6) to denote that

it is new. ‘Sample D’ is a degree sequence of some corresponding EX graphs. For

instance, in Table 6.2, ex(26; 5) = 52, and its degree sequence is 426, in fact, this

graph is a (4; 6)-cage.

n ex(n; 5) Sample D n ex(n; 5) Sample D
6 6 {26} 24 45 {418, 36}
7 7 {3, 25, 1} 26 52 {426}
8 9 {32, 26} 25 48 {421, 34}
9 10 {32, 27} 27 53 {5, 424, 3, 2}
10 12 {34, 26} 28 56 {428}
11 14 {36, 25} 29 58 {52, 426, 2}
12 16 {38, 24} 30 61 {54, 424, 32}
13 18 {310, 23} 31 64 {56, 423, 32}
14 21 {314} 32 67 {56, 426}
15 22 {314, 2} 33 70 {510, 421, 32}
16 24 {316} 34 74 {422, 312}
17 26 {43, 312, 22} 35 77 {515, 419, 3}
18 29 {44, 314} 36 81 {518, 418}
19 31 {46, 312, 2} 37 84 {515, 421, 3}
20 34 {48, 312} 38 88 {524, 414}
21 36 {410, 310, 2} 39 92 {528, 411}
22 39 {412, 310} 40 96 {532, 48}
23 42 {415, 38}

Table 6.2: Optimal values of ex(n; 5) for 5 ≤ n ≤ 40.



Construction of EX Graphs 84

n ex(n; 6) Sample D n ex(n; 6) Sample D
7 7 {27} 19 25 {312, 27}
8 8 {28} 20 27 {314, 26}
9 9 {3, 27, 1} 21 29 {316, 25}
10 11 {32, 28} 22 31 {318, 24}
11 12 {33, 27, 1} 23 33 {320, 23}
12 14 {34, 28} 24 36 {324}
13 15 {35, 27, 1} 25 37 {324, 2}
14 17 {36, 28} 26 39 {42, 322, 22}
15 18 {41, 34, 210} 27 41 {5, 424, 3, 2}
16 20 {38, 28} 28 43 {52, 423, 32, 2}
17 22 {310, 27} 29 45 {46, 320, 23}
18 23 {4, 38, 29}

Table 6.3: Values of ex(n; 6), for 7 ≤ n ≤ 29.

Tables 6.5 and 6.6 show the current lower bounds and upper bounds of ex(n; 5),

ex(n; 6) and ex(n; 7), for n ≤ 40. In these tables, exl(n; t) means the lower bounds

on the size of EX graphs, and exu(n; t) represents the upper bounds on the size of

EX graphs. Furthermore, any new values of lower bounds and upper bounds are

written in italic font. For instance, in Table 6.5, we generated a graph of order

n = 31 with girth g = 7 and size 49, which is the new lower bound of ex(31; 6); the

degree sequence of this graph is D = {45, 326}, and the new upper bound of ex(31; 6)

is 51.
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n ex(n; 7) Sample D n ex(n; 7) Sample D n ex(n; 7) Sample D
8 8 {28} 18 22 {38, 210} 28 40 {324, 24}
9 9 {29} 19 24 {310, 29} 29 42 {326, 23}
10 10 {32, 26, 12} 20 25 {310, 210} 30 45 {330}
11 12 {32, 29} 21 27 {312, 29} 31 46 {330, 2}
12 13 {32, 210} 22 29 {314, 28} 32 47 {330, 22}
13 14 {33, 29, 1} 23 30 {315, 27, 1} 33 49 {42, 328, 23}
14 16 {34, 210} 24 32 {316, 28} 34 51 {43, 328, 23}
15 18 {36, 29} 25 34 {318, 27} 35 53 {45, 326, 24}
16 19 {37, 28, 1} 26 36 {320, 26} 36 55 {5, 45, 325, 25}
17 20 {37, 29, 1} 27 38 {322, 25}

Table 6.4: Current values ex(n; 7) with 8 ≤ n ≤ 36.

n exl(n; 6) exu(n; 6) Sample D
30 47 48 {44, 326}
31 49 51 {45, 326}
32 51 54 {47, 324, 2}
33 53 56 {49, 322, 22}
34 55 58 {48, 326}
35 58 61 {411, 324}
36 59 63 {411, 324, 2}
37 61 65 {424, 312, 2}
38 63 68 {414, 322, 22}
39 65 70 {415, 322, 22}
40 67 73 {414, 326}

Table 6.5: Values of exl(n; 6) and exu(n; 6), for 30 ≤ n ≤ 40.
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n exl(n; 7) exu(n; 7) Sample D
37 56 58 {44, 330, 23}
38 58 60 {45, 330, 23}
39 60 63 {47, 328, 24}
40 62 65 {44, 336}

Table 6.6: Current values exl(n; 7) and exu(n; 7) for 37 ≤ n ≤ 40.



Chapter 7

Connectivity of Graphs

7.1 Introduction

In Chapter 3, we have given a brief summary of known results regarding the connec-

tivity of graphs. In this chapter, we will focus on the connectivity of two particular

types of graphs: EX graphs and regular graphs. More specifically, we will first prove

that every EX graph is at least δ-edge connected and then we give more new re-

sults about the connectivity of EX graphs. In the second part of this chapter, we

will show a new result about supperconnectivity of regular graphs of odd girth with

respect to small diameter.

7.2 Connectivity of EX graphs

In general, it is difficult to find the exact values of the size of EX graphs. We

believe that structural properties of EX graphs, such as connectivity, will help us to

construct EX graphs.

For a graph G of minimum degree δ to be maximally connected or maximally edge-

connected, sufficient conditions have been given in terms of its diameter and its

girth. Recall that the following result is contained in [34, 49].

κ = δ if D ≤ 2⌊(g − 1)/2⌋ − 1. (7.1)

87
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Edge-connectivity is a coarse measure of the connectedness of a graph. A newer,

more refined notion, the restricted edge connectivity, was proposed by Esfahanian

and Hakimi [33] who denoted it by λ′(G). For a connected graph G, the restricted

edge connectivity is defined as the minimum cardinality of a set W of edges such

that G−W is not connected and W does not contain the set of incident edges of one

vertex of the graph. Then obviously G − W does not contain any isolated vertices.

The restricted edge connectivity has been studied in terms of super edge connectivity.

This is a stronger measure of connectivity than the standard edge connectivity, and

was proposed by Boesch [16] and Boesch and Tindell [17]. A graph is super edge-

connected, or super-λ, if every minimum edge cut consists of a set of edges incident

with one vertex. See [16, 17] for more details. Clearly, λ′(G) > δ(G) is a sufficient

and necessary condition for G to be super edge connected. The edge-degree of edge

uv ∈ E(G) is defined as {d(uv) = d(u) + d(v) − 2}. It was shown [33] that λ′(G)

exists and λ′(G) ≤ ξ(G), if G is not a star and its order is at least 4, where ξ = ξ(G)

denotes the minimum edge-degree of G. The following result was proved in [9].

λ′ = ξ if D ≤ g − 2. (7.2)

Regarding the diameter of EX(n; t), a useful theorem is given below.

Theorem 7.2.1 [6] Let G ∈ EX(n; t), t ≥ 3 and n ≥ t + 1. Then the diameter of

an extremal graph G is D(G) ≤ t − 1.

Applying these results to extremal graphs, we obtain the following result.

* Corollary 7.2.1 Every graph G ∈ EX(n; t) has λ′ = ξ.

Proof By Theorem 7.2.1, the diameter is D ≤ t − 1 ≤ g − 2, because g ≥ t + 1.

Therefore, from (7.2) it follows that λ′ = ξ.

Using Theorem 7.2.1, we next prove the following theorem.

* Theorem 7.2.2 Let G ∈ EX(n; t). Then G is at least δ-vertex connected when t

is even.
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Proof Let F be a smallest vertex cut, and let G − F contain two components G1

and G2. Let us assume |F | < δ. It is easy to see that |V (G1)| > 1 and |V (G2)| > 1.

Considering component G1, since G1 6= ∅, there exists a vertex u1 which is at distance

1 to F . We know that |F | < δ ≤ |N(u1)|. This implies that there exists at least

one vertex u2 ∈ N(u1) which is at distance two to F . Otherwise, all neighbors of u1

would have distance 1 to F , and since |F | < δ, either two neighbors of u1 will have

distance one to the same vertex f ∈ F or two neighbors of u1 will be adjacent, thus

form a cycle of either size three or four in the graph, contradicting the assumption.

Next we assume t ≥ 6 and consider the neighbors of u2. With the same reasoning,

there exists a vertex u3 which is at distance three to F . We continue the process

until we find a vertex which is farthest from F . If t is even, we shall find a vertex

ut/2 which is at distance t/2 to F . If t is odd, then we shall find a vertex u(t−1)/2

which is at distance (t−1)/2 to F . In other words, we will find a vertex u⌊t/2⌋ which

has distance ⌊t/2⌋ to F . Similarly, in G2, we find a vertex v⌊t/2⌋ which is at distance

⌊t/2⌋ to F . Thus we find in G two vertices which are t/2 + t/2 = t apart for t even,

in contradiction to Theorem 7.2.1.

Note that this approach does not work for t odd, since the vertices we find in G1

and G2 might be at distance t − 1 apart when t is odd.

Next, we will show that a graph G ∈ EX(n; t) is at least δ-vertex connected when

t is odd and and the minimum degree δ is small (δ < 5).

To begin with, we will establish some useful lemmas that will be used in the proofs

of Theorems 7.2, 7.2 and 7.2.

Given a subset of vertices F of a graph G = (V, E), let u ∈ V \ F such that

d(u, F ) = d. For every integer s ≥ d, Fs(u) = {f ∈ F : d(u, f) ≤ s}.

* Lemma 7.2.1 Let G ∈ EX(n; t), t odd and δ ≥ 2. Let F ⊂ V be a cut set with

|F | < δ. Let G − F contain two components C and C ′, such that each C and C ′

contains some vertex u with d(u, F ) = (t − 1)/2. Then
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(i) there exist at least two vertices u1, u2 ∈ N(u) such that d(u1, F ) = d(u2, F ) =

(t − 1)/2, and Fs(u1) ∩ Fs(u2) 6= ∅ when s = (t − 1)/2;

(ii) Fs(u) ∩ Fs(u1) = ∅ if s ≤ (t − 1)/2 and u1 ∈ N(u).

Proof (i) Since |F | < δ and d(u) ≥ δ, it is possible to have two paths from u to

a common vertex f in F , namely, u, u1 → f of length (t + 1)/2 and u, u2 → f of

length (t + 1)/2 when u1, u2 ∈ N(u). Otherwise, these two paths must form a cycle

whose length is at most t. Therefore, d(u1, F ) = (t− 1)/2 and d(u2, F ) = (t− 1)/2.

(ii) Assume Fs(u) ∩ Fs(u1) 6= ∅, since F < δ and d(u) ≥ δ, there are two paths,

namely, a shortest path u → f of length (t−1)/2 and uu1, u1 → f of length (t+1)/2,

which together form a cycle of length t. This is a contradiction.

Now we are ready to prove the following theorems.

* Theorem 7.2.3 Let G ∈ EX(n; t). Then G is 2-vertex connected when δ ≥ 2

and t is odd.

Proof Let us consider G being 1-connected when δ ≥ 2. Assume G contains a cut

vertex f . From the proof of Theorem 7.2, it is clear that when t is odd, we find a

vertex u which is at distance (t−1)/2 to f . Since δ ≥ 2 and girth g is at least t+1,

there are two different paths from vertex u to f , namely, the shortest path u → f of

length (t−1)/2, and the path u, u1 → f of length at least (t+3)/2 when u1 ∈ N(u).

So, the path u1 → f has length (t + 1)/2 which contradicts the assumption that u

is a farthest vertex from f because of D ≤ t − 1.

* Theorem 7.2.4 Let G ∈ EX(n; t). Then G is 3-vertex connected when δ = 3

and t is odd.

Proof We consider G being 2-connected, when δ ≥ 3. Assume G contains a cut

set F , and F = {f1, f2}. From Theorem 7.2, it is clear that when t is odd, we

have a vertex u which is at distance (t− 1)/2 to F . By the same reasoning, we can

find a vertex v which is at distance (t − 1)/2 to F in another component of G − F .

Assume d(u, f1) = d(v, f1) = (t − 1)/2(as D ≤ t − 1). By Lemma 7.2.1(i), there
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exist two vertices, say, u1 and u2, such that u1, u2 ∈ N(u), d(u1, F ) = (t − 1)/2

and d(u2, F ) = (t − 1)/2. Now we need to discuss two cases based on the distance

between the neighborhoods of u and v.

Case 1(see Figure 7.1). Assume f2 ∈ F(t−1)/2(u2), then d(v, f2) ≥ (t + 1)/2. There-

fore, d(u2, v) ≥ d(u2, f2)+d(v, f2) = (t−1)/2+(t+1)/2 = t. This is a contradiction

since D ≤ t − 1.

Figure 7.1: Case 1 when δ = 3.

Case 2(see Figure 7.2). By Lemma 7.2.1(i), there exists a vertex, say v2, such that

v2 ∈ N(v) and d(v2, F ) = (t − 1)/2. Suppose f2 ∈ F(t−1)/2(v). Then d(v2, f2) ≥
(t + 1)/2. Therefore, d(u2, v2) ≥ d(u2, f2) + d(f2, v2) = t. This is a contradiction

since D ≤ t − 1.

* Theorem 7.2.5 Let G ∈ EX(n; t). Then G is 4-vertex connected when δ = 4

and t is odd.

Proof Let G be 3-connected when δ ≥ 4. Assume G contains a cut set F , and

|F | = 3. By Lemma 7.2.1(i), there exists a vertex, say v3, such that v3 ∈ N(v) and
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Figure 7.2: Case 2 when δ = 3.

d(v3, F ) = (t − 1)/2. Since δ = 4 and there are at least two vertices from N(u) of

distance (t−1)/2 to F , by Lemma 7.2.1, we need only consider three different cases

of how many neighbours of u and v are at distance (n − 3)/2 to F .

Case 1. Assume that there is only one shortest path from u to F , and that there

exists only one shortest path from v to F . Let f1 ∈ F such that d(u, f1) = (t−1)/2.

In addition, d(v, f1) = (t−1)/2, by our assumption. Otherwise, d(u, v) ≥ t, which is

a contradiction (see Figure 7.3). Therefore, d(f1, v3) ≥ (t+1)/2, by Lemma 7.2.1(ii).

Hence d(u, v3) ≥ d(u, f1) + d(f1, v3) = t, which is impossible since D ≤ t − 1.

Case 2. Assume that there is only one shortest path from u to F , and that there exist

two vertices from N(v) of distance (t− 3)/2. Since D ≤ t− 1, there exists a vertex

f1 ∈ F(n−1)/2(u) and F(n−1)/2(v). By our Lemma 7.2.1(ii), d(f1, v3) ≥ (t + 1)/2.

Since we assume d(u, F ) = d(u, f1), it follows that d(u, v3) ≥ d(u, f1)+d(f1, v3) = t,

which is a contradiction because of D ≤ t − 1 (see Figure 7.4).

Case 3. Assume that there are two shortest paths from u to F , and there exist two

vertices from N(v) at distance (t−3)/2 to F . Let us look at two sub-cases according
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Figure 7.3: Case 1 when δ = 4.

Figure 7.4: Case 2 when δ = 4.
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to whether or not F(t−1)/2(u) = F(t−1)/2(v).

(a) Assume F(t−1)/2(u) = F(t−1)/2(v). Then there exists a vertex, say f1, such that

f1 ∈ F(n−1)/2(u) and F(n−1)/2(v). By Lemma 7.2.1(ii), d(f1, v3 ≥ (t + 1)/2. Then

d(u, v3 ≥ d(u, f1) + d(f1, v3) = t, which is impossible (see Figure 7.5).

Figure 7.5: Case 3a when δ = 4.

(b) Assume F(t−1)/2(u) 6= F(t−1)/2(v) (see Figure 7.6). By Lemma 7.2.1(i), there exists

a vertex, say u3, such that u3 ∈ N(u) and d(u3, F ) = (t − 1)/2. In this case,

d(u3, v3) ≥ t, which is a contradiction since D ≤ t − 1.

7.3 Superconnectivity of regular graphs with odd

girth

Recall that a graph is super-κ if its diameter is at most g − 3, when g is odd

(respectively, if its diameter is at most g − 4, when g is even) [34]. In this section
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Figure 7.6: Case 3b when δ = 4.

we improve this result by proving that a r-regular graph G with r ≥ 3 and diameter

at most g − 2 is super-κ when g is odd.

To prove that a r-regular graph G with r ≥ 3 and diameter at most g− 2 is super-κ

when g is odd, we require the following known result.

Proposition 7.3.1 [7] Let G = (V, E) be a connected graph with girth g and min-

imum degree δ ≥ 2. Let X ⊂ V be a κ1-cut with cardinality |X| < ξ(G). Then for

each connected component C of G−X there exists some vertex u0 ∈ V (C) such that

d(u0, X) ≥ ⌈(g − 3)/2⌉ and |N⌈(g−3)/2⌉(u0) ∩ X| ≤ 1.

We use Proposition 7.3.1 to prove some structural properties of a component C

when g is odd and max{d(u, X) : u ∈ V (C)} = (g − 3)/2.

* Lemma 7.3.1 Let G be a κ1-connected graph with odd girth and minimum degree

δ ≥ 3. Let X be a κ1-cut with |X| = δ and assume that there exists a connected

component C of G − X such that max{d(u, X) : u ∈ V (C)} = (g − 3)/2. Then the

following assertions hold:
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(i) If u ∈ V (C) is such that d(u, X) = (g − 3)/2 and |N(g−3)/2(u) ∩ X| = 1 then

d(u) = δ and u has δ − 1 neighbors z such that d(z, X) = (g − 3)/2 and

|N(g−3)/2(z) ∩ X| = 1. Moreover, |N(g−1)/2(u) ∩ X| = δ − 1 and X is a set of

independent vertices.

(ii) There exists a (δ−1)-regular subgraph Γ such that, for every vertex w ∈ V (Γ),

dG(w) = δ and d(w, X) = (g − 3)/2.

(iii) If g = 5 then |N(X) ∩ V (C)| ≥ δ(δ − 1).

(iv) If g ≥ 7 then |N(X) ∩ V (C)| ≥ (δ − 1)2 + 2.

Proof Set µ = (g − 3)/2. Notice that g ≥ 5 since µ ≥ 1.

(i) Given a vertex u in C such that |Nµ(u) ∩ X| = 1, let x1 be a vertex in X

such that d(u, X) = d(u, x1) = µ and let z1 ∈ N(u) be such that d(z1, x1) = µ − 1.

Every vertex in N(u) \ {z1} is located in Nµ(X) ∩ V (C), since otherwise, there are

at least two vertices, say zj and zk, such that d(zj, X) = d(zk, X) = µ − 1 and

there exist two paths of length µ from u to x1, namely u, zj, . . . , x1 and u, zk, . . . , x1,

which form a cycle of length at most 2µ = 2(g − 3)/2 < g. Therefore, there are

|N(u) \ {z1}| = d(u)− 1 vertices z ∈ N(u)∩Nµ(X). Moreover, the sets Nµ(zi)∩X,

where zi ∈ N(u) \ {z1} and i = 2, . . . , d(u), are pairwise disjoint (see Figure 7.7),

because otherwise there exist at least two vertices, say zj and zk in N(u) \ {z1} and

a vertex xk ∈ X such that the zj − xk path and the zk − xk path both have length

µ. Thus a cycle of length at most 2 + 2µ = 2 + 2(g − 3)/2 < g is created through

the vertices zj , u, zk and xk. Hence, by the Pigeonhole Principle

|X| = δ ≥ |Nµ(u) ∩ X| + ∑d(u)
i=2 |Nµ(zi) ∩ X|

≥ 1 + (d(u) − 1)

= d(u) ≥ δ.

(7.3)

Hence, the inequalities are forced to be equalities, that is,

d(u) = δ, and |Nµ(zi) ∩ X| = 1,
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for every vertex zi ∈ N(u) − z1, i = 2, . . . , δ, and

X = (Nµ(u) ∩ X) ∪ (∪d(u)
i=2 (Nµ(zi) ∩ X))

which means that X is a set of independent vertices. Therefore, we obtain that

|Nµ+1(u) ∩ X| = | ∪d(u)
i=2 (Nµ(zi) ∩ X)| =

d(u)
∑

i=2

|Nµ(zi) ∩ X| = δ − 1,

which concludes the proof of (i).

Figure 7.7: Pairwise disjoint sets Nµ(zi) ∩ X.

(ii) From Proposition 7.3.1, it follows that there exists a vertex

u0 ∈ Nµ(X) ∩ V (C)

such that |Nµ(u0)∩X| = 1. By (i), the degree of u0 is d(u0) = δ and there are δ−1

vertices zi ∈ N(u0) ∩ Nµ(X) such that |Nµ(zi) ∩ X| = 1, for i = 2, . . . , δ. Applying

the same reasoning used for proving (i) to the vertices zi, we obtain d(zi) = δ, i =

2, . . . , δ and each zi has δ−1 neighbors w ∈ Nµ(X)∩V (C), such that |Nµ(w)∩X| = 1.
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Iterating this reasoning for each of the neighbors of zi, we obtain a (δ − 1)-regular

subgraph Γ in G[Nµ(X) ∩ V (C)], such that every w ∈ V (Γ) has dG(w) = δ.

(iii) and (iv) By (ii), we know that there exists a (δ − 1)-regular subgraph Γ in

G[Nµ(X) ∩ V (C)], such that every w ∈ V (Γ) has dG(w) = δ, and by (i),

|Nµ(w) ∩ X| = 1,

for every w ∈ V (Γ). Let u ∈ V (Γ) and let T = ({u} ∪N(u) ∪N2(u)) ∩ V (Γ). Then

|Nµ−1(T ) ∩ N(X) ∩ V (C)| ≥ |T | because otherwise forbidden cycles through u and

two different vertices of N2(u) ∩ V (Γ) of length at most 2(µ− 1) + 4 = g − 1 would

be created. Therefore, since g ≥ 5, we have

|Nµ−1(T ) ∩ N(X) ∩ V (C)| ≥ |T |
= 1 + (δ − 1) + (δ − 1)(δ − 2)

= 1 + (δ − 1)2.

(7.4)

Since u ∈ V (Γ) then dG(u) = δ which implies that there exists a unique vertex

z1 ∈ N(u) ∩ Nµ−1(X). Let X = {x1, x2, . . . , xδ} denote the elements of the non

trivial cut set and N(u)∩T = {z2, . . . , zδ} the neighbors of u included in T . Without

loss of generality, let Nµ(u) ∩ X = {x1} and Nµ(zi) ∩ X = {xi}, for i = 2, . . . , δ.

Since Nµ(X) = N(X) for g = 5, we need to consider the two cases g = 5 and g ≥ 7

separately.

Case g = 5. Then µ = 1 and ux1, zixi, i = 2, . . . , δ are edges of G. Define the

sets Xi = X \ {x1, xi} and Zi = N(zi) \ {u, xi}. Clearly |Xi| = |Zi| = δ − 2. Since

|N(w) ∩ X| = 1, for every w ∈ Zi, then there exists a perfect matching between

each of the sets Zi and Xi, for all i = 2, 3, . . . , δ. Let wi
k ∈ Zi denote the δ − 2

elements of Zi, such that wi
kxk, xk ∈ Xi are the edges of the matching between

Zi and Xi. Since dG(wi
k) = δ and {xk, zi} ⊂ N(wi

k), then wi
k must have δ − 2

neighbors more in N(X). Furthermore, wi
k has at most one neighbor wj

h in Zj for

each j 6= i, because if wi
kw

j
h and wi

kw
j
t were two edges of G, the forbidden cycle

including vertices wi
k, w

j
h, zj , w

j
t , w

i
k of length four would be created. Moreover, if wi

k
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has a neighbor in Zk, then there exists an edge wi
kw

k
h which forms a cycle including

vertices wi
k, xk, zk, w

k
h, w

i
k of length four, therefore, N(wi

k)∩Zk = ∅ (see Figure 7.8).

Figure 7.8: Illustration of the proof that |N(X) ∩ V (C)| ≥ δ(δ − 1) for g = 5.

Consequently, |N(wi
k)∩(∪δ

j=2Zj−{Zi, Zk})| ≤ δ−3, which implies that each wi
k ∈ Zi

has at least one new neighbor in N(X) − T . (As an illustration, see the graph

depicted in Figure 7.10). Therefore,

|N(X) ∩ V (C)| ≥ |T | + |Zi| ≥ 1 + (δ − 1)2 + (δ − 2) = δ(δ − 1), and thus (iii)

follows.

Case g ≥ 7. In this case the subgraph of Γ induced by T is a tree and, by

(7.4), we have |N(X)∩V (C)| ≥ 1+ (δ− 1)2. We reason by contradiction, assuming

|N(X) ∩ V (C)| = (δ − 1)2 + 1. Again by (7.4), we know that

|Nµ−1(T ) ∩ N(X) ∩ V (C)| = |T | = 1 + (δ − 1)2,

which implies |Nµ−1(u) ∩ N(X) ∩ V (C)| = 1, |Nµ−1(zi) ∩ N(X) ∩ V (C)| = 1 and
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|Nµ(zi) ∩ N(X) ∩ V (C)| = δ − 1 for i = 2, . . . , δ. Denote

{z′′1} = Nµ−1(u) ∩ N(X) ∩ V (C) = N(x1) ∩ V (C).

Since g ≥ 7, there exists w ∈ N2(zi)∩V (Γ), for some i ∈ {2, . . . , δ}, such that w 6∈ T

and z′′1 6∈ Nµ−1(w) ∪ Nµ(w), because otherwise a forbidden cycle through u, w, z′′1

of length at most 2µ + 2 would be created. Therefore, (Nµ(w) ∪ Nµ+1(w)) ∩ X ⊆
X \ {x1}. Applying Lemma 7.3.1 (i) we get Nµ+1(w) ∩ X = {x2, . . . , xδ}. Hence

there exists xj ∈ {x2, . . . , xδ}, j 6= i, such that xj ∈ Nµ(w) ∩ Nµ+1(w), creating

a cycle through xj and w of length 2µ + 1 which is a contradiction. Therefore

|N(X) ∩ V (C)| ≥ 2 + (δ − 1)2, as required.

As a consequence of Lemma 7.3.1 we obtain Theorem 7.3.1 which is an improvement

of Theorem 3.4.2 (ii) for regular graphs of odd girth.

* Theorem 7.3.1 Let G be a r-regular graph with r ≥ 3 and odd girth g. If the

diameter D ≤ g − 2 then G is super-κ when g ≥ 5, and a complete graph otherwise.

Proof

For g = 3, the diameter is D ≤ g − 2 = 1 and G is a complete graph. For g ≥ 5

assume that G is not super-κ. Then κ1 = κ ≤ r because G is an r-regular graph.

By Theorem 3.4.1 (vi), κ1 = κ = r. Let X be a κ1-cut with |X| = κ1 = r.

Let C and C ′ denote two components of G − X. Let

µ(C) = max{d(u, X) : u ∈ V (C)}

and µ(C ′) = max{d(u′, X) : u′ ∈ V (C ′)}, as shown in Figure 7.9. From Proposition

7.3.1 it follows that µ(C) ≥ (g − 3)/2 and µ(C ′) ≥ (g − 3)/2. If µ(C), µ(C ′) ≥
(g − 1)/2 then, given u ∈ V (C), u′ ∈ V (C ′), the diameter D ≥ d(u, u′) ≥ d(u, X) +

d(u′, X) ≥ 2(g − 1)/2 = g − 1, contradicting our hypothesis that D ≤ g − 2.

Therefore, there exists at most one component, say C ′, such that µ(C ′) = (g−1)/2,

and any other component C 6= C ′ must have µ(C) = (g − 3)/2.
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By Lemma 7.3.1, |N(X)∩V (C)| ≥ r2−r when g = 5, and |N(X)∩V (C)| ≥ (r−1)2+

2 when g ≥ 7. Since G is an r-regular graph |N(X) ∩ V (C ′)| ≤ |N(X)| − |N(X) ∩
V (C)| ≤ r2−(r2−r) = r when g = 5, and |N(X)∩V (C ′)| ≤ r2−((r−1)2+2) ≤ 2r−3

when g ≥ 7.

Let F ′ = [X, V (C ′)] denote the set of edges having one vertex in X and the other

vertex in V (C ′). Then F ′ is an edge-cut of cardinality |F ′| ≤ 2r−3. Assume that F ′

is trivial. Then F ′ contains the edges incident with some vertex y ∈ X or y′ ∈ V (C ′)

(see Figure 7.9). If y′ ∈ V (C ′) then X contains the neighborhood of y′, which

contradicts our hypothesis that X is a non trivial vertex-cut. If y ∈ X then X \ {y}
is a vertex-cut with cardinality |X|−1, that is, X is non-minimal, again contradicting

our hypothesis. Therefore, F ′ is a nontrivial edge-cut and λ1 ≤ |F ′| < 2r − 2 = ξ.

However, we know from Theorem 3.4.6 that λ1 = ξ for D ≤ g−2. As a consequence,

if D ≤ g − 2 then |X| = κ1 > r and G is super-κ.

Figure 7.9: Illustration of the proof in Theorem 7.3.1 if g ≥ 7.
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Figure 7.10: Graph with g = 5 and κ1 = δ = 3.

The graph depicted in Figure 7.10 shows a non δ-regular graph, with g = 5 and

D = 3, which is non super-κ. Consequently, the hypothesis of regularity is essential

to establish Theorem 7.3.1.



Chapter 8

Conclusions and Open Problems

In this thesis, we focused on several extremal graph problems in terms of several

parameters, namely, connectivity, order, degree, diameter and girth.

In particular, we considered out-degree-relaxed Moore digraphs, that is, digraphs

which are ‘close’ to Moore digraphs, by relaxing the maximum out-degree d, for given
−−−→
Md,D vertices and diameter D. We constructed some digraphs by using HSAGA

algorithms, in order to improve the current upper bounds of out-degree for out-

degree-relaxed Moore digraphs. Next, we constructed various large graphs with

given order n and girth at least t+1, and sizes that increase the current lower bounds

of extremal numbers, ex(n; t). Notice that some of our improved lower bounds

of extremal numbers are optimal. Then we improved upper bounds of extremal

numbers for some particular values of n and t, and we proved that an extremal graph

G has optimal restricted edge-connectivity. Moreover, we proved that an extremal

graph G is at least δ-connected when t is even, and G is at least δ-connected when

1 ≤ δ ≤ 4 and t odd. Last but not least, we proved that every r-regular graph G

with r ≥ 3 is superconnected when the girth g is odd the diameter D is at most

g − 2.

Not only have we presented research directions and results concerning extremal

graph theory, but also we give several open problems for the direction of further

research in this area. We start with some open problems in the constructions of
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nearly Moore graphs and digraphs.

In Chapter 4, we proposed several open problems:

Problem 8.1 What is the minimum value of α, if G is a (n,D, D)-graph with M∆,D

vertices, given diameter D, and degree sequence D1 = (∆ + α, ∆M∆,D−1)?

Problem 8.2 What is the minimum number of vertices, denoted by β, if G is a

(n,D, D)-graph with M∆,D vertices, given diameter D, and degree sequence D2 =

((∆ + 1)β, ∆M∆,D−β)?

The directed version of the above problems is listed below.

Problem 8.3 What is the minimum value α, if G is a (n,D+, D)-digraph with
−−−→
Md,D

vertices and given diameter D, and out-degree sequence D+
1 = (d + α, d

−−−→
Md,D−1)?

Problem 8.4 What is the minimum number of vertices, denoted by β, if G is a

(n,D+, D)-digraph with
−−−→
Md,D vertices, given diameter D, and out-degree sequence

D+
2 = ((d + 1)β, d

−−−→
Md,D−β)?

In Table 4.6 from Chapter 4, we showed the current minimum number of extra out-

degree a, and the current minimum number of vertices β with out-degree d + 1, for

given 2 ≤ D ≤ 6 and d = 2. In the future, we want to prove that these current

minimum values are optimal.

Next, we notice that in Table 6.5 and 6.6 from Chapter 6, there exist a few small gaps

between current lower bounds of extremal number, denoted by exl(n; t), and current

upper bounds of extremal number, called exu(n; t). For example, exl(30; 6) ≥ 47

and exu(30; 6) ≤ 48, and so on. In the future, we plan to work on these small gaps,

in order to decrease the size of these gaps. Furthermore, we would like to prove

exact values of extremal number, for some particular values of n and t.

Regarding the connectivity of extremal graphs, in Chapter 7, we have proved that

every G ∈ EX(n; t) is maximally connected for all even t, and 4-connected for δ ≤ 4

and t odd. Now we propose the following conjecture.
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Conjecture 8.1 Let G ∈ EX(n; t). Then G is δ-connected when δ ≥ 5 and t is

odd.

We mentioned before that, in some cases, (k; g)-cages are extremal graphs. In 1997,

Fu et al. [39] conjectured that every (k; g)-cage is k-connected. Daven and Rodgers

[29] and Jiang and Mubayi [50] have proved that every (k; g)-cage with k ≥ 3 is 3-

connected. Xu, Wang and Wang [89], showed that all (4; g)-cages are 4-connected.

Recently, Marcote et al. showed that (k; g)-cages with g ≥ 10 are 4-connected [61].

We hope that solving our conjecture will shed some light on the conjecture that

every (k; g)-cage is k-connected.



Appendix A

Algorithm HSAGA

A.1 Introduction

In Chapter 2 we presented known results on graphs and digraphs, and we listed our

open problems regarding graphs and digraphs. Currently, our study is focusing on

directed graphs. In this chapter, we will describe construction techniques, namely,

line digraphs, generalised Kautz digraphs and vertex deletion scheme, which will be

used in this study to obtain new large digraphs from ‘base digraphs’. A given digraph

which is used to create a new digraph is called a base digraph. Our methodology

also includes several optimization algorithms, such as simulated annealing, genetic

algorithms, as well as our new algorithm method called hybrid simulated annealing

and genetic algorithms. Using these algorithms in computer search, we are able to

obtain large digraphs, which are in some way ‘close’ to Moore digraphs and some

digraphs of number of vertices in the gaps between current known lower bounds and

current best upper bounds of digraphs.
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A.2 Optimization algorithms

A.2.1 Simulated annealing

The algorithm is based on that of Metropolis et al. [63], which was originally

proposed as a means of finding the equilibrium configuration of a collection of atoms

at a given temperature. The connection between this algorithm and mathematical

minimization was first noted by Pincus [70]. However, it was Kirkpatrick et al.

[54] who proposed that simulated annealing could form the basis of an optimization

technique for combinatorial (and other) problems.

Simulated Annealing (SA) is a means of finding good solutions to combinatorial

optimization problems. The basic operation in this technique is a move. A move

is a transition from one element of the solution space to another element. In this

paper, a move means inserting an arc between two randomly generated nonadjacent

vertices x and y and remove one of arcs from x, in terms of their cost. The cost of a

vertex x, denoted by c(x), is the number of unique vertices reached by x at most in k

steps. Assume m and n are out-neighbors of the vertex x and c(m) is less than c(n).

If c(y) is greater than c(m), we must remove the arc between x and m, and insert

an arc from x to y. Otherwise, we accept the arc (x → y) with probability e−△E/T ,

where T is a global time-varying parameter called the temperature and △E is the

increase in cost (i.e., c(y) − c(m)) that would result from this prospective move.

The pseudo code [87] for our implementation is given below. In the inner loop, move

is selected at random. A limited number of move are accepted at each temperature

level. For better results in terms of small diameters, we would use larger numbers

of move. In our study, we use 20|V (G)| as the maximum number of moves. Fur-

thermore, there is a limit on the number of attempted moves at each temperature.

For each accepted move, we want to attempt no more than 60 moves. Once the

maximum number of accepted moves or the maximum number of attempted moves

has been reached, the temperature is lowered and a new iteration begins.
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Simulated Annealing(G)

temp = initial_temp = 1.0

Cool_rate = 0.95

Max_moves = 20 * |V| // maximum numbers of move

Max_attempted_moves = 60 * max_moves // maximum numbers of attempted move

Max_frozen = 100

frozen = 0

randomly create a digraph based on given order and out-degree

While (frozen <= Max_frozen)

moves = 0 // numbers of move

attempted_moves = 0 // numbers of attempted move

While ((moves <= Max_moves) and (attempted_moves <= Max_attempted_moves))

increase attempted_moves

randomly select two non-adjacent vertices

If the random vertices are accepted

do move() and increase moves

// new digraph’s diameter is equal to required diameter k

If (k(G new) == k required)

return the improved solution, and end Simulated Anneal(G)

End if

End if

End while

temp = temp * Cool_rate

If(attempted_moves > Max_attempted_moves)

increase frozen

End if

End while

End Simulated Annealing(G)
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A.2.2 Genetic algorithm

Genetic Algorithm (GA) is a search technique for global optimization in a complex

search space. As the name suggests, GA employs the concepts of natural selection

and genetics [68].

In GA, search space is composed of all the possible solutions to the problem. A so-

lution in the search space is represented by a sequence of 0′s and 1′s. This solution

is referred to as the chromosome in the search space. Each chromosome has an asso-

ciated objective function value called fitness value. A good chromosome is one that

has high/low fitness value depending on the problem (maximization/minimization).

A set of chromosomes and the associated fitness values is called the population.

There are five basic functions inside of GA. Fitness is used to evaluate the fitness

value of each chromosome in the current population. Selection is used to choose two

parent chromosomes from the current population according to their fitness values.

Crossover is used to cross over the two parents to form two new offspring based

on Crossover rate, which is the odds of a parent being selected for the crossover

operation. Actually, if no crossover is performed, then offsprings are created as the

exact copies of parents. Furthermore, the Mutation is used to mutate new offspring

at each position in chromosome in terms of Mutation rate, which specifies the odds

that a given position in a offspring will be mutated. Finally, Test is used to evaluate

whether or not the new offspring satisfies the end condition.

The pseudo code of the general GA proceeds is given below.
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Genetic Algorithm(G)

Crossover_rate = 0.95, Mutation_rate = 0.03

Curr_pupulation_size = 200

Create an empty new population

Found_soulation = false

do Initial_Population() // Random generate a current population with

200 chromosomes.

While (Found_soulation = false)

do Fitness()

While (Curr_population_size < 0)

do Selection()

do Crossover()

do Mutation()

If (Test() = true)

Return the improved solution

Found_solution = true // End Genetic Algorithm(G)

Else (Test() = false)

do Accepting() // Place new offsprings in the new population.

Curr_population_size = Curr_population_size - 2

End if

End while

do Replace() // Use new generated population to replace the

current population for a further run of the GA.

Curr_population_size = 200

End while

End Genetic Algorithm(G)
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A.2.3 Hybrid simulated annealing and genetic algorithms

We introduced an optimization algorithm method: Hybrid simulated annealing and

genetic algorithms (HSAGA). The general idea of HSAGA is that an initial digraph

is created at the beginning, and used as the initial digraph input into SA. SA will

terminate if the generated solution is satisfied in terms of given diameter after move,

otherwise, the population of candidate solutions will be obtained. Furthermore, the

set of elite individuals of the population is chosen by a selection procedure of GA

according to their evaluation fitness values, following genetic operations consisting

of crossover and mutation. The basic processes of HSAGA are shown in Figure A.1,

and the details of each process can be described as below.

(a) Input parameters into our program, such as the out-degree, required minimum

diameter, as well as cooling rate, which controls the decreasing of temperature,

and population’s size, that is, the numbers of chromosome, and so on.

(b) Create an initial base digraph in terms of given out-degree and diameter by us-

ing construction techniques, known as the generalised Kautz digraphs, and line

digraph iterations. In addition, every digraph is represented by an adjacency

matrix.

(c) If the current digraph is an improved digraph in terms of given diameter, then

we terminate our process and output the result.

(d) Otherwise, put the current digraph into the method called SA. During its

processing, SA will execute move to optimize the current digraph. We have a

valuation function to test whether or not the diameter of the generated digraph

matches the desired given diameter. If yes, then the process will stop and go

to Step c. Otherwise, it will create a chromosome, based on its fitness value,

which is represented by the number of reached central vertices by the current

generated digraph, then store each chromosome into the population. If we fix

the population size as 200, HSAGA will obtain a population of first 200 best

chromosomes, based on their fitness values.
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(e) Input the current population into GA functions consisting of selection, crossover

and mutation, in order to obtain an improved solution, that is, a digraph whose

diameter is equal to the given diameter. It is well known that GA never guar-

antees to generate a best solution, no matter what is the running time. So

if GA could not give us an improved digraph at the end of the running time,

we will select a current best chromosome, and input it back to SA, until the

improved solution is found with respect to the given diameter.
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Figure A.1: Basic structure of HSAGA.
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[31] P. Erdős, S. Fajtlowicz, and A.J. Hoffman. Maximum degree in graphs of

diameter 2. Networks, 10:87–90, 1980.
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