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Abstract

Let (G,G+) be a quasi-lattice-ordered group with positive cone G+. Laca and

Raeburn have shown that the universal C∗-algebra C∗(G,G+) introduced by Nica

is a crossed product BG+ ×α G+ by a semigroup of endomorphisms. Subsequent

research centered on totally ordered abelian groups. We generalize the results in

[2], [3] and [5] to extend it to the case of discrete lattice-ordered abelian groups. In

particular given a hereditary subsemigroup H+ of G+ we introduce a closed ideal

IH+ of the C∗-algebra BG+ . We construct an approximate identity for this ideal and

show that IH+ is extendibly α-invariant. It follows that there is an isomorphism

between C∗-crossed products (BG+/IH+) ×α̃ G+ and B(G/H)+ ×β G+. This leads to

one of our main results that B(G/H)+ ×β G+ is realized as an induced C∗-algebra

IndĜH⊥
(
B(G/H)+ ×τ (G/H)+

)
. Then we use this result to show the existence of the

following short exact sequence of C∗-algebras

0→ IH+ ×α G+ → BG+ ×α G+ → IndĜH⊥
(
B(G/H)+ ×τ (G/H)+

)
→ 0.

This leads to show that the ideal IH+×αG+ is generated by
{
iBG+

(1−1u) : u ∈ H+

}
and therefore contained in the commutator ideal CG of the C∗-algebra BG+ ×α G+.

Moreover, we use our short exact sequence to study the primitive ideals of the C∗

algebra BG+ ×α G+ which is isomorphic to the Toeplitz algebra T (G) of G.
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CHAPTER 1

Introduction

The theory of crossed products of C∗-algebras by endomorphisms has been developing

rapidly. This theory is a generalization of the theory of crossed products of C∗-

algebras by semigroups of automorphisms, which is an interesting area of the modern

theory of operator algebras. The significance of that theory have led many authors

to consider more general cases of crossed products of C∗-algebras by semigroups of

automorphisms such as Murphy in [27] and the crossed products by semigroups of

endomorphisms ([1], [2], [4], [9], [24]).

The origins of the theory of crossed products by semigroups of endomorphisms

can be traced back to Cuntz’s work in which he observed that the Cuntz algebra On
which is generated by certain families of isometries, can be viewed as an isometric

crossed product of a UHF-algebra by a single endomorphism [11]. This work was

later generalized and attracted many authors. It was not until Stacey’s paper [38]

that a crossed product by an endomorphism was explicitly described as an abstract

object. In particular, for any C∗-algebra A and any endomorphism α : A → A;

Stacey found a family of covariant representations for which the crossed product,

which was denoted by Aoα N, is universal. Since then this idea has been improved

and authors have studied isometric crossed products by actions of the semigroup N

using Stacey’s work (see [9], [10]), actions of totally ordered abelian groups ([3],

[4]) and by actions of quasi-lattice ordered groups ([21], [32]). Crossed products by

semigroups of endomorphisms have been used in a number of settings and provide

good models for Toeplitz algebras ([4], [21]).

In this thesis, we work on crossed products by semigroups of endomorphisms,

actions of general semigroups, namely the positive cone G+ of a partially ordered
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discrete abelian group G and with C∗-algebras A which may not have an identity. For

A unital and (G,G+) a quasi-lattice ordered group, it was shown in [21, Corollary 2.4]

that the C∗-algebra C∗(G,G+) is the crossed product BG+ ×α G+ of the dynamical

system (BG+ , G+, α) consisting of the C∗-subalgebra BG+ of `∞(G+) spanned by the

functions {1x : x ∈ G+}, where

1x(y) =

{
1 if y ≥ x,

0 otherwise,

and the action α given by αx(1y) = 1x+y for x, y ∈ G+. Moreover, denote by

{εx : x ∈ G+} the usual basis for the Hilbert space `2(G+). For each x ∈ G+, there

is an isometry Tx on `2(G+) satisfying Tx(εy) = εx+y for all y ∈ G+. The Toeplitz

algebra of G is the C∗-subalgebra T (G) of B(`2(G+)) generated by the isometries

{Tx : x ∈ G+}.

We are interested in the crossed product BG+ ×α G+ because it is generated by

the elements {iG+(x) : x ∈ G+} and has the following universal property: for every

covariant isometric representation V of G+ there is a unital representation πV ×V of

BG+×αG+ such that πV ×V (iG+(x)) = Vx [21, Proposition 2.3]. Moreover, since we

are working with abelian groups, πV ×V is faithful if and only if
∏n

i=1(1−VxiV ∗xi) 6= 0

whenever x1, x2, ..., xn ∈ G+\{0} [21, Theorem 3.7]. Another interesting thing about

the crossed product BG+ ×α G+ is that using its universal property, Laca-Raeburn

have showed in [21, Corollary 3.8] that for any amenable quasi-lattice ordered group

(G,G+) the crossed product BG+ ×α G+ is isomorphic to the Toeplitz algebra of G.

Thus T (G) is itself universal for covariant isometric representations of G+.

To talk about crossed products of a non-unital algebra A, we need the endomor-

phisms {αx : x ∈ G+} to be extendible, that is each αx has a strictly continuous

extension αx : M(A) → M(A); where M(A) is the multiplier algebra of A. We

need to consider algebras without identity because we will study the crossed product

IH+ ×α G+ of an extendibly αx-invariant ideal IH+ of BG+ .
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We give now an outline of what we do in each chapter. We begin with a chapter

of background material and some results we proved about quasi-lattice and lattice-

ordered groups. The first section is about the definition of partially ordered groups.

We also discuss the definitions of lattice and quasi-lattice ordered groups and we

give our notion of them (G,G+), and for that we refer to ([18], [21], [25]). Also we

prove some results about lattice and quasi-lattice ordered groups, in particular we

show that every lattice ordered group is a quasi-lattice ordered group. In the second

section, we discuss some examples of quasi-lattice ordered groups and lattice-ordered

groups and we also give some examples of hereditary subsets of G+.

In Chapter 3, we introduce the crossed product of a dynamical system and we

give a detailed definition of the crossed product of a C∗-algebra A by a semigroup

of endomorphisms α : G+ → End(A) in terms of the universal property. In the first

section we give the definitions of multiplier algebras and extendible homomorphisms,

and we give some important results that we need in this work. In section 2, we define

dynamical systems (A,α,G+) and crossed products for dynamical systems. Then we

give our notion for crossed product A ×α G+, and we remark on when a crossed

product should exist (Remark 3.2.4). In section 3, we introduce the C∗-subalgebra

BG+ and we prove some results about it. Then we use the universal property of the

crossed product A ×α G+ to prove the existence of a strongly continuous action of

the group Ĝ := {γ : G→ T : γ is a homomorphism} in Lemma 3.4.6. This says that

for a quasi-lattice ordered group (G,G+) and a dynamical system (A,α,G+) with A

unital, there is a strongly continuous action

α̂ : Ĝ→ Aut(A×α G+)

satisfying α̂γ(iA(a)) = iA(a) and α̂γ(iG+(x)) = γ(x) iG+(x) for all x ∈ G+, a ∈ A.

Next, in Chapter 4, we give a detailed definition of extendibly α-invariant ideals

of C∗-algebras. In the first section, we fix firstly our hypothesis about the group G,

which is a partially-ordered group with a positive cone G+ such that (G,G+) is a

lattice-ordered group and H+ is a hereditary subsemigroup of G+. We introduce the
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ideal

IH+ := span{1x − 1x+h : h ∈ H+, x ∈ G+}

of the C∗-algebra BG+ in Lemma 4.1.1. Then we introduce an approximate identity

CI of the ideal IH+

CI =
{
1(F, h) =

∑
∅6=A⊂F

(−1)|A|+1
∏
x∈A

(1x − 1x+h) : (F, h) ∈ D
}

in Proposition 4.1.5. At the end of the first section we prove in Corollary 4.1.6 that

IH+ is an extendibly αz-invariant ideal of BG+ , for all z ∈ G+. In section 2, we

discuss the relationship between the C∗-algebras B(G/H)+ and BG+/IH+ . The main

result in this section is in Proposition 4.2.4 which shows that there is an isomorphism

Φ of BG+/IH+ onto B(G/H)+ .

In Chapter 5, we talk about inflated dynamical systems and induced C∗-algebras.

In the first section, we talk about irreducible representations of C∗-algebras and state

the necessary definitions and important results needed to study them. In section 2,

we discuss the relationship between the crossed products (BG+/IH+) ×α̃ G+ and

B(G/H)+ ×β G+ (Lemma 5.2.2), and we prove that they are isomorphic. Then in

Proposition 5.2.3 we show that there is a surjective homomorphism

Q : B(G/H)+ ×β G+ → B(G/H)+ ×τ (G/H)+.

In section 3, we talk about induced C∗-algebras IndKS (A,α). If K is a compact

group and α : S → AutA is an action of a closed subgroup S on a C∗-algebra A,

the induced C∗-algebra IndKS (A,α) is the subalgebra of C(K,A) consisting of the

functions f satisfying f(gh) = α−1
h (f(g)) for g ∈ K and h ∈ S [6, page 3]. Then

we give our main result about these induced algebras in Theorem 5.3.2 which is an

analogue of Theorem 2.1 of [3] with modifications as we work here with partially

ordered groups (lattice-ordered) and this has added many challenges to the proof

and made it more interesting. Our theorem shows that we can realize the C∗-algebra

B(G/H)+×βG+ as the induced C∗-algebra IndĜH⊥
(
B(G/H)+×τ (G/H)+

)
. To introduce

that theorem we proved some lemmas and propositions (Proposition 4.2.4, Lemma
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5.2.2, Proposition 5.2.3). We also used [2, page 2] and Remark 5.2.1 to realize that

the composition τ ◦ q of the action τ : (G/H)+ → End
(
B(G/H)+

)
which satisfies

τx+H(1y+H) = 1x+y+H , with the quotient map q : G → G/H is an action of G+ on

B(G/H)+ by extendible endomorphisms. Although the proof of our theorem (Theorem

5.3.2) is similar in outline to that of [6, Theorem 2.1], problems associated to the

fact that we are working with a partially ordered group and with crossed products of

systems which are not Toeplitz algebras, make the argument harder and interesting.

Then we prove that since the system (BG+ , α,G+) has the extendibly αx-invariant

ideal IH+ , then there exists a short exact sequence of C∗-algebras

0→ IH+ ×α G+ → BG+ ×α G+ → IndĜH⊥
(
B(G/H)+ ×τ (G/H)+

)
→ 0

in which IH+ ×α G+ is isomorphic to the ideal D := span{iG+(x)∗iBG+
(a)iG+(y) :

a ∈ IH+ , x, y ∈ G+} of BG+ ×α G+ which is generated by
{
iBG+

(1− 1u) : u ∈ H+

}
.

In section 4, we show that we can view the crossed product BH+ ×α H+ as a C∗-

subalgebra of the crossed product BG+ ×α G+.

In Chapter 6, we talk about primitive ideals and irreducible representations of

C*-algebras. We dedicate the first section to give the definitions and background

results needed about irreducible representations and primitive ideals, then we prove

some general lemma about irreducible representations. In section 2, we prove in

Proposition 6.2.2 that there is a well-defined map F : (H, γ) 7→ ker (Q ◦ β̂−1
γ ◦ θH)

from the disjoint union
⊔
{Ĥ : H ∈

∑
G} to Prim (BG+ ×α G+). Then we show in

Corollary 6.2.4 that for any irreducible representation of BG+ ×αG+, ρ is equivalent

to M(γ, π) ◦Υ for some γ ∈ Ĝ.

Conventions. We use the standard conventions of our subject in this thesis.

Thus, for example, homomorphisms between C∗-algebras are always ∗-preserving,

ideals are always assumed to be closed and two-sided and representations of C∗-

algebras are homomorphisms into the set B(H) of bounded linear operators on a

Hilbert space H (or into some C∗-algebra A).
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Background. It might be helpful to mention some non-trivial facts about C∗-

algebras which we use frequently.

(i) Every C∗-algebra A has a faithful non-degenerate representation ([35, The-

orem 24]).

(ii) Every homomorphism between C∗-algebras is norm-decreasing (and there-

fore continuous), and every injective homomorphism is norm preserving ([8,

Corollary II.2.2.9]).

(iii) The range φ(A) of every homomorphism φ : A → B between C∗-algebras

is closed, and is therefore a C∗-subalgebra of B ([35, Corollary 23]).
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CHAPTER 2

Preliminaries

In this chapter we will discuss the basic definitions of lattice and quasi-lattice ordered

groups. We begin by showing that for a discrete group G under certain conditions

there is a particular partial order on G which we will be using throughout this work.

2.1. Lattice and quasi-lattice ordered groups

Let G be a discrete group. A binary relation ≤ defined on G is a partial order if for

x, y, z ∈ G, we have

(i) x ≤ x (reflexivity)

(ii) x ≤ y and y ≤ x⇒ x = y (antisymmetry)

(iii) x ≤ y and y ≤ z ⇒ x ≤ z (transitivity)

(iv) x ≤ y ⇒ zx ≤ zy.

A non-empty group G together with a partial order ≤ is called a partially ordered

group.

Definition 2.1.1. The positive cone of a partially ordered group G is the set of

all positive elements of G (x ∈ G is positive if x ≥ e, where e is the identity of G)

which is a semigroup.

A pair (G,G+) consisting of a group G with identity e and a subsemigroup G+

of G satisfying G+

⋂
G−1

+ = {e} might be equipped with a relation “≤ ” on G with

respect to G+ where x ≤ y if x−1y ∈ G+. This relation is a partial order on G

which is left invariant. To see this, let x, y, z ∈ G. Note that x−1x = e ∈ G+ so the

relation is reflexive. The relation is anti-symmetric, since if x ≤ y and y ≤ x then

x−1y ∈ G+ and y−1x ∈ G+, which means that x−1y = (y−1x)−1 ∈ G+

⋂
G−1

+ = {e}
15



and hence x = y. To show the transitive condition, suppose that x ≤ y and y ≤ z

then x−1y ∈ G+ and y−1z ∈ G+ and so (x−1y)(y−1z) = x−1z ∈ G+, since G+ is

a semigroup. About being left invariant, assume that x ≤ y. Then (zx)−1(zy) =

x−1z−1zy = x−1y ∈ G+. Thus zx ≤ zy.

Convention. From now on we use (G,G+) to refer to the group G with the

natural partial order ≤ on G determined by G+.

Definition 2.1.2. The partially ordered group (G,G+) is quasi-lattice ordered

if every finite subset of G with an upper bound in G+ has a least upper bound in

G+.

Equivalently, (G,G+) is quasi-lattice ordered if and only if every element of G

with an upper bound in G+ has a least upper bound in G+, and every two elements

in G+ with a common upper bound in G+ have a least upper bound in G+ [32,

Section 2.1].

Definition 2.1.3. The partially ordered group (G,G+) is said to be a lattice-

ordered group if every two elements of G have a least upper bound in G.

We got our definition for lattice-ordered groups from [18] with slight changes to

it because in [18] they insist that every two elements of G have a least upper bound

and a greatest lower bound in G.

Notation. The least upper bound or sup of the elements x and y will be denoted

by x ∨ y.

Remark 2.1.4. There are two possible definitions for lattice-ordered groups the

one we have in Definition 2.1.3 and the one mentioned in [32] which restricts our

definition to elements from the semigroup G+.

We now give two minor results to show that our definition implies the one in

[32], and that every lattice-ordered group is a quasi-lattice-ordered group.
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Lemma 2.1.5. Let (G,G+) be a lattice-ordered group. Then every two elements

of G+ have a least upper bound in G+.

Proof. If x, y ∈ G+, then by assumption x and y have a least upper bound

x ∨ y ∈ G. Since e ≤ x ≤ x ∨ y then x ∨ y ∈ G+. �

Corollary 2.1.6. Suppose that (G,G+) is a lattice-ordered group. Then (G,G+)

is a quasi-lattice ordered group.

Proof. For x ∈ G we know that e ≤ x∨ e ∈ G+ is an upper bound for x in G+.

We claim that x ∨ e is a least upper bound for x in G+. To see this suppose that

y ∈ G+ and y ≥ x, then y ≥ e. Hence x ∨ e ≤ y, and thus e ∨ x is the least upper

bound of x in G+.

To finish our proof, take x, y ∈ G+ then Lemma 2.1.5 implies that x ∨ y ∈ G+.

Thus (G,G+) is quasi-lattice ordered group. �

Corollary 2.1.7. Suppose that (G,G+) is a lattice-ordered group with G abelian.

Then every two elements of G have a greatest lower bound in G.

Proof. Let x, y ∈ G. Then −x,−y ∈ G and (−x ∨ −y) ∈ G (as (G,G+)

is lattice-ordered group). Since −x,−y ≤ (−x ∨ −y) then x ≥ −(−x ∨ −y) and

y ≥ −(−x ∨ −y). Hence −(−x ∨ −y) is a lower bound for x and y.

We claim that −(−x ∨−y) is the greatest lower bound for x and y. To see this,

suppose that there is z ∈ G such that z ≤ x and z ≤ y. Then −z ≥ −x and

−z ≥ −y, and so −z ≥ (−x ∨ −y). Therefore z ≤ −(−x ∨ −y) which means that

−(−x ∨ −y) is the greatest lower bound for x and y. �

Lemma 2.1.8. Let G be an abelian group. Then G is generated by its positive

cone G+ if and only if G = G+ −G+.

Proof. Suppose that G is generated by its positive cone G+. Let S = G+−G+

and notice that G+ ⊂ S and S is a subgroup of G. Then G ⊂ S (as G is generated

by G+), and hence G = S = G+ −G+.
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Conversely, suppose that G = G+ − G+ and take S to be a subgroup of G such

that G+ ⊂ S. Then G−1
+ = −G+ ⊂ S (as S is a subgroup of G) and so G+−G+ ⊂ S.

Hence G = S, and thus G is generated by its positive cone. �

Definition 2.1.9. Let (G,G+) be a quasi-lattice ordered group and H ⊂ G+.

Then H is said to be hereditary if for any x, y ∈ G+, e ≤ x ≤ y and y ∈ H imply

that x ∈ H [25, Definition 2.3].

2.2. Examples

We now discuss some examples on the definitions of the previous section.

2.2.1. Totally ordered groups.

Suppose that (G,G+) is totally ordered group. Then for any pair x, y ∈ G, either

x ≤ y or y ≤ x. Suppose that x ≤ y. We know that y ≤ y therefore y is the least

upper bound for x and y in G. Similarly for the case when y ≤ x. Hence (G,G+) is

lattice-ordered group.

2.2.2. The concrete example (Z2,N2).

If G = Z2 and G+ = N2 (0 ∈ N). Then we claim that the partially ordered group

(Z2,N2) is lattice-ordered.

To see this, fix (m,n), (k, l) ∈ Z2. Then as Z is totally ordered group then we

know that m ∨ k and n ∨ l exists in Z. Hence (m ∨ k, n ∨ l) ∈ Z2 is the least upper

bound for (m,n) and (k, l) in Z2. Therefore (Z2,N2) is a lattice-ordered group.

2.2.3. Continuous functions over an arbitrary topological space C(X).

Let X be an arbitrary topological space and C(X) be the additive group of all

continuous functions from X to R (where R equipped with the usual topology); that

is, (f + g)(x) = f(x) + g(x) for all x ∈ X. Then C(X) is a lattice-ordered group

under the relation

f ≤ g if and only if f(x) ≤ g(x) for all x ∈ X.
18



One can see that C(X) is an abelian group and routine calculations show that

the relation on C(X) is a partial order.

To show that C(X) is lattice-ordered, let f, g ∈ C(X). Then f(x), g(x) ∈ R for

all x ∈ X and so f(x) ∨ g(x) = max{f(x), g(x)} is in R. Define h(x) := f(x) ∨ g(x)

then h is a continuous function (this is a well-known fact so we skipped the details),

we claim that h is the least upper bound of f, g in C(X). To see this, notice that

f(x), g(x) ≤ h(x) for all x ∈ X and so f, g ≤ h. Hence h is an upper bound for f, g.

To show that h is the least upper bound for f, g. Suppose that there is T ∈ C(X)

such that f, g ≤ T . Then f(x), g(x) ≤ T (x) and hence f(x) ∨ g(x) ≤ T (x) for all

x ∈ X. Thus h ≤ T and so C(X) is lattice-ordered.

2.2.4. Vector spaces over ordered fields.

Let V be a vector space over an ordered field S with basis {bi : i ∈ I}. Let v, w ∈ V ;

say v =
∑

i∈I0 qibi and w =
∑

i∈I0 ribi where I0 is a finite subset of I and qi, ri ∈ S.1

Define

v ≤ w ⇐⇒ qi ≤ ri for all i ∈ I0.

Then V is a lattice-ordered abelian group.

Since V is a vector space it is an abelian group and routine calculations show that

the relation on V is a partial order. To see that V is lattice-ordered, fix v, w ∈ V .

Then v =
∑

i∈I0 qibi and w =
∑

i∈I0 ribi. Since qi, ri ∈ S for all i ∈ I0 then qi ∨ ri =

max{qi, ri} ∈ S. Choose z =
∑

i∈I0(qi ∨ ri)bi ∈ V . Then v, w ≤ z. We claim that z

is the least upper bound of v, w in V . To see this, suppose that a =
∑

i∈I0 dibi ∈ V

satisfies v, w ≤ a. Then qi, ri ≤ di and so qi ∨ ri ≤ di for all i ∈ I0. Hence z ≤ a and

therefore V is a lattice-ordered group.

2.2.5. The continuous functions from X to R
⋃
{∞,−∞}.

1The way we write v, w is possible because if v =
∑

j∈J0
qjbj and w =

∑
k∈K0

rkbk. Then take
I0 := J0

⋃
(K0 \ J0) and write v, w in terms of I0.
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Let X be a Hausdorff space and D(X) be the set of all continuous functions from

X to R
⋃
{∞,−∞} (with the order topology) with {x ∈ X : f(x) /∈ R} nowhere

dense.2 Then D(X) is an abelian lattice-ordered group under addition.

We know that D(X) is an abelian group with partial order as in Example 2.2.3

and that for f, g ∈ D(X), h(x) = f(x) ∨ g(x) exists. So we only need to show that

h ∈ D(X). Let

I := {x ∈ X : h(x) = ±∞} = {x ∈ X : h(x) =∞}
⋃
{x ∈ X : h(x) = −∞}.

The case when h(x) = −∞ is straightforward by noticing that

{x ∈ X : h(x) = −∞} ⊆ {x ∈ X : f(x) =∞ or −∞}.

Hence

Int({x ∈ X : h(x) = −∞}) ⊆ Int({x ∈ X : f(x) =∞ or −∞}) = ∅.

Notice that with the order topology {x ∈ X : f(x) /∈ R} is a closed set. So the

closure of {x ∈ X : f(x) /∈ R} is itself.

We now look at

{x ∈ X : h(x) =∞} = {x ∈ X : f(x) =∞ or g(x) =∞},

which gives

{x ∈ X : h(x) =∞} = {x ∈ X : f(x) =∞}
⋃
{x ∈ X : g(x) =∞}.

Since the union of two nowhere dense subsets is nowhere dense3, then

Int({x ∈ X : h(x) =∞}) = Int({x ∈ X : f(x) =∞}
⋃
{x ∈ X : g(x) =∞})

= ∅,

and hence

Int(I) = Int({x ∈ X : h(x) =∞}
⋃
{x ∈ X : h(x) = −∞})

= ∅.
2A is nowhere dense if Int(A) = ∅.
3See Appendix A for the proof.
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Thus h ∈ D(X) and so D(X) is lattice-ordered.

2.2.6. Direct products.

Consider the family {(Gi, Gi+) : i ∈ I} of quasi-lattice ordered groups. We claim

that the direct product G =
∏

i∈I Gi with a semigroup G+ =
∏

i∈I Gi+ is a quasi

lattice ordered group with the order determined by G+.

To show that this is true, we first show that G+

⋂
G−1

+ = {e}, where e is the

identity of G. To see this, suppose that x, y ∈ G+ such that x = y−1. Then xi = y−1
i

for all i ∈ I and hence xi = yi = ei, ei is the identity of Gi, since Gi+

⋂
G−1
i+

= {ei}.

Therefore x = y = e and thus G+

⋂
G−1

+ = {e}.

Notice that for all x, y ∈ G, (x−1y)i = x−1
i yi. Hence x−1y ∈ G+ if and only if

x−1
i yi ∈ Gi+ for all i ∈ I. This implies that x ≤ y if and only if xi ≤ yi for all i ∈ I.

Now we check the quasi-lattice order conditions. To start let x ∈ G and suppose

that there is y ∈ G+ such that x ≤ y. Then xi ≤ yi for all i ∈ I and hence

xi ≤ ∨xi ≤ yi. Thus x ≤ (∨xi)i∈I ≤ y and (∨xi)i∈I is the least upper bound for x in

G+. Now, suppose that z, w ∈ G+ have a common upper bound s ∈ G+. Then we

have that zi, wi ≤ si for all i ∈ I, and so zi ∨ wi ≤ si. Thus z, w ≤ (zi ∨ wi)i∈I ≤ s,

which imply that (zi ∨ wi)i∈I is the least common upper bound for z, w in G+.

2.2.7. Examples on hereditary subsets.

Example 2.2.1. Let (G,G+) be a quasi-lattice ordered group. For x0 ∈ G+\{e},

let H =
{
z ∈ G+ : there exists n ∈ N such that z ≤ xn0

}
. Then H is a hereditary

subset of G+.

To see this, notice that H ⊂ G+ and suppose that x, y ∈ G+, e ≤ x ≤ y and

y ∈ H. As y ∈ H then there is m ∈ N such that y ≤ xm0 . Hence x ≤ xm0 since

e ≤ x ≤ y, thus x ∈ H.

Example 2.2.2. Let (G,G+) = (Z2,N2) be the lattice-ordered group in Example

2.2.2. The only hereditary subsemigroups of N2 are {(0, 0)}, N × {0}, {0} × N and

N2.
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To see this is true, notice first that all the subsemigroups mentioned are hered-

itary. Now suppose that H+ is a hereditary subsemigroup of N2 which is different

from {(0, 0)}, N × {0} and {0} × N. Then H+ contains an element of the form

(a, b) for some non-zero a, b ∈ N. As H+ is a hereditary subsemigroup we have

(1, 0), (0, 1) ∈ H+ and so (m,n) ∈ H+ for all m,n ∈ N. Hence N2 ⊂ H+ and so

H+ = N2. The other case is when the element has the form (b, 0) for some b ∈ N and

b > 0. Then as H+ is hereditary, we have (1, 0) ∈ H+. But H+ is a subsemigroup

so it is closed under the binary operation, hence {(m, 0) : m ∈ N} ⊂ H+; that is

N× {0} ⊂ H+. But H+ is different from N× {0}, so H+ should contain an element

not in N × {0}, say (0, k). If so then by the same argument above we deduce that

{0} × N ⊂ H+. Since H+ is a subsemigroup then (m, 0) + (0, n) = (m,n) ∈ H+ for

all m,n ∈ N. Hence N2 ⊂ H+ and therefore H+ = N2.
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CHAPTER 3

Semigroup dynamical systems and crossed products

We devote the first section of this chapter to stating the necessary definitions and

required results about multiplier algebras and extendible homomorphisms. We use

these results throughout this thesis. We have presented only the minimum amount

of background needed to keep this thesis as self-contained as possible. More detailed

treatments of the different topics can be found in the references provided.

3.1. Multiplier algebras and extendibility

Definition 3.1.1. A multiplier (or double centralizer) of a C∗-algebra A is a

pair (L,R) of bounded linear maps of A into A such that

L(a)b = L(ab), aR(b) = R(ab) and R(a)b = aL(b).

Lemma 3.1.2. If (L,R) is a multiplier of a C∗-algebra A, then ‖L‖ = ‖R‖ [26,

Lemma 2.1.4].

If A is a C∗-algebra, we denote the set of its multipliers by M(A). We define the

norm of the multiplier (L,R) by ‖(L,R)‖ := ‖L‖ = ‖R‖. If (L1, R1) and (L2, R2) ∈

M(A), we define

(L1, R1)(L2, R2) := (L1L2, R2R1), and

λ(L1, R1) + µ(L2, R2) := (λL1 + µL2, λR1 + µR2),

as the product and addition respectively. Also define (L,R)∗ := (R∗, L∗), where

T ∗(a) := (T (a∗))∗ (for details see [26, §2.1]).

Theorem 3.1.3. Let A be a C∗-algebra, then M(A) is a C∗-algebra under the

multiplication, involution, norm and addition defined above [26, theorem 2.1.5].
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Remark 3.1.4. [26, § 2.1]

(i) We can identify any C∗-algebra A as a C∗-subalgebra of M(A). In fact A

is an ideal of M(A).

(ii) M(A) is unital (the multiplier (id, id) is the identity), and A = M(A) if

and only if A is unital.

Definition 3.1.5. Suppose that A is a C∗-algebra and a ∈ A. Let ‖.‖a be the

seminorm on M(A) defined by ‖b‖a = ‖ab‖ + ‖ba‖. The strict topology on M(A) is

the topology generated by the seminorms {‖.‖a : a ∈ A} ([37, Definition C.4]).

Definition 3.1.6. Let φ be a homomorphism from a C∗-algebra A into a C∗-

algebra B. Then φ is non-degenerate if there exists an approximate identity {ai}

in A such that φ(ai) converges strictly to 1 in the multiplier algebra of B (i.e.

φ(ai)b → b for all b ∈ B) [1, page 20]. A homomorphism ψ : M(A) → M(B) is

strictly continuous if for each net (uλ) in M(A) converging to u ∈M(A) in the strict

topology, we have ψ(uλ) converges strictly to ψ(u) in M(B).

Definition 3.1.7. A homomorphism ψ : A → M(B) (the multiplier algebra of

B) is extendible if there exists an approximate identity {aλ}λ∈Λ for A and a projection

pψ in M(B) such that ψ(aλ) converges strictly to pψ in M(B). One can see that

every non-degenerate homomorphism is extendible (by taking p = 1M(B)). In [1,

Proposition 3.1.1] Adji proves that the extendibility of ψ : A→ M(B) is equivalent

to the existence of a strictly continuous homomorphism extension ψ of M(A) into

M(B). An extendible homomorphism satisfies the condition that ψ(aλ)→ ψ(1M(B))

(see [24, §1]).

3.2. Definition of the crossed product

Let B be a unital C∗-algebra. An element u ∈ B is said to be an isometry if u∗u = 1B

[26, section 2.1].
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Definition 3.2.1. Let G+ be a semigroup of a group G, B a unital C∗-algebra

and V a map from G+ to B. Then V is said to be an isometric representation of G+

if it satisfies the following three conditions:

(i) Ve = 1B;

(ii) V ∗x Vx = 1B for any x ∈ G+;

(iii) VxVy = Vxy for any x, y ∈ G+.

Definition 3.2.2. A semigroup dynamical system is a triple (A,G+, α) where

A is a C∗-algebra and α is an action of the semigroup G+ on A by endomorphisms

(i.e. α : G+ → End(A) is a homomorphism such that αx is an endomorphism of A

for each x ∈ G+). Two dynamical systems (A,G+, α) and (B,G+, β) are equivalent

(isomorphic) if there is an isomorphism φ : A→ B such that φ ◦ αx = βx ◦ φ for all

x ∈ G+.

A covariant representation of a dynamical system (A,G+, α) is a pair (π, V ),

where π is a non-degenerate representation of A on a Hilbert space H, and V is an

isometric representation of G+ on H satisfying

π(αx(a)) = Vxπ(a)V ∗x for all x ∈ G+, a ∈ A.

Definition 3.2.3. A crossed product for a dynamical system (A,G+, α) is a

C∗-algebra B together with a non-degenerate homomorphism iA : A → B and a

homomorphism iG+ of G+ into the semigroup of isometries in M(B) (the multiplier

algebra of B) such that:

1. iA(αx(a)) = iG+(x)iA(a)iG+(x)∗ for x ∈ G+ and a ∈ A;

2. for every covariant representation (π, V ) of (A,G+, α) there is a non-degenerate

representation π × V of B such that

(π × V ) ◦ iA = π and π × V ◦ iG+ = V ;

3. B is generated by {iA(a) iG+(x) : a ∈ A, x ∈ G+}.
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Notation.

• We write A×αG+ to denote the crossed product for the dynamical system

(A,G+, α).

• The homomorphisms (iA, iG+) are the universal covariant representation.

Remark 3.2.4.

(i) If A is unital and (A,G+, α) has a non-trivial covariant representation, then

it is shown in [21, Proposition 2.1] that there is a crossed product and it

is unique up to isomorphism.

(ii) Let G+ be an Ore semigroup (a cancellative semigroup which is right-

reversible, in the sense that G+x
⋂
G+y 6= ∅ for all x, y ∈ G+), (A,G+, α)

is a dynamical system with extendible endomorphisms and has a non-zero

covariant representation. Then there exists a crossed product for the system

which is unique up to isomorphism [24, Proposition 1.4].

Remark 3.2.5. [23, page 11] If A has a unit, the representation π of Definition

3.2.2 and the homomorphism iA of Definition 3.2.3 must be unital, and condition

(2) of Definition 3.2.3 reduces to the existence of a unital representation π× V of B

such that

(π × V ) ◦ iA = π and (π × V ) ◦ iG+ = V.

Definition 3.2.6. Let (G,G+) be a lattice-ordered group and B a unital C∗-

algebra. A covariant isometric representation V of G+ by isometries in B is an

isometric representation ofG+ which satisfies VxV
∗
x VyV

∗
y = Vx∨yV

∗
x∨y for all x, y ∈ G+.

The covariant isometric representations are an important feature of research in

crossed products because BG+ ×α G+ is universal for covariant isometric represen-

tations. That is, if W is a covariant isometric representation of G+, then there is

a representation πW of BG+ such that πW (1x) = WxW
∗
x , and the pair (πW ,W ) is

covariant for the dynamical system (BG+ , G+, α).
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3.3. Covariant isometric representations of N2

In this section we prove two results about the covariant isometric representations

of the semigroup N2.

Lemma 3.3.1. Suppose that V is an isometric representation of N2 on H, then

there exist isometries W,X on H such that WX = XW and V(m,n) = WmXn.

Conversely, if W,X are isometries on H such that WX = XW , then V(m,n) :=

WmXn is an isometric representation of N2 on H.

Proof. To see this, suppose first that V is an isometric representation of N2.

Take W := V(1,0), X := V(0,1). Then W,X are isometries on H satisfying WX = XW

and V(m,n) = V m
(1,0)V

n
(0,1) = WmXn.

Suppose now that W,X are isometries on H such that WX = XW . Then

calculations show that V(m,n) := WmXn is an isometric representation of N2 on

H. �

Corollary 3.3.2. Suppose that X,W are isometries onH such that WX = XW

and WX∗ = X∗W . Then V(m,n) := WmXn is a covariant isometric representation

of N2 on H.

Proof. We have seen in Lemma 3.3.1 that V is an isometric representation of

N2 on H. So we only need to show the covariance condition here. Suppose that

(m,n), (k, l) ∈ N2, then

(3.3.1) V(m,n)V
∗

(m,n)V(k,l)V
∗

(k,l) = WmXnW ∗mX∗nW kX lW ∗kX∗l.

Now we consider the following different cases.

(i) If m ≤ k and n ≤ l, then

L.H.S. (3.3.1) = WmXnW ∗mW kX∗nX lW ∗kX∗l, since WX∗ = X∗W

= WmXnW k−mX l−nW ∗kX∗l

= WmW k−mXnX l−nW ∗kX∗l

= V(k,l)V
∗

(k,l).
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Similar argument works for k ≤ m and l ≤ n.

(ii) If m ≥ k and n ≤ l, then

L.H.S. (3.3.1) = WmXnW ∗mX∗nX lW kW ∗kX∗l, since WX = XW

= WmXnW ∗mX l−nW kW ∗kX∗l

= WmXnX l−nW ∗mW kW ∗kX∗l, since WX∗ = X∗W

= WmX lW ∗m−kW ∗kX∗l

= WmX lW ∗mX∗l

= V(m,l)V
∗

(m,l).

(iii) If m ≤ k and n ≥ l, then

L.H.S. (3.3.1) = WmXnW ∗mW kX∗nX lW ∗kX∗l, since WX∗ = X∗W

= WmXnW k−mX∗n−lW ∗kX∗l

= WmW k−mXnW ∗kX∗n−lX∗l, since WX = XW

= W kXnW ∗kX∗n

= V(k,n)V
∗

(k,n).

Thus V is a covariant isometric representation. �

3.4. The C∗-subalgebra BG+ of `∞(G+)

In this section we introduce the C∗-algebra BG+ as in [4] and [21]. Then we prove

some results which will be used later in this work.

Let (G,G+) be a quasi-lattice ordered group. We now consider a particular C∗-

subalgebra of `∞(G+). Denote by 1x the function on G+ defined by

(3.4.1) 1x(y) =

{
1 if y ≥ x,

0 otherwise.

The quasi-lattice condition gives

(3.4.2) 1x1y =

{
1x∨y if x, y have a common upper bound,

0 otherwise.
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The algebra BG+ := span{1x : x ∈ G+} is a commutative C∗-algebra with multipli-

cation satisfying Equation (3.4.2) [21, page 418 ].

We now introduce our action α on the C∗-algebra BG+ which was mentioned in

[21, page 423].

Lemma 3.4.1. Let BG+ := span{1x : x ∈ G+}. Then there is a left action α of

G+ on BG+ by translation on `∞(G+) restricted to BG+ defined by

(3.4.3) αs(f)(x) =

{
f(s−1x) if x ≥ s,

0 otherwise.

The action α leaves BG+ invariant and satisfies αs(1x) = 1sx for s, x ∈ G+.

Proof. We first show that α is an action. To see this, fix f, g ∈ `∞(G+) and let

λ ∈ C. Then

(i) For s, x ∈ G+

αs(λf + g)(x) = (λf + g)(s−1x)

= λf(s−1x) + g(s−1x)

= λαs(f)(x) + αs(x).

Hence αs is linear.

(ii)

αs(fg)(x) = fg(s−1x) = f(s−1x)g(s−1x)

= αs(f)(x)αs(g)(x).

(iii) For y, z ∈ G+ we have

αy ◦ αz(f)(x) = αy
(
αz(f)(x)

)
= αz(f)(y−1x)

= f(z−1y−1x)

= αyz(f)(x).
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Thus α is a left action. We now show that for s, x ∈ G+, αs(1x) = 1sx. To see this,

fix y ∈ G+. Then

αs(1x)(y) = 1x(s
−1y)

=

{
1 if x ≤ s−1y,

0 otherwise.

=

{
1 if sx ≤ y,

0 otherwise.

= 1sx(y).

Hence α leaves BG+ invariant and satisfies αs(1x) = 1sx for s, x ∈ G+. �

Corollary 3.4.2. Let (G,G+) be a quasi-lattice ordered group and A a unital

C∗-algebra. If {Lx : x ∈ G+} are projections in A such that

(3.4.4) Le = 1 and LxLy = Lx∨y for x, y ∈ G+,

then there is a unital homomorphism πL : BG+ → A such that πL(1x) = Lx.

Proof. We know that the C∗-algebra A has a non-degenerate faithful represen-

tation ψ on a Hilbert space H. Then ψ ◦ L : G+ → B(H) satisfies the hypothesis

of [21, Proposition 1.3] and hence there is a representation φ : BG+ → B(H) which

satisfies φ(1x) = ψ(Lx). To define ψ−1 ◦ φ we need that rangeφ ⊂ rangeψ. To see

this, we only need to observe that rangeψ is a C∗-subalgebra of B(H) and contains

every φ(1x), hence it contains φ(span{1x}) = span{φ(1x)} and hence by continuity

it contains φ(span{1x}) = φ(BG+). Take πL := ψ−1 ◦ φ. Then πL : BG+ → A and

πL(1x) = ψ−1(φ(1x)) = ψ−1(ψ(Lx)) = Lx and πL(1e) = Le = 1. �

Remark 3.4.3. To see that the crossed product BG+ ×α G+ is non-trivial (non-

zero C∗-algebra) we obtain a specific covariant pair for the dynamical system (BG+ , G+

, α) with the group G abelian. Let each f ∈ BG+ act as the multiplication operator

Mf on `2(G+), and Tx be the isometry on `2(G+) defined by Tx(δy) = δx+y, where

(3.4.5) δs(x) =

{
1 if x = s,

0 otherwise.
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Then M1x = TxT
∗
x . Since

Mαx(1y) = M1x+y = Tx+yT
∗
x+y = TxTyT

∗
y T
∗
x = TxM1yT

∗
x ,

the pair (M,T ) is covariant. Thus the crossed product BG+ ×αG+ is non-trivial (for

more details see [21, §2]).

Lemma 3.4.4. Let (G,G+) be a lattice-ordered group, α be the action of G+ in

Lemma 3.4.1 and (iBG+
, iG+) denote the universal representation of the dynamical

system (BG+ , G+, α). Then the homomorphism iG+ is a covariant isometric repre-

sentation of G+.

Proof. We know by definition of iG+ that it is an isometric representation of

G+. So we need only to show the condition of covariance. Fix x, y ∈ G+, then

iG+(x)iG+(x)∗iG+(y)iG+(y)∗ = iBG+
(αx(1e))iBG+

(αy(1e))

= iBG+
(1x1y)

= iBG+
(1x∨y)

= iBG+
(αx∨y(1e))

= iG+(x ∨ y)iG+(x ∨ y)∗.

�

Remark 3.4.5.

(i) [21, Corollary 2.4] If (G,G+) is a quasi-lattice ordered group, then the

maps iBG+
and iG+ are faithful.

(ii) Because the group G is a discrete group, its dual Ĝ := {γ : G → T :

γ is a homomorphism} is a compact group under pointwise multiplication

[17, Proposition 4.4].

Lemma 3.4.6. Let (G,G+) be a quasi-lattice ordered group with G abelian, α be

an action of the semigroup G+ by endomorphisms of a unital C∗-algebra A and Ĝ
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be the compact group in Remark 3.4.5. Then there is a continuous action

α̂ : Ĝ→ Aut(A×α G+)

satisfying α̂γ(iA(a)) = iA(a) and α̂γ(iG+(x)) = γ(x) iG+(x) for all x ∈ G+, a ∈ A.

Further, if γn → γ pointwise in Ĝ, then α̂γn(b) → α̂γ(b) for all b ∈ A ×α G+; the

action α̂ is called the dual action of Ĝ on A×α G+.

Remark. In the proof of [4, Theorem 1.2] they mentioned the existence of the

continuous action α̂ in the case of totally ordered abelian groups, here we prove

in detail that this action exists for any partially ordered group G under certain

conditions.

Proof. Fix γ ∈ Ĝ and define (γ iG+)(x) = γ(x) iG+ (x). We claim that (A ×α
G+, iA, γ iG+) is a crossed product for the dynamical system (A,G+, α). To see this,

we need to check the followings.

(i) Let x ∈ G+, then(
(γ iG+)(x)

)∗(
(γ iG+)(x)

)
= γ(x) iG+(x)∗γ(x) iG+(x)

= |γ(x)|2 iG+(x)∗iG+(x)

= 1A×αG+ .

Hence γ iG+ is an isometric representation.

(ii) For a ∈ A, x ∈ G+, then

iA
(
αx(a)

)
= iG+(x)iA(a)iG+(x)∗

= |γ(x)|2iG+(x)iA(a)iG+(x)∗

= γ(x) iG+(x)iA(a)γ(x) iG+(x)∗

=
(
γ(x) iG+(x)

)
iA(a)

(
γ(x) iG+(x)

)∗
.

(iii) Suppose that (π, V ) is a covariant representation of the dynamical system

(A,G+, α) on a Hilbert space H. Then (π, γ V ) is also a covariant repre-

sentation for (A,G+, α). Hence there is a unital representation

ρ : A×α G+ → B(H) such that ρ ◦ iA = π and ρ ◦ iG+ = γ V.
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For x ∈ G+ we have

ρ ◦
(
γ iG+

)
(x) = γ(x)ρ

(
iG+(x)

)
= γ(x)γ(x)V (x)

= V (x).

Thus ρ is a unital representation of A ×α G+ on H satisfying ρ ◦ iA = π

and ρ ◦ γ iG+ = V .

(iv) Since the C∗-algebra A is unital, then [21, Proposition 2.1] implies that{
iA(a) : a ∈ A

} ⋃ {
iG+(x) : x ∈ G+

}
generates A×α G+ . Since γ(x) ∈ T

for all x ∈ G+,
{
iA(a) : a ∈ A

}⋃ {
γ(x)iG+(x) : x ∈ G+

}
generates

A×α G+.

By uniqueness of the crossed product there exists an isomorphism, say α̂γ : A ×α
G+ → A ×α G+ such that α̂γ(iA(a)) = iA(a) and α̂γ(iG+(x)) = γ(x) iG+(x) for all

x ∈ G+, a ∈ A.

Our next step is to check that the map γ 7→ α̂γ is a homomorphism. To do so we

will check that
(
α̂γ ◦ α̂χ

)
(iA(a)) = α̂γχ(iA(a)) and

(
α̂γ ◦ α̂χ

)
(iG+(x)) = α̂γχ(iG+(x)).

On one hand, both α̂γ ◦ α̂χ
(
iA(a)) and α̂γχ(iA(a)) equal iA(a). On the other hand,

(
α̂γ ◦ α̂χ

)
(iG+(x)) = α̂γ

(
α̂χ(iG+(x))

)
= α̂γ(χ(x) iG+(x))

= χ(x)α̂γ(iG+(x)), α̂γ is a homomorphism

= χ(x) γ(x)iG+(x)

= α̂γχ(iG+(x)).

So the map γ 7→ α̂γ is a homomorphism.

To establish continuity, fix γ ∈ Ĝ, b ∈ A×α G+ and ε > 0. Choose a finite sum

c :=
∑
x, y

λx,yiG+(x)∗iA(ax,y)iG+(y) such that ‖b− c‖ < ε/3.
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The map γ 7→ γ(x)γ(y) is continuous, because it is the the product of two continuous

functions. As scalar multiplication is also continuous then so is the map

γ 7→ α̂γ(c) =
∑
x, y

λx,yγ(x)γ(y)iG+(x)∗iA(ax,y)iG+(y).

Now choose a neighborhood N of γ such that if σ ∈ N , then ‖α̂σ(c)− α̂γ(c)‖ < ε/3.

Then for χ ∈ N , we have

‖α̂χ(b)− α̂γ(b)‖ = ‖α̂χ(b)− α̂χ(c) + α̂χ(c)− α̂γ(c) + α̂γ(c)− α̂γ(b)‖

≤ ‖α̂χ(b)− α̂χ(c)‖+ ‖α̂χ(c)− α̂γ(c)‖+ ‖α̂γ(c)− α̂γ(b)‖

= ‖α̂χ(b− c)‖+ ‖α̂γ(b− c)‖+ ‖α̂χ(c)− α̂γ(c)‖

= ‖b− c‖+ ‖b− c‖+ ‖α̂χ(c)− α̂γ(c)‖ , each α̂γ is an automorphism

< ε/3 + ε/3 + ε/3 = ε.

Thus α̂ is continuous.

Finally, suppose that γn → γ pointwise in Ĝ. To prove that α̂γn(b) → α̂γ(b) for

all b ∈ A×α G+. We will check that on generators. On one hand

α̂γn(iA(a)) = iA(a) = α̂γ(iA(a)).

On the other hand,

α̂γn(iG+(x)) = γn(x) iG+(x)→ γ(x) iG+(x) = α̂γ(iG+(x)).

�

34



CHAPTER 4

Extendibly invariant Ideals

In this chapter we discuss the definition of extendible α-invariant ideals of C∗-

algebras. Then we introduce a specific extendibly α-invariant ideal of the C∗-algebra

BG+ .

Definition 4.0.7. Suppose that α is an extendible endomorphism of a C∗-

algebra A and I is an ideal of A. Let ψ : A → M(I) denote the canonical non-

degenerate homomorphism defined by ψ(a)b = ab, a ∈ A, b ∈ I. Let ψ be the strictly

continuous extension of M(A) into M(I). Then I is called extendibly α-invariant if

it is α-invariant, in the sense that α(I) ⊂ I, and there exists an approximate identity

(iλ) for I such that α(iλ) converges strictly to ψ(α(1M(A))) in M(I) [24, Definition

1.6].

Remark. The homomorphism ψ : A → M(I) in the above definition is non-

degenerate because if {aλ} is an approximate identity of A, then for any b ∈ I we

have

ψ(aλ)b = aλb→ b = 1M(I)b .

4.1. Construction of the ideal IH+

Henceforth we assume that G+ is the positive cone of a partially ordered discrete

abelian group G, (G,G+) is a lattice-ordered group and H+ is a hereditary subsemi-

group of G+. Moreover, we change to additive notation rather than multiplicative

for the group operation. We now introduce the ideal IH+ of BG+ and prove that it

is extendibly α-invariant.
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Lemma 4.1.1. Let (G,G+) be a lattice-ordered group with G abelian and let H+

be a hereditary subsemigroup of G+. Then

IH+ = span
{

1x − 1x+h : h ∈ H+, x ∈ G+

}
is a closed ideal in BG+.

Proof. Let x ∈ G+, h ∈ H+ and take 1y ∈ BG+ . Then

(4.1.1) 1y(1x − 1x+h) = 1y1x − 1y1x+h = 1y∨x − 1y∨(x+h).

To show that 1y(1x − 1x+h) ∈ IH+ , we show first that y ∨ (x+ h) ≤ (y ∨ x) + h. To

see this, note that (y ∨ x) + h ≥ y ∨ x and y ∨ x ≥ y. Therefore (y ∨ x) + h ≥ y.

Now as y ∨ x ≥ x then (y ∨ x) + h ≥ x+ h. Thus y ∨ (x+ h) ≤ (y ∨ x) + h. Observe

that y ∨ (x + h) − (y ∨ x) ≤ h (left invariant property of the order ≤ on G) also

y∨(x+h)−(y∨x) ∈ G+. As H+ is hereditary, then y∨(x+h)−(y∨x) ∈ H+. Hence

by (4.1.1), 1y(1x − 1x+h) is an element of IH+ and by continuity of multiplication in

BG+ we conclude that IH+ is a closed ideal in BG+ . �

Remark 4.1.2. Let (G,G+) be a lattice-ordered group and α be the action of

G+ in Lemma 3.4.1. Since BG+ is a unital C∗-algebra with unit 1BG+
= 1e, then

M(BG+) = BG+ and so each αx is an extendible endomorphism of BG+ .

Lemma 4.1.3. Let (G,G+) be a lattice-ordered group with G abelian and let H+

be a hereditary subsemigroup of G+. Then the set

D =
{

(F, h) : F is a finite subset of G+, h ∈ H+

}
is a directed set when (F, h) ≤ (F ′, h′)⇐⇒ F ⊂ F ′ and h ≤ h′.

Proof. To show that the given relation directs D we need to show that it is

reflexive, transitive and any two elements of D have an upper bound. To see this,

consider (F, h), (F ′, h′), (F ′′, h ′′) ∈ D. This relation is reflexive, since F ⊂ F and

h ≤ h. It is transitive, since if (F, h) ≤ (F ′, h′) and (F ′, h′) ≤ (F ′′, h ′′) we have

F ⊂ F ′, h ≤ h′ and F ′ ⊂ F ′′, h′ ≤ h′′ and hence F ⊂ F ′′ and h ≤ h′′. For the

last condition, take any (F, h), (F ′, h′) ∈ D. Choose F ′′ = F ∪F ′ and h ′′ = h∨ h ′.
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Then F ′′ ∈ D and because h ′′ ≤ h + h′ and H+ is hereditary then h ′′ ∈ H+. Thus

(F ′′, h ′′) ≥ (F, h) and (F ′′, h ′′) ≥ (F ′, h ′). �

Lemma 4.1.4. Let (G,G+) be a lattice-ordered group with G abelian, H+ be a

hereditary subsemigroup of G+, D denote the directed set in Lemma 4.1.3 and let

E(F, h) := {y ∈ G+ : ∃x ∈ F such that y ≥ x and y � x+ h}. Then

1(F, h) :=
∑
∅6=A⊂F

(−1)|A|+1
∏
x∈A

(1x − 1x+h) = χE(F, h)

for all (F, h) ∈ D.

Proof. Fix (F, h) ∈ D and y ∈ G+. For x ∈ G+ and h ∈ H+ we have

(1x − 1x+h)(y) =

{
1 if y ≥ x and y � x+ h,

0 if y ≥ x+ h or y � x.

Define E(x, h) := {y : y ≥ x and y � x+ h}, then we can write

(4.1.2) 1x − 1x+h = χ{y: y≥x and y�x+h} = χE(x, h)

Using equation (4.1.2) we have

1(F, h)(y) =
∑
∅6=A⊂F

(−1)|A|+1
∏
x∈A

(1x − 1x+h)(y)

=
∑
∅6=A⊂F

(−1)|A|+1
∏
x∈A

χE(x, h)(y)

=
∑
∅6=A⊂F

(−1)|A|+1χ⋂
x∈A E(x, h)(y).

Suppose first that B =
{
x ∈ F : y ∈ E(x, h)

}
is non empty. Then y ∈

⋂
x∈B

E(x, h)

and y /∈
⋂
x∈A

E(x, h) for A * B, and hence

37



1(F, h)(y) =
∑
∅6=A⊂B

(−1)|A|+1

=

|B|∑
k=1

(−1)k+1

(
|B|
k

)

= −

( |B|∑
k=1

(
|B|
k

)
(−1)k

)

= −

(( |B|∑
k=0

(
|B|
k

)
(−1)k

)
− 1

)
= −

((
1 + (−1)

)|B| − 1
)
, by the binomial theorem

= 1.

Now suppose B =
{
x ∈ F : y ∈ E(x, h)

}
= ∅ then 1(F, h)(y) = 0. Thus

1(F, h) = χ{y : ∃x∈F such that y≥x and y�x+h} = χE(F, h).

�

Proposition 4.1.5. Let (G,G+) be a lattice-ordered group with G abelian, H+

be a hereditary subsemigroup of G+, IH+ be the ideal in Lemma 4.1.1 and D denote

the directed set in Lemma 4.1.3. Then the set

CI =
{
1(F, h) =

∑
∅6=A⊂F

(−1)|A|+1
∏
x∈A

(1x − 1x+h) : (F, h) ∈ D
}

is an approximate identity for IH+.

Proof. To prove this proposition we need to check that CI satisfies the condi-

tions of approximate identity. Firstly, if 1(F, h) ∈ CI then 1(F, h) = χ∗E(F, h)χE(F, h) ≥ 0

and ‖1(F, h)‖ = sup |1(F, h)(y)| ≤ 1.

Secondly, suppose that (F, h) ≤ (F ′, h′). For y ∈ G+, we know from Lemma 4.1.4

that 1(F, h)(y) = 1 if and only if there exists x ∈ F such that y ≥ x and y � x+ h.

As F ⊂ F ′ then x ∈ F ′ and so x+h ≤ x+h′ (since h ≤ h′). Therefore if y ∈ E(F, h)

then y ∈ E(F ′, h′). Hence, 1(F, h) ≤ 1(F ′, h′).
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We now show that 1(F, h) f → f for all f ∈ IH+ . To do so we will show first that it

is true for 1x−1x+k ∈ IH+ and then we show it for any f ∈ IH+ . For 1x−1x+k ∈ IH+ ,

take F = {x} ⊂ G+ and choose h = k ∈ H+. Then

1(F, k)(1x − 1x+k) = χ{y : ∃ z ∈F such that y≥ z and y� z+k}χ{w:w≥x and w�x+k}

= χ{w:w≥x and w�x+k}, as F = {x}

= 1x − 1x+k.

For f ∈ IH+ we know that f is a limit of finite sums of elements in the spanning

set of IH+ . Take ε > 0 and choose f0 ∈ span
{

1x − 1x+h : x ∈ G+, h ∈ H+

}
such

that ‖f − f0‖ < ε/3. Choose (F, h0) ∈ D such that for (F ′, k) ≥ (F, h0) then

1(F ′, k)f0 = f0. Therefore, for (F ′′, k) ≥ (F, h0) we have

‖1(F ′′, k)f − f‖ = ‖(1(F ′′, k)(f − f0) + 1(F ′′, k)f0 − f0 + f0 − f‖

≤ ‖1(F ′′, k)(f − f0)‖+ ‖1(F ′′, k)f0 − f0‖+ ‖f − f0‖

< ‖1(F ′′, k)‖ ‖f − f0‖+ ε/3 + ε/3

< ε/3 + ε/3 + ε/3

= ε.

Thus CI is an approximate identity for IH+ . �

Corollary 4.1.6. Let (G,G+) be a lattice-ordered group with G abelian, H+ be

a hereditary subsemigroup of G+, IH+ be the ideal in Lemma 4.1.1 and α denote the

action in Remark 4.1.2. Then IH+ is an extendibly αz-invariant ideal of BG+ for all

z ∈ G+.

Proof. For (1x − 1x+k) in the spanning set of IH+ we have

αz(1x − 1x+k) = αz(1x)− αz(1x+k), since αz is a homomorphism

= 1z+x − 1(z+x)+k ∈ IH+ .

By linearity and continuity of αz we conclude αz(f) ∈ IH+ , for all f ∈ IH+ . Hence IH+

is αz-invariant. Our next step is to show that for (1x−1x+k) ∈ IH+ , the approximate
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identity {1(F, h)} in Lemma 4.1.5 satisfies

αz(1(F, h))(1x − 1x+k)→ ψ
(
αz(1BG+

)
)
(1x − 1x+k).

Since αz(1BG+
) = 1z, this is equivalent to

(4.1.3) αz(1(F, h))(1x − 1x+k)→ ψ(1z)(1x − 1x+k) = 1z(1x − 1x+k) .

To prove (4.1.3) it is enough to find (F, h) ∈ D (directed set in Lemma 4.1.3) such

that if (F ′, h′) ≥ (F, h), then

(4.1.4) αz(1(F ′, h′))(1x − 1x+k) = 1z(1x − 1x+k) .

We claim that (F, h) =
(
{(x ∨ z)− z}, k

)
suffices. Notice that

1x − 1x+k = χ{y: y≥x and y�x+k}.

Fix (F ′, h′) ≥ (F, h) and y ∈ G+. If y � x or y ≥ x+ k, then

αz(1(F ′, h′))(1x − 1x+k)(y) = 0 = 1z(1x − 1x+k)(y) .

So we are left to consider y which satisfies y ≥ x and y � x+k. Then (1x−1x+k)(y) =

1, and so we need to check that αz(1(F ′, h ′))(y) = 1z(y). Using Lemma 4.1.4 we have

αz(1(F ′, h ′))(y) = 1(F ′, h ′)(y − z)

=

{
1 if there is x′ ∈ F ′ such that y − z ≥ x′ and y − z � x′ + h′,

0 otherwise.

Now we check what happens when y � z and when y ≥ z. If y � z then y � x′ + z

for all x ′ ∈ F ′ and therefore 1z(y) = 0 = αz(1(F ′, h ′))(y). On the other hand, if

y ≥ z then 1z(y) = 1. As y ≥ x then y ≥ x∨ z. So choose x ′ = (x∨ z)− z ∈ F ⊂ F ′

then y ≥ x ′+z and since y � x+k then y � (x∨z)+k. Therefore y � (x∨z)+h′ =

x ′ + z + h′. So αz(1(F ′, h ′))(y) = 1 and hence the functions in (4.1.4) agree at every

y ∈ G+.

To finish off, let b ∈ IH+ we know that b is a limit of finite sums of elements in the

spanning set of IH+ . Take ε > 0 and choose b0 ∈ span
{

1x− 1x+h : x ∈ G+, h ∈ H+

}
such that ‖b − b0‖ < ε/3. Choose (F, h0) ∈ D such that for (F ′, k) ≥ (F, h0) then
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αz(1(F ′, k))b0 = 1z b0 (this is true by (4.1.4)). Therefore, for (F ′, k) ≥ (F, h0) we

have

‖αz(1(F ′, k))b− 1z b‖ = ‖αz(1(F ′, k))(b− b0) + αz(1(F ′, k))b0 − 1z b0 + 1z b0 − 1z b‖

≤ ‖αz(1(F ′, k))(b− b0)‖+ ‖αz(1(F ′, k))b0 − 1z b0‖+ ‖1z(b− b0)‖

< ε/3 + ε/3 + ε/3

= ε.

Thus IH+ is an extendibly αz-invariant ideal of BG+ . �

4.2. The C∗-algebras B(G/H)+ and BG+/IH+

In this section we will introduce the C∗-algebra B(G/H)+ and to do so we need the

group (G/H) to be lattice-ordered. Let H = H+ −H+, which is a subgroup of G,

q : G → G/H be the quotient map of G onto G/H and define the positive cone of

(G/H) to be (G/H)+ :=
{
q(x) : x ∈ G+

}
.

Lemma 4.2.1. For x, y ∈ G, we have q(y) − q(x) ∈ (G/H)+ if and only if there

exists h ∈ H such that x ≤ y + h.

Proof. Suppose that x, y ∈ G and q(y)−q(x) ∈ (G/H)+. Then there is z ∈ G+

such that q(y)− q(x) = q(z), and so (y− x) +H = z+H. Then y− x− z ∈ H, and

hence there is h ∈ H such that y − x − z = h. Therefore y − h = x + z ≥ x. Thus

x ≤ y + k, for k = −h ∈ H.

Conversely, suppose that x, y ∈ G and there is h ∈ H such that x ≤ y+ h. Then

y + h − x ≥ 0 (i.e ∈ G+), and hence there is w ∈ G+ such that y − x + h = w.

Which implies (y − x) − w = −h ∈ H, and so (y − x) + H = w + H. Therefore

q(y)− q(x) = q(w), and thus q(y)− q(x) ∈ (G/H)+. �

Lemma 4.2.2. The quotient group G/H is a lattice-ordered abelian group with

order

q(x) ≤ q(y)⇐⇒ there exists h ∈ H such that x ≤ y + h.

Moreover, q(x ∨ y) = q(x) ∨ q(y).
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Proof. The group G/H is abelian because G is abelian. We now show that

the relation on G/H is a partial order, and to do so we need only to show that

(G/H)+

⋂
(G/H)−1

+ = H. Suppose that t ∈ (G/H)+

⋂
(G/H)−1

+ . Then there are

z, w ∈ G+ such that t = q(z) and t = q(−w), which imply that q(z) = q(−w). So

z+w ∈ H, which means that there are h1, h2 ∈ H+ such that z+w = h1−h2 (since

H = H+−H+). Hence z+w+h2 = h1 ∈ H+ ⊂ H. Noticing that 0 ≤ z ≤ z+w+h2

and H+ is hereditary, then z ∈ H+ ⊂ H. Therefore q(z) = q(0) = H (that is,

t = H).

Now we show that every two elements of G/H have a least upper bound in G/H.

Fix x, y ∈ G. We know that x ≤ x ∨ y (x ∨ y exists because G is lattice-ordered),

and so q(x) ≤ q(x∨ y). The same is true for y, therefore q(x∨ y) is an upper bound

for q(x) and q(y). Suppose that for z ∈ G, q(z) is an upper bound for q(x) and q(y).

Then there exists h1, h2 ∈ H such that x ≤ z + h1 and y ≤ z + h2. Without loss

of generality we may suppose that h1, h2 ∈ H+ (this is true because h1 = t − t′ for

some t, t′ ∈ H+ so z + t − t′ − x ≥ 0 and then z + t − x ≥ t′ ≥ 0 and a similar

argument works for h2). Then x, y ≤ z + h1 + h2 and hence x ∨ y ≤ z + h1 + h2.

Thus q(x ∨ y) ≤ q(z), and it follows that q(x ∨ y) is the least upper bound of q(x)

and q(y) in G/H. Hence G/H is lattice-ordered. �

Remark 4.2.3. Since (G/H, (G/H)+) is a lattice-ordered group, then by [21]

applied to G/H we have B(G/H)+ := span
{

1q(x) : x ∈ G+

}
is an abelian C∗-algebra

with unit 1q(0) = 1H .

Proposition 4.2.4. Let IH+ be the ideal of BG+ defined in Lemma 4.1.1 and q be

the quotient map of the group G onto the group G/H. Then there is an isomorphism

Φ of BG+/IH+ onto B(G/H)+ such that Φ(1x + IH+) = 1q(x) for all x ∈ G+.

We will now state and prove some lemmas and corollaries which will lead to the

proof of this proposition.
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Lemma 4.2.5. Let q be the quotient map of the group G onto the group G/H.

Then there is a surjective unital homomorphism φ : BG+ → B(G/H)+ such that

φ(1x) = 1q(x) for x ∈ G+.

Proof. Take the set
{
Lx := 1q(x) : x ∈ G+

}
in the C∗-algebra B(G/H)+ . Then

for x, y ∈ G+ we have

1q(x)1q(y) = 1q(x)∨q(y) = 1q(x∨y) and 1q(0)1q(x) = 1q(0∨x) = 1q(x∨0) = 1q(x),

and this is true in B(G/H)+ because G/H is lattice-ordered group and q(x) ∨ q(y) =

q(x ∨ y) (Lemma 4.2.2). Hence L0 = 1q(0) = 1B(G/H)+
and LxLy = Lx∨y. Thus by

Corollary 3.4.2 there exists a unital homomorphism φ : BG+ → B(G/H)+ such that

φ(1x) = 1q(x) and since the range of φ contains all the generators of B(G/H)+ , φ is

surjective. �

Corollary 4.2.6. Let q be the quotient map of G onto G/H and IH+ be the ideal

of BG+ in Lemma 4.1.1. Then there exists a unital homomorphism φ̃ : BG+/IH+ →

B(G/H)+ satisfying φ̃(1x + IH+) = 1q(x).

Proof. To prove this corollary we need first to show that IH+ ⊂ ker(φ) (φ is the

unital homomorphism of Lemma 4.2.5). To see this, take x ∈ G+, h ∈ H+. Then

φ(1x − 1x+h) = φ(1x)− φ(1x+h), since φ is a homomorphism

= 1q(x) − 1q(x+h)

= 1q(x) − 1q(x), since h ∈ H+

= 0.

Now, for any f ∈ IH+ we know that f is a limit of elements in the spanning set of IH+ ,

so by linearity and continuity of φ we have φ(f) = 0. Hence IH+ ⊂ ker(φ) and as IH+

is a closed ideal in BG+ , there exists a unital homomorphism φ̃ : BG+/IH+ → B(G/H)+

with the desired properties. �
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Lemma 4.2.7. Let IH+ be the ideal of BG+ in Lemma 4.1.1 and q be the quotient

map of G onto G/H. Then there is a unital homomorphism ψ : B(G/H)+ → BG+/IH+

satisfying ψ(1q(x)) = 1x + IH+ for x ∈ G+.

Proof. Take the set
{
Lq(x) := 1x + IH+ , x ∈ G+

}
in the C∗-algebra BG+/IH+ .

We want to apply Corollary 3.4.2, so we need first to show that Lq(x) is well-defined.

To see this, suppose that x, y ∈ G+ satisfy q(x) = q(y). Then x − y ∈ H, and

since H = H+ − H+, we have x − y = h1 − h2 for some h1, h2 ∈ H+. Notice

that 1x = 1x+h2 + (1x − 1x+h2) and so 1x ∈ 1x+h2 + IH+ . But as x + h2 = y + h1,

then 1x ∈ 1y+h1 + IH+ . Now 1y+h1 + IH+ = 1y − (1y − 1y+h1) + IH+ , therefore

1y+h1 + IH+ = 1y + IH+ . Hence 1x ∈ 1y + IH+ . Thus 1x + IH+ = 1y + IH+ , which

means that Lq(x) = Lq(y). Our next step is to check the conditions of Corollary 3.4.2.

For f ∈ BG+ we have

(10 + IH+)(f + IH+) = (10 f) + IH+ = f + IH+ , since 10 = 1BG+
∈ BG+

and since BG+ is commutative, (f + IH+)(10 + IH+) = f + IH+ . Hence Lq(0) = 1

∈ BG+/IH+ . Moreover,

Lq(x)Lq(y) = (1x + IH+)(1y + IH+) = 1x1y + IH+

= 1x∨y + IH+

= Lq(x∨y)

= Lq(x)∨q(y), by Lemma 4.2.2.

Since G/H is a lattice-ordered group, then Corollary 3.4.2 gives a unital homomor-

phism ψ : B(G/H)+ → BG+/IH+ such that ψ(1q(x)) = 1x + IH+ . �

Proof of Proposition 4.2.4. To show that the two C∗-algebras B(G/H)+ and

BG+/IH+ are isomorphic, consider the homomorphisms φ̃ and ψ of Corollary 4.2.6 and

Lemma 4.2.7 respectively. It is enough to show that ψ◦ φ̃ and φ̃◦ψ are the respective

identity maps. Since ψ and φ̃ are both continuous and linear it suffices to check that

ψ ◦ φ̃(1q(x)) = 1q(x) and φ̃ ◦ ψ(1x + IH+) = 1x + IH+ . By the definitions of φ̃ and ψ

in Corollary 4.2.6 and Lemma 4.2.7 respectively. The conditions ψ ◦ φ̃(1q(x)) = 1q(x)
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and φ̃ ◦ ψ(1x + IH+) = 1x + IH+ for x ∈ G+, follow immediately. Thus take the

isomorphism Φ to be the unital homomorphism φ̃ in Corollary 4.2.6 which has the

desired properties. �
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CHAPTER 5

Inflated dynamical systems

We use the first section of this chapter to give the necessary definitions and

results on the subject of irreducible representations of C∗-algebras. We use these

results throughout the last two chapters.

5.1. Irreducible representations of C∗-algebras

Definition 5.1.1. A non-zero representation π of a C∗-algebra A on a Hilbert

spaceH is called irreducible if the only closed subspaces K ofH such that π(a)K ⊂ K

are K = {0} and K = H [37, A.1].

The following lemma gives a necessary and sufficient conditions for a represen-

tation π of a C∗-algebra A to be irreducible. The proof can be found in [Lemma

A.1][37].

Lemma 5.1.2. A representation π of a C∗-algebra A is irreducible if and only if

the only operators commuting with π(A) are multiples of the identity operator 1H.

The following theorem says that for any element a of a C∗-algebra A, there is

an irreducible representation π that preserves the norm of a. For the proof see [37,

Theorem A.14].

Theorem 5.1.3. Let A be a C∗-algebra. Then for each a ∈ A there is an irre-

ducible representation π of A with ‖π(a)‖ = ‖a‖.

Remark 5.1.4. We can read the previous theorem in the following way. For any

C∗ algebra A and any non-zero element a ∈ A, there is an irreducible representation

π of A such that π(a) 6= 0. This means that if π(a) = 0 for every irreducible

representation π of A, then a = 0.
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We now prove a minor corollary which we use later in section §5.3.

Corollary 5.1.5. Suppose that φ : A → B is a homomorphism of C∗-algebras

and that for every irreducible representation π of A there is a representation ρ of B

such that π = ρ ◦ φ. Then φ is injective.

Proof. Let a ∈ A and suppose that φ(a) = 0. Then ρ ◦ φ(a) = 0 for any

representation of B. Therefore, π(a) = 0 for all irreducible representations of A.

Hence Remark 5.1.4 implies that a = 0 and thus φ is injective. �

5.2. The relationship between inflated systems

Let IH+ be the ideal of BG+ in Lemma 3.4.2 and α be the action of G+ by endomor-

phisms of BG+ in Lemma 3.4.1. By Remark 4.1.2, each αx is extendible. Since IH+

is an αx-invariant ideal of BG+ (Corollary 4.1.6), then as in [2, page 2] it follows that

each αx induces an endomorphism α̃x of the quotient C∗-algebra BG+/IH+ charac-

terised by α̃x(1y + IH+) = αx(1y) + IH+ . Because α̃x ◦ α̃y = α̃x+y, α̃ is an action of

G+ on BG+/IH+ . Since the C∗-algebra BG+/IH+ is unital (because IH+ is a closed

ideal of BG+), then each α̃x is extendible.

Remark 5.2.1.

(i) Since (G/H, (G/H)+) is a lattice-ordered group, then there is an action

τ : (G/H)+ → End
(
B(G/H)+

)
such that τx+H(1y+H) = 1x+y+H and every τx+H

is extendible because B(G/H)+ is unital. If we define β := τ ◦ q, then β is an action

of G+ on B(G/H)+ by extendible endomorphisms.

(ii) Isomorphic dynamical systems give isomorphic crossed products. That is,

suppose (A,P, ξ), (B,P, ζ) are two dynamical systems and φ is an isomorphism of

A onto B satisfying φ ◦ ξt = ζt ◦ φ for all t ∈ P . Then there is an isomorphism ϑ of

A×ξ P onto B ×ζ P satisfying

ϑ(iA(a)) = iB(φ(a)) and ϑ(iP (t)) = iP (t) for all a ∈ A, t ∈ P.
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Lemma 5.2.2. There is an isomorphism Ω of the crossed product (BG+/IH+)×α̃
G+ onto the crossed product B(G/H)+ ×β G+.

Proof. Proposition 4.2.4 gives an isomorphism Φ : BG+/IH+ → B(G/H)+ sat-

isfying Φ(1x + IH+) = 1q(x). So to prove this lemma it is enough to show that

Φ ◦ α̃x = βx ◦ Φ for all x ∈ G+. Let y ∈ G+, then

Φ ◦ α̃x(1y + IH+) = Φ
(
1x+y + IH+

)
= 1q(x+y)(5.2.1)

= τx+H(1y+H)

= βx(1q(y))

= βx ◦ Φ(1y + IH+).

Since Φ, βx and α̃x are all continuous and linear then Φ ◦ α̃x(b) = βx ◦Φ(b) for every

b ∈ BG+/IH+ . Thus (BG+/IH+)×α̃ G+ and B(G/H)+ ×β G+ are isomorphic. �

Proposition 5.2.3. Let
(
iB(G/H)+

, i(G/H)+

)
and

(
jB(G/H)+

, jG+

)
denote the univer-

sal representations of the dynamical systems
(
B(G/H)+ , (G/H)+, τ

)
and

(
B(G/H)+ , G+,

β
)

respectively and let q be the quotient map of G onto G/H. Then there exists a

surjective homomorphism

Q : B(G/H)+ ×β G+ → B(G/H)+ ×τ (G/H)+,

such that Q ◦ jB(G/H)+
= iB(G/H)+

and Q ◦ jG+ = i(G/H)+ ◦ q.

Proof. The map i(G/H)+ ◦ q is a homomorphism of the semigroup G+ into the

semigroup of isometries of B(G/H)+ ×τ (G/H)+ and the map iB(G/H)+
is a unital

homomorphism such that, for x ∈ G+ and a ∈ B(G/H)+ we have

iB(G/H)+

(
βx(a)

)
= iB(G/H)+

(
τq(x)(a)

)
= i(G/H)+(q(x))iB(G/H)+

(a)i(G/H)+(q(x))∗.

Therefore the pair
(
iB(G/H)+

, i(G/H)+◦q
)

is a covariant representation of the dynamical

system
(
B(G/H)+ , G+, β

)
in the C∗-algebra B(G/H)+ ×τ (G/H)+. Thus there exists a

unital homomorphism

Q : B(G/H)+ ×β G+ → B(G/H)+ ×τ (G/H)+
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satisfying Q ◦ jB(G/H)+
= iB(G/H)+

and Q ◦ jG+ = i(G/H)+ ◦ q. And since the range

of Q is a C∗-subalgebra of B(G/H)+ ×τ (G/H)+ containing all the generators, Q is

surjective. �

Remark 5.2.4. Since H is a subgroup of G, then (G/H)∧ is isomorphic to H⊥ ={
ξ ∈ Ĝ : ξ(x) = 1 for all x ∈ H

}
and Ĝ/H⊥ is isomorphic to Ĥ [17, Theorem 4.39].

5.3. Crossed products of inflated systems

Definition 5.3.1. Suppose that K is a compact group and α : S → AutA

is an action of a closed subgroup S of K on a C∗-algebra A. Then the induced

C∗-algebra IndKS (A,α) is the subalgebra of C(K,A) consisting of the functions f

satisfying f(gh) = α−1
h (f(g)) for g ∈ K and h ∈ S [6, page 3].

To proceed, let us review our assumptions. Suppose that (G,G+) is a lattice-ordered

group with G abelian , H+ is a hereditary subsemigroup of G+ and q is the quotient

map of the group G onto the group G/H. We now introduce one of our main results

in this chapter which shows that we can realize the C∗-algebra B(G/H)+ ×β G+ as

the induced C∗-algebra IndĜH⊥
(
B(G/H)+ ×τ (G/H)+

)
. This theorem is an analogue

of Theorem 2.1 in [3]. The argument of the proof of our theorem is similar in outline

to the one of Theorem 2.1 in [6] with extra work to be done. However, under our

assumptions especially that we are working with lattice-ordered not totally ordered

groups more challenges to the proof have been added, for example there are no

analogues of claims 2, 5, 6 and 7 in [6].

Theorem 5.3.2. Let β̂ be the dual action as in Lemma 3.4.6, τ be the action

in Remark 5.2.1 and Q be the surjective homomorphism of Proposition 5.2.3. Then

there is an isomorphism Ψ of the crossed product B(G/H)+ ×β G+ onto the induced

C∗-algebra IndĜH⊥
(
B(G/H)+ ×τ (G/H)+

)
such that Ψ(a)(γ) = Q

(
β̂−1
γ (a)

)
for a ∈

B(G/H)+ ×β G+ and γ ∈ Ĝ.

Proof. Given µ ∈ H⊥ = (G/H)∧ (Remark 5.2.4). We claim that

(5.3.1) Q ◦ β̂−1
µ = τ̂−1

µ ◦Q, (τ̂ is the dual action as in Lemma 3.4.6).
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For b ∈ B(G/H)+ , we have

Q ◦ β̂−1
µ (jB(G/H)+

(b)) = Q
(
β̂−1
µ (jB(G/H)+

(b))
)

= Q(jB(G/H)+
(b))

= iB(G/H)+
(b)

= τ̂−1
µ

(
iB(G/H)+

(b)
)

= τ̂−1
µ ◦Q(jB(G/H)+

(b))

and for x ∈ G+ we have

Q ◦ β̂−1
µ (jG+(x)) = Q

(
β̂−1
µ (jG+(x))

)
= Q

(
µ(x)jG+(x)

)
= µ(x)

(
i(G/H)+ ◦ q(x)

)
= τ̂−1

µ

(
(i(G/H)+ ◦ q)(x)

)
= τ̂−1

µ ◦Q(jG+(x)).

Thus the homomorphisms Q ◦ β̂−1
µ and τ̂−1

µ ◦Q agree on generators and hence on all

of the C∗-algebra B(G/H)+ ×β G+.

Because β̂ is continuous, by Lemma 3.4.6, then Ψ(a) : Ĝ→ B(G/H)+ ×τ (G/H)+

is continuous. For γ ∈ Ĝ, µ ∈ H⊥ we have

Ψ(a)(γµ) = Q
(
β̂−1
γµ (a)

)
= Q

(
β̂−1
µ ◦ β̂−1

γ (a)
)

= τ̂−1
µ

(
Q(β̂−1

γ (a))
)

= τ̂−1
µ

(
Ψ(a)(γ)

)
.

Hence Ψ(a) ∈ IndĜH⊥
(
B(G/H)+ ×τ (G/H)+

)
. Further routine calculations show that

Ψ is a homomorphism of C∗-algebras. For details, see appendix A.

Our next step is to show that Ψ is injective and to do so we will apply Theorem

A.14 of [37] and Corollary 5.1.5. Given that π is an irreducible representation of

B(G/H)+ ×β G+, we need to find a representation σ of IndĜH⊥
(
B(G/H)+ ×τ (G/H)+

)
such that π = σ ◦Ψ.

Claim 1. π ◦ jG+ is an isometric representation of G+ which is unitary on H+.
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proof. We know that the composition of any isometric representation with a

unital homomorphism will give an isometric representation. So we only need to

show that π ◦ jG+ is unitary on H+. For y ∈ H+, we have(
π ◦ jG+(y)

)(
π ◦ jG+(y)∗

)
= π

(
jG+(y)jB(G/H)+

(1B(G/H)+
)jG+(y)∗

)
= π

(
jB(G/H)+

(
βy(1B(G/H)+

)
))

= π
(
jB(G/H)+

(1B(G/H)+
)
)

= π
(
1B(G/H)+

×βG+

)
= 1H .

�

Claim 2. For x ∈ H+, π ◦ jG+(x) commutes with every π ◦ jG+(y), π ◦ jG+(y)∗

and π ◦ jB(G/H)+(f), for y ∈ G+ and f ∈ B(G/H)+ .

proof. Let x ∈ H+ and y ∈ G+, then(
π ◦ jG+(x)

)(
π ◦ jG+(y)

)
= π

(
jG+(x+ y)

)
(1)

= π
(
jG+(y + x)

)
=
(
π ◦ jG+(y)

)(
π ◦ jG+(x)

)
,

and (
π ◦ jG+(x)

)(
π ◦ jG+(y)∗

)
= π

(
jG+(x)

)
π
(
jG+(y)∗

)
(2)

= π
(
jG+(x)jG+(y)∗

)
= π

(
jG+(x)jG+(y)∗jG+(x)∗jG+(x)

)
= π

(
jG+(x)jG+(x)∗jG+(y)∗jG+(x)

)
, by (1)

= π
(
jG+(x)jG+(x)∗

)
π
(
jG+(y)∗jG+(x)

)
= 1H · π

(
jG+(y)∗

)
π
(
jG+(x)

)
, by Claim 1

=
(
π ◦ jG+(y)∗

)(
π ◦ jG+(x)

)
.
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Finally, for y ∈ G+ we have(
π ◦ jG+(x)

)(
π ◦ jB(G/H)+

(1q(y))
)

= π
(
jB(G/H)+

(
βx(1q(y))

)
jG+(x)

)
= π

(
jB(G/H)+

(
1x+y+H

)
jG+(x)

)
= π

(
jB(G/H)+

(
1y+H

)
jG+(x)

)
, as x ∈ H+ ⊂ H

=
(
π ◦ jB(G/H)+

(1q(y))
)(
π ◦ jG+(x)

)
.

Since both π and jB(G/H)+
are linear and continuous and by limit properties we have(

π ◦ jG+(x)
)

and
(
π ◦ jB(G/H)+

(f)
)

commute for every f ∈ B(G/H)+ . �

By Claim 2 we have
(
π ◦ jG+(x)

)
∈ π

(
B(G/H)+ ×β G+

)′
= C 1H (since π is

irreducible) and so there is a character γ of H+ such that
(
π ◦ jG+(x)

)
= γ(x) 1H.

Claim 3. The character γ : H+ → T has an extension χ to G.

proof. Since π ◦ jG+ is unitary on H+, γ(x) has |γ(x)| = 1 for all x ∈ H+.

Notice that the abelian subgroup H = H+ −H+ of G is generated by H+, which is

a normal subsemigroup of H. So by [20, Lemma 1.1] there exists a unique group

homomorphism γ ′ extending γ to all of H. Since H is a closed subgroup of G,

then [17, Corollary 4.41] implies that there exists a character χ of G such that

χ|H = γ ′. �

Consider the isometric representation U : x 7→ χ(x)π(jG+(x)) of G+. Then

Ux = 1 for all x ∈ H+ since χ|H+ = γ.

Claim 4. U is constant on H cosets.

proof. suppose that x, y ∈ G+ satisfy x+H = y +H. Then x− y ∈ H and as

H = H+ −H+ we have x− y = h1 − h2 for h1, h2 ∈ H+. Therefore x+ h2 = y + h1,

and as Uh1 = 1 = Uh2 we have

Ux = UxUh2 = Ux+h2 = Uy+h1 = UyUh1 = Uy .

Thus U is constant on H cosets. �
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To construct σ, let q be the quotient map of G onto G/H and define W :

(G/H)+ → B(H) by Wq(x) = Ux, then W is an isometric representation of (G/H)+.

We claim that W is covariant. To see this let x, y ∈ G+, since 0 ≤ x ≤ x ∨ y and

(G,G+) is lattice-ordered then x ∨ y ∈ G+. Lemma 3.4.4 says that since (G,G+) is

lattice-ordered group then jG+ is covariant isometric representation of the semigroup

G+ into the semigroup of isometries in B(G/H)+ ×β G+. Then

Wq(x)W
∗
q(x)Wq(y)W

∗
q(y) = |χ(x)|2π

(
jG+(x)

)
π
(
jG+(x)

)∗|χ(y)|2π
(
jG+(y)

)
π
(
jG+(y)

)∗
= π

(
jG+(x)jG+(x)∗jG+(y)jG+(y)∗

)
= π

(
jG+(x ∨ y)jG+(x ∨ y)∗

)
= Ux∨yU

∗
x∨y

= Wq(x∨y)W
∗
q(x∨y)

= Wq(x)∨q(y)W
∗
q(x)∨q(y), by Lemma 4.2.2.

Thus W is covariant isometric representation of (G/H)+ as claimed. We know

from [3] that B(G/H)+ ×τ (G/H)+ is universal for covariant isometric representations

of (G/H)+, hence there is a representation ρW of B(G/H)+ ×τ (G/H)+ such that

ρW
(
i(G/H)+(q(x))

)
= Wq(x). Notice that ρW is an irreducible representation since it

has the same range as π. We know from [37, Proposition 6.16] that every irreducible

representation of IndĜH⊥
(
B(G/H)+ ×τ (G/H)+

)
has the form M(γ, ρ) : f → ρ(f(γ))

for some γ ∈ Ĝ and some irreducible representation ρ of B(G/H)+ ×τ (G/H)+. So we

take for σ the representation M(χ, ρW ) and check that π = M(χ, ρW ) ◦Ψ.
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Fix y ∈ G+, then

M(χ, ρW ) ◦Ψ
(
jG+(y)

)
= ρW

(
Ψ
(
jG+(y)(χ)

))
(?)

= ρW

(
Q
(
β̂−1
χ (jG+(y))

))
= ρW

(
Q
(
χ(y)jG+(y)

))
= χ(y)ρW

(
i(G/H)+ ◦ q(y)

)
= χ(y)Wq(y)

= χ(y)Uy

= π
(
jG+(y)

)
.

Since
(
jB(G/H)+

, jG+

)
is the universal representation of the dynamical system

(
B(G/H)+ ,

G+, β
)

then jB(G/H)+
(1y+H) = jG+(y)jG+(y)∗ and so the elements jG+(y) generate the

C∗-algebra B(G/H)+ ×β G+. Therefore (?) implies that M(χ, ρW ) ◦ Ψ = π and thus

Ψ is injective.

We still need to show that Ψ is surjective. To do so we make the following claims.

Claim 5. For fixed γ ∈ Ĝ the set
{

Ψ(b)(γ) : b ∈ B(G/H)+ ×β G+

}
= B(G/H)+ ×τ

(G/H)+.

proof. Let a ∈ B(G/H)+ ×τ (G/H)+. Proposition 5.2.3 implies that there exists

c ∈ B(G/H)+ ×β G+ such that Q(c) = a. Then

Ψ
(
β̂γ(c)

)
(γ) = Q

(
β̂−1
γ (β̂γ(c))

)
= Q(c) = a.

�

Claim 6. range(Ψ) ⊃ C
(
Ĝ/H⊥

) ∼= C(Ĥ) (Remark 5.2.4).
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proof. For x ∈ H+ and γ ∈ Ĝ we have

Ψ
(
jG+(x)

)
(γ) = Q

(
β̂−1
γ

(
jG+(x)

))
= Q

(
γ(x)jG+(x)

)
= γ(x) i(G/H)+ ◦ q(x)

= γ(x) i(G/H)+(x+H)

= γ(x) i(G/H)+(H), x ∈ H+ ⊂ H

= γ(x) 1B(G/H)+
×τ (G/H)+ , since i(G/H)+ is an isometric representation.

Moreover, for x ∈ H+ we claim that Ψ
(
jG+(x)

)
is constant on H⊥-orbits. To see

this, suppose that γ, µ ∈ Ĝ satisfy γH⊥ = µH⊥. Then µγ−1 = µγ ∈ H⊥ and

Ψ
(
jG+(x)

)
(γ) = γ(x) 1B(G/H)+

×τ (G/H)+

= γ(x)
(
µγ
)
(x) 1B(G/H)+

×τ (G/H)+

= γ(x)
(
γ(x)µ(x)

)
1B(G/H)+

×τ (G/H)+

= |γ(x)|2µ(x) 1B(G/H)+
×τ (G/H)+

= Ψ
(
jG+(x)

)
(µ).

So Ψ
(
jG+(x)

)
is really a function on Ĝ/H⊥. We now show that the set S = span

{
ex :

γH⊥ 7→ γ(x) : x ∈ H
}

is dense in C(Ĝ/H⊥). To do this we apply the Stone-

Weierstrass Theorem, so we need to show that S is a ∗-subalgebra of C(Ĝ/H⊥)

which contains the constant functions on Ĝ/H⊥ and separates points of Ĝ/H⊥. To

begin, fix x, y ∈ H, γH⊥ ∈ Ĝ/H⊥ and λ ∈ C. Then

exey(γH
⊥) = ex(γH

⊥)ey(γH
⊥) = γ(x)γ(y) = γ(x+ y) = ex+y(γH

⊥).

So exey ∈ S and hence S is a subalgebra of C(Ĝ/H⊥). Furthermore,

ex(γH⊥) = γ(x) = γ(−x) = e−x(γH
⊥).

Hence S is a ∗-subalgebra. Now, λe0 is the constant function of value λ, so S

contains the constant functions on Ĝ/H⊥. Moreover, let γH⊥, χH⊥ ∈ Ĝ/H⊥ such

that γH⊥ 6= χH⊥. Then γχ−1 6∈ H⊥ which implies that there is x ∈ H such that
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γ(x)χ−1(x) 6= 1, and hence γ(x) 6= χ(x). So ex(γH
⊥) 6= ex(χH

⊥) and therefore S

separates points of Ĝ/H⊥. Hence by the Stone-Weierstrass Theorem S is dense in

C(Ĝ/H⊥).

Notice that every h ∈ H has the form h1 − h2 for some h1, h2 ∈ H+, and so

eh = eh1e
∗
h2

; then the elements
{
ex : x ∈ H+

}
generate C(Ĝ/H⊥) as a C∗-algebra.

There is an obvious embedding Θ of C
(
Ĝ/H⊥

)
into IndĜH⊥

(
B(G/H)+×τ (G/H)+

)
given by Θ(f)(γ) = f(γH⊥)1B(G/H)+

×τ (G/H)+ , and so Θ(ex) = Ψ(jG+(x)). Therefore

the set
{

Ψ(jG+(x)) : x ∈ H+

}
generates C(Ĝ/H⊥), and hence the range of Ψ -which

is a C∗-algebra- contains C(Ĝ/H⊥). �

Claim 7. Ψ is surjective.

proof. Given f ∈ IndĜH⊥
(
B(G/H)+×τ (G/H)+

)
. Since rang(Ψ) is a C∗-subalgebra

of IndĜH⊥
(
B(G/H)+ ×τ (G/H)+

)
, to show that f ∈ range(Ψ) it is enough to approx-

imate f by elements of rang(Ψ). Fix ε > 0. For γ ∈ Ĝ, Claim 5 implies that there

exist aγ ∈ B(G/H)+ ×β G+ such that Ψ(aγ)(γ) = f(γ). Since both Ψ(aγ) and f are

continuous on Ĝ, there exists an open neighborhood Vγ of γ such that

(5.3.2) χ ∈ Vγ ⇒ ‖Ψ(aγ)(χ)− f(χ)‖ < ε.

Hence, for µ ∈ H⊥ we have

f(γµ) = τ̂−1
µ (f(γ)) = τ̂−1

µ (Ψ(aγ)(γ))

= τ̂−1
µ (Q(β̂−1

γ (aγ)))

= Q ◦ β̂−1
µ (β̂−1

γ (aγ)), by Equation (5.3.1)

= Q(β̂−1
γµ (aγ))

= Ψ(aγ)(γµ).

Suppose that σ : Ĝ → Ĝ/H⊥ is the quotient map of the compact group Ĝ onto

Ĝ/H⊥. Since the quotient maps of topological groups are open, then σ(Vγ) = Vγ H
⊥

is an open neighborhood of γH⊥. Therefore, we have

χH⊥ ∈ VγH⊥ ⇒ ‖Ψ(aγ)(χ)− f(χ)‖ < ε.
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Now choose a finite subset
{
VγiH

⊥}n
i=1

of
{
VγH

⊥} such that Ĝ/H⊥ =
⋃n
i=1 VγiH

⊥.

By [37, Lemma 4.34] we have a partition of unity φi : Ĝ/H⊥ → [0, 1], i = 1, ..., n

(continuous functions) subordinate to
{
VγiH

⊥}n
i=1

such that
∑n

i=1 φi(γH
⊥) = 1 for

all γH⊥ ∈ Ĝ/H⊥ and suppφi ⊂ VγiH
⊥. Let ai = aγi and notice that φi ∈ C(Ĝ/H⊥).

Claim 6 says that C(Ĝ/H⊥) is contained in range(Ψ) ⊂ IndĜH⊥
(
B(G/H)+ ×τ (G/H)+

)
.

Therefore, for each i there exists bi such that Ψ(bi) = φi. Hence
∑n

i=1 φiΨ(ai) =

Ψ
(∑n

i=1 biai
)

belongs to the range of Ψ. Now for χ ∈ Ĝ we have∥∥∥( n∑
i=1

φiΨ(ai)
)

(χ)− f(χ)
∥∥∥ =

∥∥∥( n∑
i=1

φiΨ(ai)
)

(χ)−
n∑
i=1

φi(χH
⊥)f(χ)

∥∥∥
=
∥∥∥ n∑
i=1

φi(χH
⊥)
(
Ψ(ai)(χ)− f(χ)

)∥∥∥
≤

n∑
i=1

φi(χH
⊥)‖Ψ(ai)(χ)− f(χ)‖

≤
n∑
i=1

φi(χH
⊥) ε

= ε, since
n∑
i=1

φi(γH
⊥) = 1 for all γH⊥ ∈ Ĝ/H⊥.

Hence Ψ is surjective. �

Thus Ψ is an isomorphism of B(G/H)+ ×β G+ onto IndĜH⊥
(
B(G/H)+ ×τ (G/H)+

)
and this completes the proof of Theorem 5.3.2. �

Lemma 5.3.3. Let
(
iBG+

, iG+

)
and

(
jB(G/H)+

, jG+

)
denote the universal represen-

tations of the dynamical systems
(
BG+ , G+, α) and

(
B(G/H)+ , G+, β

)
respectively and

q be the quotient map of G onto G/H. Then there exists a surjective homomorphism

θH : BG+ ×α G+ → B(G/H)+ ×β G+,

such that θH ◦ iBG+
(1x) = jB(G/H)+

(1q(x)) and θH ◦ iG+(y) = jG+(y) for all x, y ∈ G+.

Proof. Lemma 4.2.5 says that there is a surjective homomorphism φ : BG+ →

B(G/H)+ satisfying φ(1x) = 1q(x) for x ∈ G+, so the map jB(G/H)+
◦ φ : BG+ →

B(G/H)+ ×β G+ is a unital homomorphism. The map jG+ is a covariant isometric
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representation of G+ into the semigroup of isometries of B(G/H)+ ×β G+. For x, y ∈

G+ we have

jB(G/H)+
◦ φ
(
αx(1y)

)
= jB(G/H)+

(1q(x+y))(5.3.3)

= jB(G/H)+

(
βx(1q(y))

)
= jG+(x)jB(G/H)+

(1q(y))jG+(x)∗

= jG+(x)jB(G/H)+

(
φ(1y)

)
jG+(x)∗.

Hence by linearity and continuity of jB(G/H)+
, φ and αx, the calculations in (5.3.3)

are true for every a ∈ BG+ . Therefore the pair
(
jB(G/H)+

◦ φ, jG+

)
is a covariant

representation of the dynamical system
(
BG+ , G+, α

)
in the C∗-algebra B(G/H)+ ×β

G+. Thus there exists a unital homomorphism

θH : BG+ ×α G+ → B(G/H)+ ×β G+,

such that θH ◦ iG+(y) = jG+(y) and θH ◦ iBG+
(1x) = jB(G/H)+

(
φ(1x)

)
= jB(G/H)+

(1q(x))

for all x, y ∈ G+. Moreover, since the range of θH is a C∗-subalgebra of B(G/H)+×βG+

containing all the generators, θH is surjective. �

Theorem 5.3.4. Let IH+ be the extendibly αx-invariant ideal of BG+ in Corollary

4.1.6, Ψ be the isomorphism of Theorem 5.3.2,
(
iBG+

, iG+

)
and

(
jB(G/H)+

, jG+

)
denote

the universal homomorphisms of the crossed products BG+ ×α G+ and B(G/H)+

×βG+ respectively and θH be the homomorphism of Lemma 5.3.3. Define Υ = Ψ◦θH .

Then the following is a short exact sequence of C∗-algebras

(5.3.4) 0→ IH+ ×α G+
φ→ BG+ ×α G+

Υ→ IndĜH⊥
(
B(G/H)+ ×τ (G/H)+

)
→ 0

in which φ is an isomorphism of IH+×αG+ onto the ideal D := span{iG+(x)∗iBG+
(a)

iG+(y) : a ∈ IH+ , x, y ∈ G+}.

Proof. We will apply Theorem 1.7 of [24] and to do so we need first to check

that G+ is an Ore-semigroup of G. Since G+ is a subset of G then it is cancellative.

We still need G+ to be right-reversible, so for y, z ∈ G+, we have y+G+

⋂
z+G+ 6= ∅

since y + z ∈ y +G+ and z + y ∈ z +G+ therefore z + y ∈ y +G+

⋂
z +G+. Hence
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G+ is Ore-semigroup of G. Therefore [24, Theorem 1.7] implies that there is a short

exact sequence

0→ IH+ ×α G+
φ→ BG+ ×α G+

ϕ→ BG+/IH+ ×α̃ G+ → 0

in which

ϕ ◦ iBG+
(1x) = jBG+

/IH+
(1x + IH+) and ϕ ◦ iG+(y) = jG+(y),

and IH+ ×α G+ is isomorphic to the ideal D := span{iG+(x)∗iBG+
(a)iG+(y) : a ∈

IH+ , x, y ∈ G+} in BG+ ×α G+. But Lemma 5.2.2 says that B(G/H)+ ×β G+ is

isomorphic to BG+/IH+ ×α̃ G+. Therefore there is a short exact sequence

(5.3.5) 0→ IH+ ×α G+
φ→ BG+ ×α G+

θH→ B(G/H)+ ×β G+ → 0

in which

θH ◦ iBG+
(1x) = jB(G/H)+

(1q(x)) and θH ◦ iG+(y) = jG+(y).

Now as B(G/H)+×βG+ is isomorphic to IndĜH⊥
(
B(G/H)+×τ (G/H)+

)
, then Υ = Ψ◦θH

is a map from BG+ ×α G+ onto IndĜH⊥
(
B(G/H)+ ×τ (G/H)+

)
with kernel IH+ ×α G+

(this is true by exactness of (5.3.5) and because Ψ is an isomorphism of B(G/H)+×βG+

onto IndĜH⊥
(
B(G/H)+×τ (G/H)+

)
). Thus we have the following short exact sequence

0→ IH+ ×α G+
φ→ BG+ ×α G+

Υ→ IndĜH⊥
(
B(G/H)+ ×τ (G/H)+

)
→ 0.

�

Corollary 5.3.5. Let
(
iBG+

, iG+

)
be the universal homomorphisms of the crossed

product BG+×αG+. Then the ideal D = span{iG+(x)∗iBG+
(a)iG+(y) : a ∈ IH+ , x, y ∈

G+} of BG+ ×α G+ in Theorem 5.3.4 is generated by
{
iBG+

(1− 1u) : u ∈ H+

}
.

Proof. Since iG+(x)∗, iG+(y) ∈ BG+ ×α G+, D is generated by
{
iBG+

(a) : a ∈

IH+

}
. So to prove this corollary it suffices to show that for a ∈ IH+ , iBG+

(a) is in the

ideal generated by
{
iBG+

(1 − 1u) : u ∈ H+

}
. To see this, fix x ∈ G+ and h ∈ H+.
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Then

iBG+
(1x − 1x+h) = iBG+

(1x)− iBG+
(1x+h)

= iG+(x)iG+(x)∗ − iG+(x+ h) iG+(x+ h)∗

= iG+(x)(1− iG+(h) iG+(h)∗)iG+(x)∗

= iG+(x) iBG+
(1− 1h) iG+(x)∗.

Hence iBG+
(1x−1x+h) is in the ideal generated by

{
iBG+

(1−1u) : u ∈ H+

}
. Therefore

by continuity of iBG+
we have that iBG+

(a) is in the ideal generated by
{
iBG+

(1−1u) :

u ∈ H+

}
for all a ∈ IH+ . �

Remark 5.3.6. Let
(
iBG+

, iG+

)
be the universal covariant representation of the

dynamical system (BG+ , G+, α). Then iBG+
(1x) = iG+(x)iG+(x)∗ and from [21,

Corollary 2.4] we know that the map iBG+
is injective, so for simplicity we write

1x for iG+(x)iG+(x)∗. Hence one can say that the crossed product IH+ ×α G+ in

(5.3.5) is generated by the set {1− 1u : u ∈ H+}.

5.4. The crossed product BH+ ×α H+ and its commutator ideal

The following proposition is interesting as it allows us to view the crossed product

BH+ ×α H+ as a C∗-subalgebra of the crossed product BG+ ×α G+.

Proposition 5.4.1. Let (G,G+) be a lattice-ordered group with G abelian, H+ be

a hereditary subsemigroup of G+ and
(
iBG+

, iG+

)
denote the universal representation

of the dynamical systems
(
BG+ , G+, α

)
in which α is the action in Lemma 3.4.1.

Then there is an isomorphism ι of BH+ ×α H+ into BG+ ×α G+.

Proof. The existence of the crossed product BH+ ×α H+ follows directly from

Remark 3.2.4 and Remark 3.4.3. Let V := iG+|H+ . Then V is a covariant isometric

representation of H+. Since BH+ ×α H+ is universal for covariant isometric rep-

resentations, there is a unital representation πV : BH+ → BG+ ×α G+ such that

πV (1x) = VxV
∗
x for all x ∈ H+. Hence, there is a unital representation πV × V :

BH+ ×αH+ → BG+ ×α G+ such that (πV × V ) ◦ iBH+
= πV and (πV × V ) ◦ iH+ = V.
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Notice that

πV (1x) = VxV
∗
x = iG+(x)iG+(x)∗

= iBG+
(1x), since

(
iBG+

, iG+

)
is the universal representation.

Then πV and iBG+
agree on the generators of BH+ . Therefore πV = iBG+

|BH+
and

so πV is faithful (see Remark 3.4.5). By Proposition 3.1 and Theorem 3.7 of [21]

πV ×α V is faithful. Taking ι := πV ×α V we obtain the desired result. �

Definition 5.4.2. Let A be a C∗-algebra. The commutator ideal C of A is the

closed ideal generated by {ab− ba : a, b ∈ A}.

Remark 5.4.3. The commutator ideal of a C∗-algebra A is the smallest closed

ideal C in A such that A/C is commutative [26, §3.5].

The following results will lead us to identify the commutator ideal of the C∗-

algebra BH+ ×α H+. We first introduce the algebra

(5.4.1) BH+,∞ := {f ∈ BH+ : lim
h→∞

f(h) = 0}.

Adji in [1] has talked about the commutator ideal in the case of totally ordered

groups. Here, we are generalizing her results to more general cases (lattice-ordered

groups) so extra work need to be done and more challenges to the proofs have been

added.

Lemma 5.4.4. Suppose that (G,G+) is a lattice-ordered group with G abelian and

suppose that H+ is a hereditary subsemigroup of G+. Then the algebra BH+,∞ is the

closed span of {1− 1h : h ∈ H+}.

Proof. Let A be the closed span of {1− 1h : h ∈ H+}. Fix h ∈ H+, for u ≥ h

we have

(1− 1h)(u) = 1(u)− 1h(u) = 0.

Therefore limu→∞(1− 1h)(u) = 0 and so 1− 1h ∈ BH+,∞.

61



For any f ∈ A, f = limn→∞ fn where fn =
∑

hi∈Fn λi(1 − 1hi) and Fn is a finite

subset of H+. Fix ε > 0 then there exists n ∈ N such that ‖f − fn‖ < ε. Let

hn = ∨Fn, then for u ≥ hn we have

|f(u)| = |f(u)− fn(u) + fn(u)|

≤ |f(u)− fn(u)|+ |fn(u)|

< ε+ 0 = ε, since |f(u)− fn(u)| ≤ ‖f − fn‖.

Hence f ∈ BH+,∞ and so A ⊂ BH+,∞ .

To show thatBH+,∞ ⊂ A, we need first to show that for any f ∈ BH+ , limu→∞ f(u)

exists. To see this, suppose that f ∈ BH+ . Then f = limn→∞ fn where fn =∑
hi∈Fn λi1hi and Fn is a finite subset of H+.

Claim. Suppose that xn := limu→∞ fn(u), then {xn} converges.

Proof. Notice that every xn ∈ C so it is enough to show that {xn} is a Cauchy

sequence (this is true since C is a Hilbert space). But {fn} is a Cauchy sequence in

BH+ , therefore {xn} is a Cauchy sequence. To see this, fix ε > 0 then there exists N

such that

‖fn − fm‖ < ε for all n,m > N,

where ‖fn − fm‖ = supx∈H+
|fn(x)− fm(x)| . Now

|xn − xm| = | lim
u→∞

fn(u)− lim
u→∞

fm(u)|

= | lim
u→∞

(fn(u)− fm(u))|

= lim
u→∞
|fn(u)− fm(u)|

≤ ‖fn − fm‖

< ε.

�
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Fix ε > 0 and choose m ∈ N such that ‖f − fm‖ < ε/2 and | limn→∞ xn − xm| <

ε/2. Let hn = ∨Fn. Then for u ≥ hn we have

|f(u)− lim
n→∞

xn| = |f(u)− fm(u) + fm(u)− lim
n→∞

xn|

≤ |f(u)− fm(u)|+ |fm(u)− lim
n→∞

xn|

< ε/2 + |xm − lim
n→∞

xn|, as u ≥ hn

< ε/2 + ε/2 = ε.

Hence limu→∞ f(u) exists.

To complete the proof, suppose that f ∈ BH+ such that limu→∞ f(u) = 0. Then

there exists {fn} such that fn → f where fn =
∑

hi∈Fn λi1hi and Fn is a finite subset

of H+. Let xn = limu→∞ fn(u), then limn→∞ xn = 0 (by the previous part of this

proof). Define gn := fn − xn1 then gn =
∑

hi∈Fn −λi(1− 1hi) ∈ A and

lim
n→∞

gn = lim
n→∞

(fn − xn1) = f.

Therefore BH+,∞ ⊂ A. Consequently, A = BH+,∞ . �

Lemma 5.4.5. Suppose that (G,G+) is a lattice-ordered group with G abelian,

H+ is a hereditary subsemigroup of G+ and α is the action in Lemma 3.4.1. Then

the algebra BH+,∞ is an extendibly α-invariant ideal of BH+.

Proof. To see that BH+,∞ is a closed ideal, fix t, u ∈ H+. Then

1t(1− 1u) = 1t − 1t∨u = (1− 1t∨u)− (1− 1t) ∈ BH+,∞,

and by continuity of multiplication in BH+ we conclude that BH+,∞ is a closed ideal

of BH+ .

Calculations show that the set S = {1− 1u : u ∈ H+} is an approximate identity

for BH+,∞. For details, see appendix A.

For z ∈ H+, αz is linear and continuous so routine calculations show that BH+,∞

is α-invariant. Another routine calculation shows that for (1 − 1t) ∈ BH+,∞ the

approximate identity S satisfies

(5.4.2) αz(1− 1u)(1− 1t)→ ψ(αz(1))(1− 1u),
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where ψ is the canonical map in Definition 4.0.7. For any b ∈ BH+,∞, standard ε/3

argument (see the argument in the proof of Corollary 4.1.6) shows that it satisfies

Equation 5.4.2 with (1−1t) replaced by b. Thus this completes the proof that BH+,∞

is an extendibly α-invariant ideal of BH+ . �

Remark 5.4.6. In [3, §3] Adji shows that for a totally-ordered group Γ with

positive cone Γ+, there is a short exact sequence

0→ BΓ+,∞
ι→ BΓ+

δ→ C→ 0,

where δ : BΓ+ → C defined by δ(f) = limx→∞ f(x). This result still holds for a

lattice-ordered group (G,G+).

Corollary 5.4.7. Suppose that (G,G+) is a lattice-ordered group with G abelian,

H+ is a hereditary subsemigroup of G+, α is the action in Lemma 3.4.1, (iBH+
, iH+)

is the universal covariant representation of (BH+ , H+, α) and BH+,∞ is the extendibly

α-invariant ideal in Lemma 5.4.5. Then there is a short exact sequence of C∗-algebras

0→ BH+,∞ ×α H+
φ→ BH+ ×α H+ → C(Ĥ)→ 0,

in which φ is an isomorphism of BH+,∞×αH+ onto the ideal D = span{iG+(x)∗iBG+
(a)

iG+(y) : a ∈ BH+,∞, x, y ∈ H+} of BH+ ×αH+. Moreover, BH+,∞×αH+ is the com-

mutator ideal of BH+ ×α H+.

Proof. Since H+ is an Ore-semigroup of H (this is true, because in the proof of

Theorem 5.3.4 we showed that G+ is an Ore-semigroup of G and as H+ is a subset

of H). Then [24, Theorem 1.7] implies that there exists the following short exact

sequence

(5.4.3) 0→ BH+,∞ ×α H+ → BH+ ×α H+ → (BH+/BH+,∞)×α̃ H+ → 0

with BH+,∞ ×α H+ isomorphic to the ideal D = span{iG+(x)∗iBG+
(a)iG+(y) : a ∈

BH+,∞, x, y ∈ H+} of BH+ ×α H+.

We know from Remark 5.4.6 that BH+/BH+,∞ is isomorphic to C. Moreover, no-

tice that C has only the trivial action, i.e. id, so the crossed product BH+/BH+,∞×α̃
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H+ will be isomorphic to C ×id H+. Since C has only the unital representation

z 7→ z 1, then the covariance condition gives that the system (C, H+, id) consists of

unitaries. Moreover, since H = H+−H+ then [29] gives that C×idH+ is isomorphic

to C∗(H) and as H is abelian then C∗(H) is isomorphic to C(Ĥ). Thus we have the

desired short exact sequence.

We know from Corollary 5.3.5 that the ideal D = span{iG+(x)∗iBG+
(a)iG+(y) :

a ∈ BH+,∞, x, y ∈ H+} of BH+×αH+ is generated by {1−1u : u ∈ H+}. For u ∈ H+,

1−1u = iH+(u)∗iH+(u)−iH+(u)iH+(u)∗ ∈ CH (the commutator ideal) of BH+×αHH+ ,

which means that BH+,∞×αH+ ⊂ CH . Moreover, since (BH+×αH+/BH+,∞×αH+)'

C(Ĥ) is commutative then CH ⊂ BH+,∞×αH+. ThusBH+,∞×αH+ is the commutator

ideal of BH+ ×α H+. �
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CHAPTER 6

Primitive ideals in the crossed product BG+
×α G+

We start this chapter with a section on the necessary definitions and results about

primitive ideals in a C∗-algebra A.

6.1. Definitions and background material

Definition 6.1.1. A non-zero representation π of a C*-algebra A on a Hilbert

spaceH is called irreducible if the only closed subspaces K ofH such that π(a)K ⊂ K

are K = {0} and K = H for all a ∈ A [37, A.1].

Definition 6.1.2. A primitive ideal of a C*-algebra A is an ideal which is the

kernel of an irreducible representation of A [8, Definition II.6.5.1].

We now prove a minor lemma in order to use it later in some results.

Lemma 6.1.3. Suppose that A, C are two C∗-algebras, φ : A → C is surjective

homomorphism and π : C → B(H) is an irreducible representation of C. Then π ◦φ

is an irreducible representation of A.

Proof. Suppose that K ⊂ H is a closed subspace of H such that π ◦φ(a)K ⊂ K

for all a ∈ A. Since φ is surjective, then for each c ∈ C there is a ∈ A such that

φ(a) = c. Notice that

π(c) = π(φ(a)) = π ◦ φ(a),

and hence

π ◦ φ(a)K = π(c)K ⊂ K.

But π is an irreducible representation, therefore either K = {0} or K = H. Thus

π ◦ φ is an irreducible representation of A. �
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The following proposition talks about primitive ideals and their relation to other

ideals in a C∗-algebra A. The proof can be found in [37, proposition A.17].

Proposition 6.1.4. Let A be a C∗-algebra. Then

(i) every closed ideal I in A is the intersection of the primitive ideals containing

it;

(ii) if I is a primitive ideal in A, and J , K are two ideals such that J
⋂
K ⊂ I,

then either J ⊂ I or K ⊂ I.

6.2. The composition Q ◦ β̂−1
γ ◦ θH and primitive ideals

In this section we use our construction theorem (Theorem 5.3.4) to study the

primitive ideals in the crossed product BG+ ×α G+.

Remark 6.2.1. Given a lattice-ordered abelian group (G,G+), the set
∑

(G) of

all subgroups H := H+ − H+, where H+ is any hereditary subsemigroup of G+, is

partially ordered by inclusion.

The following proposition is a version of Adji-Raeburn theorem [5, Theorem

3.1] about primitive ideals in the crossed product BG+ ×α G+. Our proposition is

interesting and has more challenges since we are working under the assumption that

the group G is lattice-ordered, which extends their result to more general cases.

Proposition 6.2.2. Let (G,G+) be a lattice-ordered abelian group,
∑

(G) be the

chain of subgroups H in G as in Remark 6.2.1, Q the homomorphism in Proposition

5.2.3, β̂−1
γ the dual action in Lemma 3.4.6 and θH be the surjective homomorphism in

Lemma 5.3.3. Then for H ∈
∑

(G) and γ ∈ Ĝ, ker(Q◦β̂−1
γ ◦θH) is a primitive ideal of

BG+×αG+ which depends only on γ|H and the map (H, γ) 7→ ker (Q◦β̂−1
γ ◦θH) induces

a well-defined map F from the disjoint union
⊔
{Ĥ : H ∈

∑
G} to Prim (BG+×αG+).
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Remark 6.2.3.

(i) We write (H, γ) for the element of the disjoint union
⊔
Ĥ corresponding to

γ ∈ Ĥ.

(ii) Since H is a closed subgroup of G and G is discrete, then by [17, Corollary

4.41] for any γ ∈ Ĥ there exists a character χ of G such that χ|H = γ.

(iii) Given γ ∈ Ĥ, then we choose χ ∈ Ĝ such that χ|H = γ in order to realize

F (H, γ) as a kernel. Thus

F (H, γ) := ker(Q ◦ β̂−1
χ ◦ θH) in which χ ∈ Ĝ satisfies χ|H = γ.

Proof of proposition 6.2.2. To prove this proposition we are going to use two

facts, one is the short exact sequence in Corollary 5.3.4 and the other is from [37,

Proposition 6.16] which proves that every irreducible representation of IndĜH⊥
(
B(G/H)+×τ

(G/H)+

)
has the form M(γ, ρ) : f → ρ(f(γ)) for some γ ∈ Ĝ and some irreducible

representation ρ of B(G/H)+ ×τ (G/H)+.

Since the identity representation ι of B(G/H)+ ×τ (G/H)+ is irreducible (see [30,

Theorem 3.13]), then

ker(Q ◦ β̂−1
γ ◦ θH) =

{
a ∈ BG+ ×α G+ : Q(β̂−1

γ (θH(a))) = 0
}

=
{
a ∈ BG+ ×α G+ : ι(Q(β̂−1

γ (θH(a)))) = 0
}
, since ι is faithful

=
{
a ∈ BG+ ×α G+ : ι(Ψ(θH(a))(γ)) = 0

}
,Ψ = Q ◦ β̂−1

γ

=
{
a ∈ BG+ ×α G+ : M(γ, ι) ◦Ψ(θH(a)) = 0

}
=
{
a ∈ BG+ ×α G+ : M(γ, ι) ◦Υ(a) = 0

}
,Υ = Ψ ◦ θH

= kerM(γ, ι) ◦Υ.

The map M(γ, ι) is an irreducible representation of IndĜH⊥
(
B(G/H)+×τ (G/H)+

)
and

Υ is a surjective homomorphism, therefore Lemma 6.1.3 implies that M(γ, ι) ◦Υ is

an irreducible representation of BG+ ×α G+. Hence ker(Q ◦ β̂−1
γ ◦ θH) is a primitive

ideal.

To show F well-defined recall Equation (5.2.1) which says

Q ◦ β̂−1
µ = τ̂−1

µ ◦Q, for µ ∈ H⊥ = (G/H)∧.
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Suppose that γ, µ ∈ Ĝ such that γH⊥ = µH⊥, then γµ−1 ∈ H⊥. Therefore

ker(Q ◦ β̂−1
γ ◦ θH) = ker(Q ◦ β̂−1

γµµ−1 ◦ θH), since µµ−1 = id

= ker(Q ◦ β̂−1
µγµ−1 ◦ θH)

= ker(Q ◦ β̂−1
γµ−1 ◦ β̂−1

µ ◦ θH), β̂−1is a homomorphism

= ker(τ̂−1
γµ−1 ◦Q ◦ β̂−1

µ ◦ θH), since γµ−1 ∈ H⊥

= ker(Q ◦ β̂−1
µ ◦ θH), since τ̂−1

γµ−1 is injective.

Thus F is well-defined. �

Corollary 6.2.4. Suppose that ρ is an irreducible representation of BG+ ×α
G+. Then there are a subgroup H ∈

∑
(G), a character γ ∈ Ĝ and an irreducible

representation π of B(G/H)+ ×τ (G/H)+ such that ρ is equivalent to M(γ, π) ◦Υ.

Proof. Let V := ρ ◦ iG+ . Then V is a covariant isometric representation of G+.

To see this, fix x ∈ G+. Then

V ∗x Vx = (ρ ◦ iG+(x))∗(ρ ◦ iG+(x))

= ρ(iG+(x)∗iG+(x))

= ρ(1BG+
×αG+), since iG+ is an isometric representation

= 1B(H).

So V is an isometric representation of G+ and since iG+ is covariant (Lemma 3.4.4),

then V is a covariant isometric representation of G+. Hence we have ρ = ρV for

V = ρ◦iG+ (this is true because if δ was the map associated to V , then δ(iG+(x)) = Vx

for all x ∈ G+. But Vx = ρ(iG+(x)), hence δ(iG+(x)) = ρ(iG+(x)). Since {iG+(x) :

x ∈ G+} generates BG+ ×α G+, then δ and ρ agree on generators and thus δ = ρ).

We now construct the subgroup H. Let H+ := {x ∈ G+ : VxV
∗
x = 1}, then H+ is

a hereditary subsemigroup of G+. To see this, suppose that y ∈ H+ and 0 ≤ x ≤ y.

Then

1 = VyV
∗
y = Vy−xVxV

∗
x V
∗
y−x,
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and conjugating by V ∗y−x implies that VxV
∗
x = 1, so that x ∈ H+. Hence take

H := H+ −H+.

We know that the short exact sequence (5.3.4) has an ideal IH+ ×αG+ generated

by {1− 1h : h ∈ H+}. So for h ∈ H+, we have

ρV (1− 1h) = 1− ρV (1h)

= 1− ρV (iG+(h)iG+(h)∗)

= 1− ρV (iG+(h))ρV (iG+(h))∗

= 0,

and hence ρV vanishes on IH+ ×α G+. Thus it follows from the exactness of (5.3.4)

that there is a representation σ of IndĜH⊥
(
B(G/H)+×τ (G/H)+

)
such that ρV = σ ◦Υ

and since σ and ρV have the same range we deduce that σ is irreducible. Therefore

by [37, Proposition 6.16] we have σ is equivalent to an irreducible representation

M(γ, π) for some γ ∈ Ĝ and some irreducible representation ρ of B(G/H)+×τ (G/H)+.

Thus ρV is equivalent to M(γ, π) ◦Υ. �

6.3. Examples

Example 6.3.1. We know that (Z,N) is a lattice-ordered abelian group. By [30]

we have a short exact sequence of C∗-algebras

0→ K → T (Z)
Φ→ C(Ẑ)→ 0,

in which K = K(`2(N)) is the set of compact operators on `2(N), a C∗-subalgebra of

B(`2(N))). We also know that the primitive ideals of T (Z) (the Toeplitz algebra of

Z, for details see the introduction page 10) are of the form {0} and Φ−1(Iγ) where

γ is an element of Ẑ and Iγ = {f ∈ C(Ẑ) : f(γ) = 0}. We want to compare those

primitive ideals with the ones we get from our construction theorem (Theorem 5.3.4).

First of all notice that we have only two hereditary subsemigroups H+ of N namely

{0} and N itself.

For H = {0}, G/H = Z/{0} ∼= Z and so the ideal IH+ ×α G+ will be the zero

ideal. Moreover, θH and Q will be both isomorphisms of BN×αN ∼= T (Z) onto itself.
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For any γ ∈ Ĥ, we can extend γ to id ∈ Ẑ so β̂−1
γ is the identity map and therefore

ker(Q ◦ β̂−1
γ ◦ θH) = {0}. We know from [30, Theorem 3.13] that {0} is a primitive

ideal of T (Z).

If H+ = N, H = N− N = Z and G/H = Z/Z ∼= {0}. Therefore

IndẐZ⊥(B{0} ×τ {0}) ∼= IndẐZ⊥(C), since B{0} ×τ {0} ∼= T ({0}) ∼= C.

Now Z⊥ contains the identity character only, hence

IndẐZ⊥(C) ∼= C(Ẑ) ∼= C(T).

Now for γ ∈ Ẑ we have

Υ−1(Iγ) = {Υ−1(f) : f(γ) = 0}

= {a ∈ T (Z) : a = Υ−1(f) and f(γ) = 0}

= {a ∈ T (Z) : Υ(a)(γ) = 0}

= {a ∈ T (Z) : Q(β̂−1
γ (θH(a))) = 0}

= ker(Q ◦ β̂−1
γ ◦ θH).

Example 6.3.2. We know that (Z2,N2) is a lattice-ordered group with Z2 abelian.

We will compare the primitive ideals in the crossed product BN2 ×α N2 with those

we can get from our decomposition theorem (Theorem 5.3.4). Recall that we have

four different hereditary subsemigroups of N2, T (Z) ∼= C∗(N) and T (Z2) ∼= T (Z)⊗

T (Z) ∼= BN2 ×α N2.

For H={(0,0)}, G/H = Z2/{(0, 0)} ∼= Z2. The ideal IH+ ×α G+ is generated by

{1 − 1h : h ∈ H+} = {0}, so IH+ ×α G+ = {0}. Hence, {0} is a primitive ideal

of BN2 ×α N2 since the identity representation of BN2 ×α N2 is irreducible (see [30,

Theorem 3.13]), and BN2 ×α N2 ∼= IndẐ
2

H⊥(BN2 ×τ N2).

For H = N×{0}−N×{0} = Z×{0} ∼= Z ∼= {0}×Z, we have G/H = Z2/Z ∼= Z

and IH+ × N2 is generated by {1 − 1(m,0) : m ∈ N} (one can see that IH+ × N2 is

generated by one element 1− 1(1,0)). The set {Θm,n : m,n ∈ N} in which

Θm,n := iG+(m, 0)(1− iG+(1, 0)iG+(1, 0)∗)iG+(n, 0)∗,
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is a set of matrix units (a set of non-zero elements {ei j} satisfying the relations

ei j ek ` =

{
ei ` if j = k

0 if j 6= k

}
and e∗i j = ej i) in the ideal IH+ ×α N2, which we will now

show. First we write S(m,0) for iG+(m, 0) and notice that

(i) Each Θm,n 6= 0 since 1 − S(1,0)S
∗
(1,0) 6= 0. (Remember that we write

S(m,0)S
∗
(m,0) for 1(m,0))

(ii) Θ∗m,n = S(n,0)(1− S(1,0)S
∗
(1,0))S

∗
(m,0) = Θn,m.

(iii) Θm,nΘp,l = S(m,0)(1− S(1,0)S
∗
(1,0))S

∗
(n,0)S(p,0)(1− S(1,0)S

∗
(1,0))S

∗
(l,0),

if n = p then

Θm,nΘp,l = S(m,0)(1− S(1,0)S
∗
(1,0))S(l,0) = Θm,l.

If n 6= p then either n ≥ p or n ≤ p. Suppose first that n ≥ p then

Θm,nΘp,l = S(m,0)(1− S(1,0)S
∗
(1,0))S

∗
(n−p,0)(1− S(1,0)S

∗
(1,0))S

∗
(l,0)

= S(m,0)(1− S(1,0)S
∗
(1,0))S

∗
(n−p−1,0)S

∗
(1,0)(1− S(1,0)S

∗
(1,0))S

∗
(l,0)

= 0, since S∗(1,0)(1− S(1,0)S
∗
(1,0)) = 0.

For n ≤ p we have

Θm,nΘp,l = S(m,0)(1− S(1,0)S
∗
(1,0))S(p−n,0)(1− S(1,0)S

∗
(1,0))S

∗
(l,0)

= S(m,0)(1− S(1,0)S
∗
(1,0))S(1,0)S(p−n−1,0)(1− S(1,0)S

∗
(1,0))S

∗
(l,0)

= 0, since (1− S(1,0)S
∗
(1,0))S(1,0) = 0.

Hence {Θm,n : m,n ∈ N} is a set of matrix units in the ideal IH+ ×α N2 which

generates a copy of the compact operators K(`2(N2)). Notice that we are dealing here

with nuclear C*-algebras and so further calculations show that the ideal IH+×αN2 ∼=

K⊗T (Z). Hence the primitive ideals in IH+×αN2 will be K⊗J for some J ∈ Prim(A)

and they are primitive ideals in BN2×αN2. Moreover, using our short exact sequence

we have

IndẐ
2

(Z×{0})⊥(BN × N) ∼=
(
T (Z)⊗ T (Z)

)/(
K ⊗ T (Z)

) ∼= C(T)⊗ T (Z),
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so the primitive ideals in IndẐ
2

(Z×{0})⊥(BN × N) are

I ⊗ T (Z) + C(T)⊗ J for some I ∈ Prim(C(T)) and J ∈ Prim(T (Z)).

Hence

Υ−1(L) where L = I ⊗ T (Z) + C(T)⊗ J for I ∈ Prim(C(T)) and J ∈ Prim(T (Z))

are the primitive ideals in BN2×αN2 (Υ is the surjective homomorphism in the short

exact sequence (5.3.4)).

For H = {0} × Z, G/H = Z2/Z ∼= Z. This case is similar to the previous case

with minor differences. Here the ideal IH+ ×α N2 will be isomorphic to T (Z) ⊗ K,

and therefore the primitive ideals will have the form J ⊗ K for some J ∈ Prim(A)

and they are primitive ideals in BN2 ×α N2. For the induced algebra we will have

IndẐ
2

(Z×{0})⊥(BN × N) ∼=
(
T (Z)⊗ T (Z)

)/(
T (Z)⊗K

) ∼= T (Z)⊗ C(T),

and the primitive ideals in the induced algebra will be

I ⊗ C(T) + T (Z)⊗ J where I ∈ Prim(T (Z)) and J ∈ Prim(C(T)).

Hence this will give the primitive ideals

Υ−1(D) where D = I ⊗ C(T) + T (Z)⊗ J for I ∈ Prim(T (Z)) and J ∈ Prim(C(T))

in BN2 ×α N2.

For H = N2 − N2 = Z2, G/H = Z2/Z2 ∼= {0}, and

IndẐ
2

H⊥(B{0} ×τ {0}) ∼= IndẐ
2

(Z2)⊥(C); since B{0} ×τ {0} ∼= T ({0}) ∼= C.

We know that (Z2)⊥ has only one character, namely id. So for f ∈ IndẐ
2

(Z2)⊥(C),

we have f(γ id) = τ̂−1
id (f(γ)) = f(γ) and hence IndẐ

2

(Z2)⊥(C) ∼= C(Ẑ2) ∼= C(T2).

Therefore each element of the set {Υ−1(Iγ) : γ ∈ Ẑ2}, where Υ is the surjective

homomorphism in the short exact sequence (5.3.4) and Iγ := {f ∈ C(Ẑ2) : f(γ) = 0},

is a primitive ideal of BN2 ×α N2. The ideal IN2 × N2 is generated by {1 − 1(m,n) :

(m,n) ∈ N2}. Write Vm for iG+(m) for m ∈ N2, and define

Θm,n := Vm(1− V(1,0)V
∗

(1,0))(1− V(0,1)V
∗

(0,1))V
∗
n
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then calculations show the set {Θm,n : m,n ∈ N2} is a set of matrix units and that

the ideal IH+ ×α N2 ∼= K ⊗ T (Z) + T (Z) ⊗ K. To identify the primitive ideals in

IH+ ×α N2 notice that K⊗ T (Z) is an ideal in K⊗ T (Z) + T (Z)⊗K and so we will

have the following short sequence

0→ K⊗ T (Z)→ K⊗ T (Z) + T (Z)⊗K Φ→ C(T)⊗K → 0

in which Φ is the quotient map. Hence the primitive ideals in IH+ ×α N2 will be the

ones in K ⊗ T (Z) which we already know, and Φ−1(D) where D = Iγ ⊗K for some

Iγ ∈ Prim(C(T))}.
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CHAPTER 7

Some concluding remarks

The study of crossed products of C∗-algebras by endomorphisms and their tractable

use as models for Toeplitz algebras has attracted many authors. In this thesis we

are generalizing the work in [2], [3] and [5] to cover the crossed product of C∗-

algebras by semigroups of endomorphisms and actions of the positive cone G+ of a

lattice-ordered discrete abelian group G.

One of our early results is the existence of a strongly continuous action

α̂ : Ĝ→ Aut(A×α G+)

for any lattice-ordered abelian group (G,G+).

The next main result is producing an extendibly α-invariant ideal of the crossed

product BG+ ×α G+ which was important for the rest of this thesis.

The realization of the C∗-algebra B(G/H)+ ×β G+ as the induced C∗-algebra

IndĜH⊥
(
B(G/H)+×τ (G/H)+

)
was a goal of this thesis and is used to show the existence

of a short exact sequence of C∗-algebras involving BG+×G+ which is a generalization

of the work in [6, Theorem 2.1].

Then we show the existence of an isomorphism of BH+ × H+ into BG+ ×α G+

(which allows us to realize BH+×H+ as a C∗-subalgebra of BG+×αG+) and identify

the commutator ideal of BH+ ×H+.

Later in this work, we use our short exact sequence and give some results about

primitive ideals of the C∗ algebra BG+ ×α G+ which is isomorphic to the Toeplitz

algebra T (G) of G.
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APPENDIX A

We give here the proof that the map Ψ of Theorem 5.3.2 is a homomorphism of

C∗-algebras.

Proof. To see that Ψ : B(G/H)+ ×β G+ → IndĜH⊥
(
B(G/H)+ ×τ (G/H)+

)
is a

homomorphism. Fix a, b ∈ B(G/H)+ ×β G+, γ ∈ Ĝ and t ∈ C, then

(i)

Ψ(ta)(γ) = Q
(
β̂−1
γ (ta)

)
= Q

(
tβ̂−1
γ (a)

)
, β̂−1

γ is linear

= tQ
(
β̂−1
γ (a)

)
, Q is linear

= tΨ(a)(γ).

(ii)

Ψ(a+ b)(γ) = Q
(
β̂−1
γ (a+ b)

)
= Q

(
β̂−1
γ (a) + β̂−1

γ (b)
)
, β̂−1

γ is linear

= Q
(
β̂−1
γ (a)

)
+Q

(
β̂−1
γ (b)

)
, Q is linear

= Ψ(a)(γ) + Ψ(b)(γ).

(iii)

Ψ(ab)(γ) = Q
(
β̂−1
γ (ab)

)
= Q

(
β̂−1
γ (a)β̂−1

γ (b)
)
, β̂−1

γ is a homomorphism

= Q
(
β̂−1
γ (a)

)
Q
(
β̂−1
γ (b)

)
, Q is a homomorphism

= Ψ(a)(γ)Ψ(b)(γ).
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(iv)

Ψ(a)∗(γ) = Q
(
β̂−1
γ (a)

)∗
= Q

(
β̂−1
γ (a)∗

)
, Q is a homomorphism

= Q
(
β̂−1
γ (a∗)

)
, β̂−1

γ is a homomorphism

= Ψ(a∗)(γ).

Thus Ψ is a homomorphism of C∗-algebras. �

Lemma A.0.3. Suppose that (X, τ) is a topological space and A, B are subsets of

X such that A is nowhere dense and Int(B) = ∅. Then Int(A ∪B) = ∅.

Proof. Take x ∈ A ∪ B. Then for any open subset V containing x, there is

y ∈ V such that y /∈ A (this is true since Int(A) = ∅, ie. A contains no open sets).

Now we have y ∈ V \ A = V ∩ (A)C which an open subset. So there is z ∈ V \ A

such that z /∈ B. Hence, z ∈ V \ (A∪B) (which means that A∪B does not contain

any non-empty open subsets). Thus Int(A ∪B) = ∅. �

Lemma A.0.4. Suppose that (X, τ) is a topologigal space and A, B are nowhere

dense subsets of X. Then A ∪B is a nowhere dense subset of X.

Proof. We know that A = A, therefore Int(A) = ∅ and hence A itself is nowhere

dense (this is true because A is nowhere dense). Since B is nowhere dense, then by

Lemma A.0.3

Int(A ∪B) = Int(A ∪B) = ∅.

Thus A ∪B is nowhere dense. �

Proof related to Lemma 5.4.5. To show that the set S = {1− 1u : u ∈ H+}

in Lemma 5.4.5 is an approximate identity for BH+,∞, we show that S satisfies the

conditions of approximate identity. Firstly, for any 1− 1u ∈ S, 1− 1u is a projection

and therefore ‖1e − 1h‖ ≤ 1.

Secondly, we show that (1 − 1u)f → f for all f ∈ BH+,∞. To do so we start by

showing that it is true for any 1−1t ∈ BH+,∞ and then we show it for any f ∈ BH+,∞.
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For 1− 1t ∈ BH+,∞ we have

‖(1− 1u)(1− 1t)− (1− 1t)‖ = ‖1− 1t − 1u + 1u∨t − 1 + 1t‖

= ‖1u∨t − 1u‖

= 0, if u is large enough such that u ≥ t.

Similar calculations show that this is true for (1− 1t)(1− 1u). For f ∈ IH+ we know

that f is a limit of finite sums of elements in the spanning set of IH+ . Fix ε > 0 and

choose f0 ∈ span
{

1− 1t : t ∈ H+

}
such that ‖f − f◦‖ < ε/3. Choose h0 ∈ H+ such

that if t ≥ h0 then ‖(1− 1t)f0 − f0‖ < ε/3. Hence,

‖(1− 1t)f − f‖ = ‖(1− 1t)(f − f0) + (1− 1t)f0 − f0 + f0 − f‖

≤ ‖(1− 1t)(f − f0)‖+ ‖(1− 1t)f0 − f0‖+ ‖f − f0‖

≤ ‖1− 1t‖ ‖f − f0‖+ ‖(1− 1t)f0 − f0‖+ ‖f − f0‖

< ε/3 + ε/3 + ε/3 = ε.

Thus
{

1− 1u : u ∈ H+

}
is an approximate identity for BH+,∞.

�
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