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Abstract

The electronic structure and rovibrational spectroscopy of MH2, MHn+
2 ,

HMHen+ and MHen+
2 (M = Li, Be, Na, Mg, K, Ca; n = 1, 2) have been inves-

tigated using correlated ab initio ansatz.

In order to determine the efficacy of various electronic structure methods

with respect to Group-I and II hydrides and helides, atomic properties of Li, Be,

Na, Mg, K and Ca were calculated. Relativistically-corrected UCCSD(T) and IC-

MRCI(+Q) were deemed to be the most suitable ansatz with respect to both effi-

ciency and accuracy. The lowest 2A1 and 2Σ− states of MH2 were found to be purely

repulsive, in agreement with previous predictions. The main factor determining the

structure and stability of the excited states of MH2 was the relative orientations

and occupations of the valence p atomic orbital of M and the H2 1σu orbital. The

ground states of MHn+
2 were found to be the result of the charge-quadrupole inter-

action between Mn+ and the H2 molecular subunit. The structures of the ground

states of HMHe+ were extremely fluxional with respect to the central bond angle

co-ordinate. The ground state PESs of MHe+
2 were also extremely sensitive to the ab

initio ansatz by which they are modelled. The respective bonding of the H and He

in both HMHe+ and HMHe2+ appeared to be charge-dependent in the case of Be,

Mg and Ca. Despite the weak bonding observed for the Group-II hydrohelide and

helide monocations, the corresponding dications each exhibit thermodynamically

stable equilibria.

The solution algorithm of von Nagy-Felsobuki and co-workers was employed

in the calculation of vibrational and rovibrational spectra. This algorithm employed

an Eckart-Watson Hamiltonian in conjunction with rectilinear normal co-ordinates.
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Vibrational and rovibrational Hamiltonian matrices were diagonalised using vari-

ational methods. This algorithm was extended so that the vibration transition

moment integrals, and hence vibrational radiative properties, of linear triatomic

molecules could be calculated. A method by which vibration-averaged structures

are calculated was also developed and implemented.

Analytical potential energy functions (PEFs) and dipole moment func-

tions (DMFs) of (1A1)LiH+
2 , (1A1)NaH+

2 , (1A1)BeH2+
2 , (1A1)MgH2+

2 , (1Σ+
g )BeHe2+

2 ,

(2Σ+)HBeHe2+, (1Σ+
g )MgHe2+

2 and (2Σ+)HMgHe2+ were developed using least-

square regression techniques in conjunction with discrete ab initio grids. Vibrational

structures and spectra of these species were subsequently calculated. In addition, the

rovibrational spectra of (1A1)LiH+
2 , (1A1)NaH+

2 , (1A1)BeH2+
2 and (1A1)MgH2+

2 were

calculated. For (1A1)LiH+
2 and (1A1)LiD+

2 , calculated rovibrational transition fre-

quencies for J ≤ 10 and 0 ≤ K ≤ 3 were within ca. 0.1-0.2% of experimental

values.
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