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 Abstract 
 

 

Thermal conduction properties are of major concern for those metal/ceramic composite 

materials having applications in semiconductor devices and electronic packaging materials. A 

higher thermal conductivity to coefficient of thermal expansion ratio is an advantage for such 

materials employed in electronic devices due to the subjective high thermal loads. It is well 

known that the shape, size and distribution of the insulating phase have an effect on the overall 

thermal conductivity properties. But the details are lacking and well deserving of study.  

 

Metal/ceramic oxide interfaces are important in the strengthening mechanisms of dispersion 

strengthened materials. Accordingly, considerable attention has been given to recent 

investigations of oxygen diffusion characteristics and the bonding mechanisms at such 

interfaces. Susceptibility to oxidation can be studied by analysing several thicknesses of 

material. As an example, studying a thin film and a semi-infinite material subjected to a high 

oxygen partial pressure environment and a vacuum condition would help to determine the 

oxidation (in-diffusion) and de-oxidation (out-diffusion) processes respectively.  Since 

metal/ceramic internal interfaces play a very important role in controlling the mechanical, 

thermal and electrical properties, it is timely to consider these diffusion processes for detailed 

study.  

 

In this Thesis, the two areas mentioned above were selected for detailed investigation.  The 

Thesis also addresses the further development of a method for solving complex 

phenomenological diffusion problems. This method makes use of lattice-based random walks of 

virtual particles, directed according to the Monte Carlo method (the Lattice Monte Carlo method) 

which is then used to address various mass and thermal diffusion processes. Chapter 2 is 

concerned with using this method to determine the thermal conductivity of model composites. 

In that chapter, the Lattice Monte Carlo method is used to calculate the effective thermal 

conductivity of several models of a composite, where inclusions are arranged in square planar 

and cubic arrangements with periodic boundary conditions. Excellent agreement is found of the 

effective thermal conductivity with the century-old Maxwell-Garnett Equation. Chapter 3 is 

concerned with a phenomenological representation of oxygen diffusion and segregation in a 

model composite based on Ag/MgO. The Lattice Monte Carlo method is employed to address 

mass diffusion in this composite. Square and randomly distributed multiple inclusions were 

considered as shapes of the MgO inclusion phase. The time-dependence of oxygen 

concentration depth profiles and contour maps were determined. First, oxygen in-diffusion is 
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considered from a constant surface source solely into the Ag metal matrix: oxygen depth 

profiles were in excellent agreement with exact results. Next, oxygen in-diffusion/segregation is 

simulated in the composite by permitting and restricting the mobility of oxygen in different 

scenarios involving the Ag-MgO interface. The (higher temperature) out-diffusion of oxygen 

from the composite was also simulated and corresponding results obtained for the oxygen depth 

profiles. In both cases, very good agreement was found between the results from the Lattice 

Monte Carlo method and analytical expressions. 
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 Notation 
 

 

All symbols and notations are used in this Thesis are defined where they are first appear in the 

text. For convenience, most frequently used variables are given below.  

 

t    Time 

λ , Κ    Thermal conductivity and thermal diffusivity 

T    Temperature  

x , h    Distance 
0, DD    Diffusion coefficient 

0D    Pre-exponential factor, frequency factor 

H∆    Activation enthalpy 

R    Ideal gas constant 

f    Correlation factor 

0ν    Attempt frequency 

a    Lattice parameter, jump distance (s.c. lattice) 

S∆    Entropy of activation 

G∆    Gibbs free energy of activation 

ijΓ                Inter-site transition jump rate/jump frequency 

N    Avogadro�s number 

η    Medium viscosity 

r    Radius 

R′    Gas constant 

>∆< 2R   Mean square displacement 

>∆< R   Mean displacement 

N , n    Number of particles 

d    Dimension 

J    Flux  

C    Concentration (particles per unit volume) 

V    Electric potential 

I    Current intensity 

σ    Electrical conductivity 

E    Electric field 



xi 

 

M    Diffusant amount per unit area 

LMC    Lattice Monte Carlo 

K    Conductivity matrix 

F    Nodal vector 

EffD    Effective diffusivity 

g    Fraction of grain boundaries 

bD    Diffusivity in grain boundaries 

lD    Lattice, grain or bulk diffusivity 

s , s′    Segregation factor 

n    Number of lattice sites along the source 

iP    Probability of a particle reaching the sink 

ρ    Density  

pC    Specific heat 

φ    Fraction of inclusions, grains 

sE    Segregation energy 

Π    Boundaries in the lattice 

iΩ    Regions in the lattice 

2∇    Laplacian operator 

∇    Del operator 

SL   Single Lattice 

VP   Virtual plane 

erf    Error function 

erfc    Complementary error function 
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Chapter 1 
 

1. Introduction 
 

1.1 Heat and Mass Transport in Solids 
 

Mass transport, also known as atomic migration and mass diffusion, refers to the flux of matter 

driven by a chemical potential gradient. Mass transport plays an important role in almost all 

processes occurring in everyday life and is also regarded as a fundamental topic in the science 

of materials. Mass diffusion processes play a key role in the kinetic reactions occurring in the 

microstructure of solid materials such as metals, ceramics, alloys, polymers, glasses and 

semiconductors. Nucleation of new phases, phase transformation by diffusion, precipitation, 

recrystallization, high-temperature creep and thermal oxidation are just a few examples. Mass 

diffusion is widely applied in present technological applications as diffusion doping during the 

fabrication of microelectronic devices, solid electrolytes for battery and fuel cells, surface 

hardening of steel through carburization or nitriding, diffusion-bonding and sintering [1]. Fick�s 

diffusion laws and the Einstein equation for random motion are fundamental in describing mass 

diffusion processes in solids. Not only the chemical potential but also gradients in temperature 

affect the atomic migration process. Experimental analysis of mass diffusion is best obtained by 

using the tracer method, which is regarded as the most direct and accurate technique for the 

determination of diffusion coefficients in solids [2]. Other comprehensive experimental methods 

for the determination of mass diffusion coefficient in solids are well described in the literature 

[3 -5].  

 

Crystalline solids exhibit several structurally different paths for atomic transport to take place. 

Lattice diffusion and grain boundary diffusion are examples of such paths. Lattice diffusion, 

also known as bulk diffusion, occurs mainly by point defects such as vacancies or interstitials. A 

detailed description of the vacancy and interstitial mechanisms is given in section 1.1.3. Grain 

boundaries and dislocations are also associated with mass transport in solids. In metals and 

ceramics, the diffusivity rates of atoms along grain boundaries or dislocations are very much 

higher compared with through the lattice. In effect, dislocations and grain boundaries provide 

short circuit paths for mass transport. In nanocrystalline materials, the grain boundary regions 

are unrelaxed and loosely packed. Furthermore, a large number of atoms in such materials 
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reside in these regions. Hence the diffusion flux through such regions is much higher than in the 

corresponding microcrystalline materials. This inevitably has a major impact on the physical 

properties of nanocrystalline materials.  

 

Similar to mass transport, heat transport is very important in many applications. The main heat 

transfer method in solids is by conduction. In conduction mechanism, heat transfer occurs 

through the substance of the body itself. Conduction is initiated when different parts of the solid 

substance are at different temperatures and heat flows from hot regions to cold regions. In solids, 

heat energy can be transmitted through the crystal via the motion of phonons (quantised lattice 

vibrations), photons, free electrons (or free holes) and electron-hole pairs. Free electrons are the 

most prominent mechanism of conduction in metals. In semiconductors electron-hole pairs 

contribute to heat conduction, whereas in non-metals thermal conduction occurs by lattice 

vibrations except at higher temperatures where photons may become dominant. 

 

Experimental methods for determining the thermal conductivity in solids include various steady 

state methods for poor thermal conductors and metals, steady state electrical methods for metals, 

periodic heating methods and variable state methods [6]. Since thermal conduction and mass 

diffusion have a very close mathematical relationship, they both are expressed commonly under 

the heading of �Diffusion� in the next chapter. 

 

 

1.1.1 Dependence of Mass Diffusion on Temperature 
 

Diffusion is affected by thermodynamic parameters such as temperature, pressure and 

composition. The rate of diffusion in solids is very largely affected by temperature, being low at 

low temperatures and high at high temperatures. The temperature dependence of the diffusion 

coefficient D generally follows an Arrhenius relationship:   

 







 ∆−=

RT
HDD exp0                       (1.1) 

 

where in 0D  denotes the pre-exponential factor or frequency factor, ∆H the activation enthalpy 

of diffusion, T is the absolute temperature and R  is the ideal gas constant.  

 

The pre-exponential factor is given by: 
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 ∆=
R
SagfvD exp20

0          (1.2) 

 

where S∆  is the activation entropy, g is a geometrical factor, f  is the correlation factor, 0ν is 

the attempt frequency and  a  is the lattice parameter.  

 

Combining Equation (1.1) and (1.2) we have that: 

 







 ∆−=

RT
GagfvD exp20                     (1.3) 

 

where G∆ is the Gibbs free energy of activation. 

 

H∆ and 0f  are affected by the type of diffusion mechanism and the lattice geometry. 

Pronounced deviations from Arrhenius behaviour are generally due to effects associated with 

impurities or short circuit paths such as grain boundaries or dislocations.  

 

 

1.1.2 Diffusion Mechanisms 
 

Solid state diffusion makes use of the defects in the structure. Examples are point defects such 

as vacancies or interstitials or extended defects such as dislocations, grain and inter-phase 

boundaries. The latter defects provide short circuit paths in crystalline solids since the mobility 

of atoms along such extended defects is usually much higher than in the crystalline lattice. The 

diffusion coefficient is determined by jump rates and jump distances. The diffusion process also 

depends on various other factors as crystal structure, size and the chemical nature of the 

diffusing atom in addition to the defects. In a few situations, the directions of a given atom are 

completely random but in general, correlations in the jump directions occur. These correlations 

are embodied in the correlation factor f . The following diffusion mechanisms in the lattice 

itself are relevant to the present study [7]. 

 

1.1.2.1 Interstitial Mechanism 

 

The interstitial mechanism is typically used by atoms (e.g. H, C, N and O), which are 

considerably smaller than the solvent or host lattice atoms. These atoms reside at the interstitial 
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sites of the host thus forming an interstitial solid solution. Such interstitial sites are formed 

according to the geometry of the host lattice. These interstitial atoms can migrate from one such 

site to the next interstitial site by what is termed the direct interstitial mechanism. Generally, 

interstitial solutes occupy octahedral or tetrahedral sites of the lattice and require no defects to 

mediate direct interstitial jumps. Hence, higher diffusion coefficients are observed with the 

direct interstitial mechanisms. Figure 1.1 illustrates the interstitial mechanism.  

 

 

 

 

 

 

 

 

 

 

 

 

   

Figure 1.1 Direct Interstitial Mechanism of Diffusion 

 

 

1.1.2.2 Vacancy Mechanism 
 

Vacancies are formed thermally in metals, alloys and ionic crystals, by radiation damage and by 

nonstoichiometry in ionic crystals and some intermetallics. The vacancy mechanism is regarded 

as the dominant mechanism for lattice and substitutional atoms in most metals and alloys and 

ionic crystals. The vacancy mechanism is simply the exchange of an atom with a neighbouring 

vacancy. Overall atomic diffusion occurs by a series of such atom movements with vacancies. 

Figure 1.2 illustrates the vacancy mechanism.  

 

 

 

 

 

 

 

Host atom Interstitial solute atomHost atom Interstitial solute atomHost atom Interstitial solute atom
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Figure 1.2 Schematic representation of the Vacancy Mechanism 

 

 

1.2 Analytical Solutions for Mass Transport in Materials 
 
The Einstein and Fick equations provide the basis for experiments to determine diffusion 

coefficients in solids. The Einstein and Fick equations also provide the basis for the simulations 

in the present study. 

 

 

1.2.1 Einstein Equation 
 

Einstein showed how the erratic Brownian movement of molecules or particles in a liquid could 

be quantitatively described. Brownian motion had previously been seen by the Scottish botanist 

Robert Brown and named after him. Einstein demonstrated how Brownian motion offered 

experimentalists the possibility to prove that molecules existed despite the fact that molecules 

themselves were too small to be seen directly [12]. By analysing Brownian motion, Einstein 

obtained a quantitative measure of the size of the atom.  

 

Shvindlerman [11] recently discussed the development of Einstein�s theory of Brownian motion. 

He noted that in his PhD thesis Einstein considered the expression (Equation 1.4) for the 

diffusion coefficient D for a system of suspended particles: 

 

Host atom

Substitutional solute atom

VacancyHost atom

Substitutional solute atom

VacancyHost atom

Substitutional solute atom

Host atom

Substitutional solute atom

Vacancy
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rN
RTD

πη6
1=           (1.4) 

 

where N is Avogadro�s number, η  is the medium viscosity and a is the radius of the hard-

sphere molecules, R  is the ideal gas constant and T is the absolute temperature. Equation 1.4 

further illustrates that the diffusion coefficient of the suspended substance depends only on the 

coefficient of viscosity of the liquid and size of the suspended particles [12].  

 

The Einstein equation for Brownian motion (see Equation 1.5 below) contradicted the ideas 

current at that time by formulating the relationship between the mean square displacement 

( >∆< )(2 tR ) of the particles in time t and the diffusion coefficient already known from the 

Fick equations. Einstein stressed that it is the mean square displacement which is the 

meaningful quantity in describing a diffusion process and not a quantity such as the mean 

displacement. In fact, the mean displacement or first moment >∆< )(tR of a large number of 

particles is zero for the situation of a truly random walk [13]. The Einstein equation is only valid 

when the system is at equilibrium with randomly walking particles in d dimensions ( d = 1, 2, 3): 

 

dt
R

D
2

2∆
=                                            (1.5) 

 

Later Jean Perrin [12] verified the Einstein Equation for Brownian motion having checked that 

the particle displacement exactly follow random laws. He combined Einstein�s relation with 

Stokes�s law and ended up with Equation 1.6, successfully determining Avogadro�s number. 

 

t
Na
RTR

ηπ3
2 =∆                      (1.6) 

 

The Einstein Equation remains valid for long diffusion times even when the material has 

different diffusivities in different regions of the material, provided that the material remains 

isotropic in its diffusion properties overall.  

 

 

1.2.2 Fick�s Law 
 

Fick�s laws were introduced at a period where mass, heat and charge transfer were considered as 

examples of flows taking place under the influence of forces occurring in the medium 
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considered. These forces are generally gradients of concentration, temperature or electric 

potential. The analogy between heat flow and mass flow was first noted by Berthollet [15] in his 

paper discussing the mechanism of dissolution of a salt crystal in water. In the situation of heat 

conduction, Fourier [16] pioneered the idea of heat flow being a linear function of the 

temperature gradient. Ohm showed some five years later that the electric current flowing in a 

conductor has a linear relationship with the potential difference between the ends of the 

conductor. In effect, Fick [17] rediscovered Berthollet�s analogy between heat conduction and 

diffusion by assuming the force responsible for mass transport in a binary mixture was the 

gradient of concentration. He formulated the relationships now known as Fick�s First and 

Second Laws of diffusion, the first of which is identical to that formulated by Fourier in heat 

transfer problems by replacing the temperature gradient by the concentration gradient.  

 

If xT ∂∂ /  refers to the temperature gradient, xC ∂∂ / is the concentration gradient, xV ∂∂ / is 

the electric potential gradient then the phenomenological relationships for mass, heat and 

electrical current flow can be written as: 

 

x
CDJ

∂
∂−=   (Fick�s First Law)      (1.7) 

where D is called the diffusion coefficient or diffusivity. 

 

x
TJq ∂

∂−= λ   (Fourier�s Law)       (1.8) 

where λ is the thermal conductivity and qJ is the flux of heat. 

 

x
VEI

∂
∂−== σσ  (Ohm�s Law)       (1.9) 

where I  is the current density and σ is the electrical conductivity. 

 

By themselves, equations 1.7-1.9 are probably most conveniently employed experimentally 

under steady-state conditions, i.e. when the flux is independent of time.  

 

In the following, the author will focus on mass diffusion and Fick�s Laws only. In the steady 

state regime, the flux defined in Fick�s first law, when the concentration is independent of t is a 

constant. In the non-steady state or the time-dependent case, where the flux at every point varies 

with time, the Equation of Continuity:  
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t
C

x
J

∂
∂−=

∂
∂           (1.10) 

 

can be introduced and usefully combined with Fick�s First Law to remove the flux term and thus 

to give Fick�s second law (written here for a diffusion coefficient independent of concentration): 

 

2

2

x
CD

t
C

∂
∂=

∂
∂           (1.11) 

 

Well-known solutions of Fick�s second law for specific geometries are the �thin-film solution� 

and the �error function solution� [11]. The thin-film solution will be discussed further in section 

1.4.1 and the error function discussed in section 1.4.2. 

 

 

1.3 Brief Historical Review of the Monte Carlo Method 
 

The Monte Carlo method was first developed at Los Alamos during World War II as part of the 

Manhattan Project [18]. The purpose was to model neutron trajectories during fission. Since the 

Manhattan Project, the Monte Carlo method has undergone extremely numerous and extensive 

development and has become very popular with the development of faster computers. In the 

Monte Carlo method, a carefully selected statistical sample is used to predict the behaviour or 

characteristics of a large group. In the Monte Carlo method, algorithms which involve large 

numbers of random numbers are used as a method of repeated random sampling. For this reason, 

the Monte Carlo method is most suited to calculation by a very high speed computer. Monte 

Carlo methods have been popular for addressing both mass and heat transport problems in 

materials. Examples for mass transport problems solved by Monte Carlo are atomistic problems 

in crystalline solids which now are usually described generically as the �Kinetic Monte Carlo� 

(KMC) method [19, 20]. A recently developed Monte Carlo method for dealing with 

phenomenological problems is the �Lattice Monte Carlo� (LMC) method which forms the 

principal method used in the present study. The LMC method is described in section 1.4. For 

many years, various other variants of the Monte Carlo method have been widely used for 

addressing transient heat conduction problems in homogeneous solids [21]. 
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1.4 Initiation of the Lattice Monte Carlo (LMC) Method  
 

The basic idea of simulating a problem with the LMC method is to map the problem onto a 

lattice which is then conveniently analysed using lattice-based random walks that are directed 

by the Monte Carlo method. The lattice model can be designed in such a way by rescaling the 

jump distance according to atomic dimensions and the spatial distribution of the diffusivities of 

the phases given in the problem. Accordingly, the lattice model is suited to address any 

phenomenological diffusion problem at any length scale [24]. The method uses computer-

generated random numbers to select which particles move and in which directions they move 

according to the jump probabilities scaled with actual diffusivity values. Because multiple 

occupancy of a site by particles is allowed here, no correlation effects arise. This means that the 

jump direction of particles does not depend on the previous jump of the particle. Atomistic 

simulations, which very often focus on correlation effects, are generally referred to as Kinetic 

Monte Carlo calculations [19].  

 

The LMC method has its basis in an early lattice model proposed by Benoist et al. [22, 23]. This 

was conceived as a very primitive model for describing the atomic motion around grain 

boundaries. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3 A schematic representation of the basic lattice model, shown here in 2D form [24].  
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Benoist and colleagues examined grain boundary diffusion in a bicrystal, which was represented 

by a discrete set of points. These points also represent a simple cubic lattice where each site is 

specified by three coordinates x, y, z, enabling 6 diffusion directions for a diffusant at each site. 

Here, the grain boundary itself is represented by a single plane of sites where the grain boundary 

diffusion coefficient of the diffusing substance is associated with a single atomic jump 

frequency Γb. Diffusion in the surrounding grains is represented by having an atomic jump 

frequency Γl. Moreover, two other jump frequencies Γ1 and Γ2 are also defined to describe 

jumps to and from the grain boundary. This formally allows the addressing of segregation of 

diffusant in the grain boundary region. There is also a further jump frequency Γs shown in 

Figure 1.3 to describe a different mobility on the surface.      

 

The big conceptual step was to recognize that the atoms can in fact be exploring �particles� 

representing a diffusing species. The jump distances and the jump frequencies can be rescaled 

so that this basic lattice model can be used to address any conceivable phenomenological 

diffusion problem at any length scale. Although the use of Einstein equation itself is of very 

limited direct use in experiments, it is the platform for much of the random walk theory 

describing the diffusion of atoms in the solid state and can be very usefully employed in the 

LMC method. This is possible because the diffusion coefficient ( D ) can be partitioned as 

essentially a product of a jump frequency ( Γ ) and a jump distance ( a ) squared in d dimensions 

(d =1, 2 and 3) as: 

 

d
aD

2

2Γ=           (1.12) 

 

Although it is not actually considered formally as a lattice model, Brandt [25] used a floating 

random walk model with a variable step length and angle to simulate tracer diffusion in the 

presence of bulk, grain boundary and surface diffusion. The floating random walk model was 

first suggested by Brown [26] and was widely used to simulate heat conduction problems by 

Haji-Sheik and Sparrow [21, 27]. The variable step length comes from the random walk and the 

magnitude of this step equals the shortest distance between momentary positions of the particle 

and the external surface. The angle or the direction is chosen with the help of two random 

numbers and two functions of Eulerian angles such that all directions in space are selected with 

equal probability. The finding and the suggestions made by Brandt was improved by later 

calculations using the lattice model because the lattice model has always seemed to be much the 

simpler way of simulating such systems. Murch [28] pioneered the development of the first 

formal LMC calculation to address a phenomenological-based diffusion problem. Murch 

described a Monte Carlo procedure which led to the solution of tracer diffusion from a thin-film 
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source in the presence of dislocation pipes and was able to compare the results with analytical 

solutions provided by Le Claire and Rabonovitch [29, 30]. The method not only addressed an 

isolated dislocation but it was general enough to solve the problem for a situation of regularly or 

randomly spaced dislocations and also the impurity segregation problem. Murch�s idea was 

significantly used by others in their calculations [31].  

 

The principal outputs of LMC calculations are generally twofold: time-dependent concentration 

profiles and effective diffusivities. The concentration profiles are constructed by determining 

the number of particles that have reached a given plane from the particle source after some 

time t . 2D or 3D concentration profile maps can also be established in a similar way by simply 

counting the number of particles that have reached a given site. A comprehensive explanation of 

determining concentration profiles can be found in section 2.1.3.3. of Chapter 2. The effective 

diffusivity of a material can be calculated in the long-time limit. The effective diffusivity can 

either be calculated from a concentration depth profile or by using the Einstein equation. A 

detailed description can be found in section 2.1.3.1 of Chapter 2 and in section 3.3.1.1 of 

Chapter 3. 

 

 

1.4.1 Instantaneous Source Condition (The Thin-Film Solution) 
 

The most commonly used examples of diffusion experiments [32] refer to instantaneous tracer 

sources, where a fixed number of tracer atoms diffuse for a predetermined time (the anneal 

time). In other words, the source is modelled in such a way that the diffusion substance is 

deposited within a certain restricted region initially and left to diffuse throughout the 

surrounding medium. Then the instantaneous source acts as a boundary condition when a fixed 

number of particles diffuse, each for the same time t. The thin-film solution for Fick�s Second 

Law for diffusion into a semi-infinite solid is given by: 

 









−=

Dt
x

Dt
MtxC

4
exp),(

2

π
        (1.13) 

 

where a thin film of diffusant (of amount M  per unit area) is localised at x = 0 of a semi-

infinite sample. The quantity Dt6  is a typical diffusion length, which is a characteristic 

distance for (3D) diffusion problems. The thin-film solution is also sometimes described as the 

Gaussian solution in the literature. 
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1.4.2 Constant Source Condition (The Error Function Solution) 
 

The constant source condition was implemented in LMC modelling only very recently. 

Differing from the instantaneous source condition the diffusant concentration at the source plane 

or the boundary is kept constant at all times during the diffusion experiment. This means that 

when a particle leaves the source, the concentration is �topped up� and when a particle returns 

and therefore exceeds the allowable concentration then any particle at the source is annihilated. 

In modelling generally the tracer source is arranged in a �sandwich configuration� to avoid any 

artefacts or �edge effects� caused by having a formal surface. A detailed description of the 

construction of the constant source will be discussed in Chapter 3 and the �error function 

solution� for Fick�s Second Law is given by Equation 3.34 in section 3.3.1.1.  

 

1.4.2.1 Boundary Conditions 
 

In the following, we discuss in detail the boundary conditions when the continuous source is 

modelled as a �sandwich configuration�, whilst leaving the source plane in the middle. LMC 

modelling of a continuous source is implemented in Chapter 3 while simulating in-diffusion and 

out-diffusion processes, wherein periodic boundary conditions are applied to both sides of the 

lattice. However, in both infinite and semi infinite materials we modelled edges in the y 

direction to be periodic. In this periodic boundary condition, when a particle reaches the first 

plane or the last plane of the lattice, and if the next jump is generated in such a way that it would 

go outside the lattice, then the particle is simply plugged back into the beginning or end plane of 

the lattice. In effect, with the periodic boundary condition at all four edges, the original lattice is 

now surrounded with periodic images or replicas of itself. In using periodic boundary conditions 

we can avoid surface effects completely. However, the lattice must not be too small or historical 

effects may arise in some diffusion problems as particles leave one side and enter the opposite 

side of a lattice which has not significantly changed.  

 

 

1.5 Random Numbers in the LMC Method  
 

The Monte Carlo method requires the generation of many random numbers. Random numbers r 

are floating numbers typically generated uniformly on the interval 0 ≤ r < 1. The LMC method 

requires random numbers in numerous situations such as in the selection of which particle 

moves, the allocation of a jump direction, the evaluation of local jump rates etc. The most 

important thing when generating random numbers is that the numbers should be uniformly 



Chapter 1 - Introduction 

13 

distributed over the above interval. This can be tested using various statistical testing methods 

[33]. These tests require generating large numbers of random numbers and subjecting them to 

standard statistical tests to check the uniformity [34]. In some cases, the LMC calculation can be 

run for a diffusion situation where there is a known exact solution. This provides a most useful 

test of the method and the degree of randomness of the generated random numbers. In principle, 

random numbers can be obtained from radioactive decay data or white noise but such methods 

tend to be slower than generation by the very efficient algorithms presently available.   
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Chapter 2 
 

2. Calculation of the Effective Thermal 

Conductivity in Composite Materials 
 

2.1 Introduction 
 

2.1.1 The Importance of Thermal Conductivity and its Applications 
 

In designing new materials it is a crucial to be able to predict the thermal conductivity in 

advance. By knowing the thermal conductivity, it assists in being able to predict the temperature 

fields and understand the extent to which the material can withstand allowable temperature 

limits. Recently, metal matrix composites have been used in electronic packaging materials due 

to the high thermal conductivity to coefficient of thermal expansion ratio [1, 2]. When 

discussing heat and mass transfer properties of composite materials, the effective properties play 

a vital role. The effective properties are an �unknown� average of the individual properties of the 

phases associated with the composite material. That means effective properties are affected by 

the individual properties of the constituent phases. Because of the importance of this, numerous 

studies have been carried out to determine the effective thermal conductivity. The effective 

thermal conductivity depends on the geometry and thermal conductivities of individual phases, 

their distribution in the host material and the interface properties. In this Chapter, we study how 

the geometry and thermal conductivities of individual phases affect the effective conductivity of 

a model composite material.  

 

The determination of the effective thermal conductivity in simple models of composite materials 

has been described for various situations by Torquato et al. [3]. He described the fact that the 

geometrical arrangements and shapes of the inclusions have an impact on the effective thermal 

conductivity of composite materials. For simulation models, various ordered and random 

packing arrangements of impermeable spheres were used. Ordered distributions were formed by 

arrangement of inclusions in f.c.c, b.c.c and s.c arrangements, whereas random distributions 

were formed by the dense random packing of spheres.  

 



Chapter 2 - Calculation of the Effective Thermal Conductivity in Composite Materials 

17 

Recently, the finite element method has been used to calculate effective thermal conductivity in 

various models of composites [4]. The finite element solution is formed by solving the principal 

finite element for thermal conductivity problems: 

 

FTK =.           (2.1) 

 

where K  is the conductivity matrix, T is the vector of the unknown nodal temperatures and F is 

the nodal load vector. Generally, in the finite element method, the solution is formed by 

decomposing the complex structure into geometrically simple shapes which are also identified 

as elements. These single elements are associated with differential equations. The way of 

assembling such single element solutions and giving boundary conditions to obtain the complete 

system solution will balance equations at the nodes of the elements.  
  
 

2.1.2 Historical Review of Effective Thermal Conductivity/Mass 

Diffusivity Studies 
 

In this section, a brief summary of most of the published results on determining the effective 

diffusivity is given for composite and porous materials. It is observed that most of the results are 

published in the form of effective mass diffusivities. However, later in the present chapter 

(section 2.1.4), we show that the thermal conductivity in a phase i of the composite material can 

be equated to the thermal diffusivity in that phase by simply requiring that the values of density 

and specific heat be unity everywhere in the calculation. This in-turn makes the effective 

thermal diffusivity simply equal to the effective thermal conductivity. Therefore, in the 

following section (section 2.1.2.1) we consider that the calculation of the effective mass 

diffusivity applies the same meaning to the calculation of the effective thermal conductivity. 

Conversely, the results of models that are discussed from the point of view of the thermal 

conductivity in the present chapter would also apply equally to the effective mass diffusivity.  

 

 

2.1.2.1 Effective Mass Diffusivity 

 

The effective mass diffusivity represents the mass diffusivity in a composite material taken at 

chemical equilibrium. Experimentally, the effective diffusivity is measured by means of a tracer 

diffusion experiment in a polycrystalline material in the so-called Harrison Type-A kinetics 
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regime. In this regime, the effective diffusivity is expressed by some weighted average of the 

lattice or bulk diffusivity of the diffusant and its grain boundary diffusivity. Other examples are 

measuring effective ionic conductivity of a composite solid electrolyte and the effective 

diffusivity of a diffusant in a two-phase material.  

 

Heat conduction and mass diffusion, both of which are random processes, can be simulated by a 

LMC method that simulates the random walk of particles. These particles can be atoms, 

molecules, colloidal particles or unicellular organisms in mass diffusion and heat particles in 

heat conduction problems. The effective diffusivity/conductivity can be calculated by means of 

the Einstein equation. In principal, the effective diffusivity or effective thermal conductivity can 

also be calculated in a LMC calculation by processing the concentration depth profile in the 

region adjacent to the source at very long times [5].  

 

 

2.1.2.2 Effective Diffusivity Obtained by Analytical Methods for Two Phase 

Materials 

 

There have been several theoretical attempts to calculate the effective diffusivity. The first was 

made by Hart [6] who considered the effective diffusivity of a microcrystalline material. His 

expression, now usually called the Hart equation, is: 

 

lbEff DggDD )1( −+=                                                                                                             (2.2) 

 

where g is the volume fraction of grain boundaries, Db is the diffusivity in the grain boundaries 

and the Dl is the lattice or the grain diffusivity. It was assumed that the grain boundary slabs are 

parallel to diffusion direction. In fact, the Hart equation is exact for this situation. Later, the Hart 

equation was extended by Mortlock [7] by adding the segregation factor (s) which takes into 

account the possibility of segregation of solute to the grain boundaries. This expression is 

commonly called the Hart-Mortlock Equation:  

 

lbEff DsgsgDD )1( −+=         (2.3) 

 

Here the segregation factor is considered as the ratio of the equilibrium concentration bC of 

solute in the grain boundaries to the concentration gC of diffusant in the grains. A problem 

arises when calculating the effective diffusivity in nanocrystalline materials which can have 
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very high g  values, sometimes as high as 0.5 [8]. Equation 2.3 is not correct in such situations 

even for parallel grain boundary slabs.  This was corrected by Kaur et al. [9] who determined 

the exact equation for the effective diffusivity of the solute for parallel boundary slabs in the 

diffusion direction as follows: 

 

sgg
DgsgD

D lb
Eff +−

−+
=

1
)1(         (2.4) 

 

For the situation of alternating grain boundaries and grains in the diffusion direction, the 

effective diffusivity of the solute is given by: 

 

bl

lb
Eff DgsgD

DsDD
)1( −+

=         (2.5) 

 

Equation 2.5 is exact for this geometry. 

 

If a diffusing atom crosses a grain boundary in the diffusion direction (this will generally be the 

case) Equation 2.4 is violated.  Equations 2.4 and 2.5 are only used as exact solutions for the 

two geometries described. There have been a large number of expressions for the effective 

diffusivity for various geometries but of all of them, the Maxwell-Garnett equation [10, 11] is 

found to be surprisingly accurate for the description of the effective diffusivity:  

 

lb

blb
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D
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−+−+

=
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)]1()[(
      (2.6) 

 

where d is the dimension (1, 2, or 3). However, the original Maxwell-Garnett equation was 

actually derived to determine the effective electrical conductivity in porous media. The 

expression 2.6 was found by substituting electric conductivity with the diffusivity assuming that 

the numbers of charge carriers per unit volume in each phase are equal. The Maxwell-Garnett 

Equation was further generalized by Kalnins et al. [12] by using a concentric sphere model and 

incorporating the segregation factor: 
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Later Belova and Murch [13] derived a �composite equation� by dividing the diffusion paths 

into two parallel types. One path corresponds to grain boundaries arranged in the diffusion 

direction, while the other path refers to those grain boundaries oriented normal to the diffusion 

direction and the grains which is similar to the alternate configuration. The composite equation 

can be expressed with the segregation factor as: 

 

))1()(1(
))1()1(( 2

bl

blb
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sDDsD
D
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εεεε
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−++−

=       (2.8) 

 

where 22 εε −=g . The advantage of Equation 2.8 is that it directly provides the effective 

diffusivity for the actual arrangement of cubes and gives a superior fit to the Monte Carlo data 

compared to the Maxwell-Garnett equation at large values of g [14].  

 

 

2.1.2.3 Effective Diffusivity Obtained by Analytical Methods for Three Phase 

Materials 

 

Brailsford and Major [15] derived a general expression for the thermal conductivity in a model 

of a three-phase material. Later, this expression was generalized by Belova and Murch [16] and 

extended to calculate the effective diffusion coefficient of a three phase material including 

segregation factors. The modified expression is as follows; 
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  (2.9) 

    

where A and B refers to two phases with diffusivities DA and DB and volume fractions gA and gB 

separated by inter-phase boundaries phase C having a diffusivity DC , sA and sB are segregation 

factors for phases A and B. LMC results [16] showed that the effective diffusivity of the 

composite is roughly described by Equation (2.9).  

 

Let us consider the situation in composite electrolytes. Generally these materials are formed by 

embedding insulating phases (phase B) in an ionically conducting matrix (phase C) [17, 18]. An 

interesting phenomenon occurs here when the phase having a higher electrical conductivity (e.g. 

phase A) immediately surrounds the insulating phase. This situation will give rise to two 
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percolation thresholds, one where the high conductivity regions overlap and the other where the 

insulating regions are overlap. Belova and Murch [19] modified the Maxwell Equation 

appropriate for the above discussed situation for two geometric models (2D models of coated 

cubic and spherical particles).  
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where; 
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They calculated the effective conductivity/diffusivity using Equation 2.10 and compared with 

LMC results.  

 

 

2.1.3 Effective Diffusivity by the LMC Approach 
 

The first LMC calculation of the effective diffusivity was conducted to determine the effective 

diffusivity in the void space of randomly packed arrangements of spheres (f.c.c., b.c.c and s.c) 

[20]. These arrangements were obtained by collapsing loose arrangements of spheres using a 

Lennard-Jones pair potential between the spheres. It was assumed that the diffusivity within the 

spheres to be zero when comparing ordered and random arrangements of spheres with analytical 

expressions.  

 

The next LMC study examined the effective diffusivity of a model with cubic grains [21]. 

Grains were modelled in a simple cubic arrangement whilst keeping the diffusivity in the grain 

boundaries much greater than in the grains. Results were compared with the Maxwell-Garnett 

Equation. Later, a model with spherical inclusion models with f.cc., b.c.c and s.c arrangements 

were examined [22]. Data were acquired in two different simulations, one having the diffusivity 
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of the inclusions less than the grain boundaries, the other with diffusivity in the grains greater 

than that in the grain boundaries. They compared their LMC data with the Maxwell-Garnett 

Equation and concluded that the Maxwell-Garnet Equation generally does well except near the 

percolation threshold where spherical inclusions are touching. Another detailed study of the 

effective diffusivity for square planar and brickwork arrangement of 2D square inclusions was 

conducted when the diffusivity of inclusions are about three orders of magnitude less than grain 

boundaries [23]. 

 

Two different strategies can be used to calculate the effective diffusivity with the LMC method 

namely the Einstein Equation method and the Fick�s First and Second Law Method. Each one 

will be discussed below in some detail. 

 

 

2.1.3.1 The Einstein Equation Method 

 
The LMC method of computation for the direct calculation of the effective diffusivity starts 

with the Einstein Equation. The Einstein method is much more convenient to use compared with 

the other two methods. The Einstein equation describes the self-diffusivity D of migrating 

random particles in d dimensions (d =1, 2 and 3) as: 

 

dt
RD

2

2 >∆<=                                               (2.11) 

 

(∆R is the mean displacement of a given particle over a long time ( t ) and the Dirac brackets 

refer to an average over a large number ( N ) of particles.) 

 

The Einstein equation can only be employed at systems in equilibrium. In a mass diffusion 

context, the Einstein Equation refers only to the determination of the diffusivity of individual 

particles that can be followed or traced in a system that is already at chemical equilibrium, i.e. 

with no concentration gradient acting or external fields acting. In other words, each particle 

needs to be followed for some longer time t   in order to determine its displacement R∆ . In a 

real experiment, there are rather few examples where this has been possible to achieve. One 

well known experimental method traced the migration of surface rhodium atoms on various 

faces of a f.c.c. rhodium crystal using a field ion microscope. After a long diffusion time, the 

surface diffusivity of rhodium atoms can be expressed by Equation 2.11. The Einstein Equation 
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provides a highly useful means for calculating in models the effective thermal diffusivity or 

conductivity from random walks of virtual particles using the Monte Carlo method. 

 

The Einstein Equation has been extremely useful, especially for providing the basis for much of 

the theory that describes diffusion of atoms in the solid state, where it is commonly assumed 

that atoms jump from site to site on a lattice with very long residence times on each site between 

jumps and an assumed flight time between sites of zero. This is sometimes referred to as the 

�hopping model�. The atoms, individually and also their centre of mass, undertake random 

walks on a lattice. In a period extending over half a century, a vast literature has been built up 

that has been especially concerned with describing memories or correlations between individual 

jumps of the random walk of primarily tracer atoms [24]. Since about the early 1970s, much of 

this literature has made use of the Monte Carlo method [25]. For random walks with 

correlations on the simple cubic lattice the diffusivity can be partitioned from Equation 2.11as 

[24]: 

 

dt
faD

2

2Γ=           (2.12) 

 

where f is termed the correlation factor. This quantity expresses any correlations in the 

direction of jumps. When each jump in the walk is completely independent or uncorrelated with 

all previous ones, then 1=f . On the other hand, for a hypothetical walk where every jump of 

the particles is immediately reversed, then 0=f . As an aside, it is worth noting that for many 

solid state diffusion mechanisms, such as the vacancy mechanism, there are considerable 

correlations in the directions of successive jumps of the atoms because of the continued 

proximity of the vacancy to a tracer atom. For the vacancy diffusion mechanism the correlation 

factor is given approximately by: 

 

z
f 21−≈           (2.13) 

 

where z is the local coordination number. It is very important to recognize that the Einstein 

Equation (Equation 2.11) is still valid over long times even when the material has different 

hopping rates in different regions of the material (for example in a composite), provided that the 

material remains isotropic in its diffusion properties overall. The implication also is that each 

tracer particle �explores� a sufficiently large portion of the structure to be representative of the 

composite structure. (By allowing multiple occupancy of sites by particles then the correlation 
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factor f = 1.) The diffusivity represented in the Einstein Equation is then the effective diffusivity 

of the structure. If the material is anisotropic in its diffusion properties, one can still nonetheless 

define diffusivities in the three principal directions simply by using: 

 

t
XDx 2

2 >∆<= ;     
t

YDy 2

2 >∆<= ;     
t

ZDz 2

2 >∆<=        (2.14) 

 

where X∆ , Y∆ , and Z∆ are the displacements of a particle in time t  in the x , y and 

z directions respectively.  

 

Since the first diffusion application of Monte Carlo method in the immediate post WWII period, 

the Einstein Equation itself does not seem to have been used until almost twenty years later and 

then only indirectly. A possible reason for this is the difficulty in dealing with time. In fact, in 

contrast to the other principal diffusion kinetics simulation method of molecular dynamics, the 

simulation of real time is not possible in a Monte Carlo kinetics calculation. What one actually 

does is to use a discrete quantity that is proportional to actual time. This quantity is the number 

of jump attempts per particles. Using the Einstein Equation with this quantity acting as �time�, 

one can then calculate a relative diffusivity, i.e. a diffusivity that is relative to one of the 

specified diffusivities (usually the highest) in the system.  

 

 

2.1.3.2 Fick�s First law method 

 

The Fick�s first law method is an alternative for calculating the effective diffusivity from the 

Einstein equation method. Fick�s first law is written as: 

 

x
CDJ

∂
∂−=            (2.15) 

 

where J is the particle flux and xC ∂∂  is its concentration gradient. In a LMC calculation 

Equation 2.15 is most conveniently used under steady-state conditions by introducing a source 

plane, at which particles can be created at a random position and released one at a time, and a 

sink plane, at which the particles are annihilated as soon as they arrive. This of course gives an 

apparent particle concentration 1/n, where n is the number of sites on the source plane and a 

zero concentration for the sink plane, providing a uniform concentration gradient xC ∂∂ . This 

gradient can also be adjusted by changing the length of the lattice or by adjusting the probability 
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for the particle to be annihilated at the sink plane. For example, if a particle arrives at the sink 

plane and annihilated with a probability of iP  (appropriately evaluated on the spot using a new 

random number), the effective concentration of particles on that plane is then simply given by 

nPi /)1( −  and the concentration gradient in the problem is thus reduced. Let us consider in a 

2D lattice of dimensions 100×100 where the source and sink are separated by 50 planes in the 

+x direction and by the same number of planes via the periodic boundary in the �x direction. A 

particle released from the source plane and is permitted to diffuse to the sink, thereby providing, 

in effect a well-defined uniform concentration gradient. The flux J is simply calculated as the 

net number of particles crossed between two neighbouring planes in the x-direction as 

calculated over a long time t  in between source and sink planes, during which time some 105 

particles are released from the source and annihilated at the sink.  Inclusions are introduced in 

exactly the same way as the Einstein equation method and diffusion is simulated in the same 

way. However, it should be noted a particle may �see� in effect only one isolated inclusion in its 

lifetime in going from source to sink and possibly give an incorrect result for the effective 

diffusivity. For this reason, periodic arrangements of inclusions would require at least two 

inclusions between the source plane and the sink plane of particles. Overall, the Einstein 

equation method is considerably more convenient to use compared with the Fick�s first law 

method and more flexible in its application.  

 

 

2.1.3.3 Concentration profile method (Fick�s First law method) 

 
As the name implies, the method uses the concentration profile of the diffusant modelled by the 

LMC method to determine the diffusion coefficient. The concentration profile method is similar 

to solving the Diffusion Equation (Fick�s Second Law) once the initial and boundary conditions 

are specified. However, to apply this method, the diffusivity should preferably be the same 

throughout the material to be considered. This method can be applied in two situations. One is 

described as the �thin-film� or an �instantaneous source� condition and the other is called the 

�constant source� condition.  

 

In the instantaneous source condition a thin layer of diffusant is deposited at the surface at time 

0=t . The modelling of a concentration profile in the presence of an instantaneous source by 

the LMC method is described below. A source plane of particles is established in the centre of a 

large periodic square planar or simple cubic lattice in order to avoid edge effects in the 

calculation. Particles are generated at random positions on this source plane and released from 

the plane either sequentially or all at once. Assuming the latter for convenience here, we allow 
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the particles to diffuse independently of one another for the entire time Nt , at which time the 

final position of each particle is recorded. The final positions of all particles are then simply 

assembled from the individual final positions to form a concentration penetration profile. If the 

lattice is large in the diffusion direction, at relatively short times, the profile is the familiar 

Gaussian profile as appropriate for diffusion from a thin source into a �semi-infinite� solid.  

 

In the modelling of a constant source, it is required that a constant concentration of particles is 

maintained at the �surface� for all diffusion times. The basic idea is simply to keep the total 

number of particles at the source plane constant at all diffusion times. This is achieved in the 

following simple way. All particles are released at the same time. As a particle makes a jump 

from the source plane it is immediately replaced by a new one, which is again generated at a 

random position on this plane in order to maintain the required number. On the other hand, 

whenever a particle returns to the source plane, thereby exceeding the number designated for the 

source, then any particle at the source is permanently removed from the system. Over a period 

of time, the number of particles within the system naturally increases as more particles diffuse 

away from the source than return to it. Accordingly, the diffusion time t  must be constantly re-

scaled since the time is required to be proportional to the number of attempts per particle. At 

longer times, the two profiles emanating from each side of the source start of course to meet up 

via the periodic boundary. However, if the particle source is now conceived as two �separated 

surfaces�, then the profile represents diffusion from two opposing surfaces into a material of 

finite width.  

 

In principle, it is possible to determine the effective mass diffusivity of a model material by 

analysing the simulated concentration profiles. This would assume that there has been averaging 

of the profile over all possible locations of the second phase in the matrix phase. The profile 

would then need to be processed to give the effective mass diffusivity in much the same way as 

an experimental diffusant concentration depth profile by using the appropriate solution to the 

Diffusion Equation. In practice, it is far easier to calculate the effective diffusivity of the model 

material in a separate calculation using the Einstein equation.  

 

 

2.1.4 Calculation of the Effective Thermal Conductivity by LMC 

Method 
 

Thermal diffusion process is also a random process which can be represented by the random 

walks of particles. Here we consider particles as virtual heat particles. Since thermal diffusion 
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process is a random process it can also be described by the Einstein Equation. The thermal 

diffusivity K is in d  dimensions ( 3,2,1=d ): 

dt
RK

2

2 >∆<=           (2.16) 

 

where R∆  is the vector displacement of a given particle after a long time t . It is averaged over 

a very large number of particles ( N ) and represented by the Dirac brackets. The thermal 

conductivity iλ of phase i  is related to the thermal diffusivity iK  in a phase by; 

 

P
i

i

i
i C

K
ρ

λ=           (2.17)

     

where iρ is the density of phase i and p
iC is the specific heat of phase i. Then we can change 

Equation 2.16 by assigning densities and specific heats to be equal to unity in the phases 

considered.  This equals iEff λλ /  (λi = λ1, if  λ1 > λ0 and λi  = λ0,  if λ0 > λ1) to the relative 

effective thermal diffusivity iEff KK / . This means that this situation can be usefully modelled 

by Monte Carlo simulations in calculating the relative effective thermal conductivity.   

     

For the lattice hopping model the Einstein equation can be further expanded to Equation 2.18 

for the purposes of Monte Carlo modelling as: 

 

d
aK

2

2Γ=           (2.18) 

 

where Γ is the hypothetical inter-site transition jump rate or jump frequency of a thermal 

particle at the particular site considered and a is the jump distance in the lattice.  

When 2=i , we can approximate the effective diffusivity/conductivity in such a composite, by 

writing the effective diffusivity as a simple linear combination of the individual diffusivities as: 

 

12 )1( KKK Eff φφ −+=          (2.19) 

 

where φ  is the area/volume fraction of the inclusion phase and Equation 2.19 is commonly 

referred to as the Hart Equation (see  also Equation 2.2).  
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2.2 Methodology 
 

2.2.1 Effective Thermal Conductivity/Diffusivity in a Single Phase 

Material 
 
In calculating the thermal conductivity of a homogeneous material or calculating effective 

thermal conductivity in a composite material, the particles that explore the lattice are no longer 

considered to represent individual entities as heat particles but are considered as virtual particles 

that represent the macroscopic thermal conductivities in each region. Since different particles 

can occupy the same site there are no diffusion correlation effects in conducting this simulation.  

 

In the very first case, we considered a single phase material with the same thermal conductivity 

everywhere. For convenience, the effective diffusivity is addressed in terms of the effective 

conductivity in the following.  

 

We modelled a homogeneous single phase material in a 2D lattice of dimensions 50×50, having 

2500 lattice sites. There are 4 jump directions for each jump of a particle, i.e. 4=z . Periodic 

boundary conditions are given on all four faces of the lattice. This very common type of 

boundary condition specifies that when a particle reaches an edge or face of the lattice, if the 

next jump would take it outside of the lattice, then the particle is simply plugged back into the 

edge of the face of the lattice directly on the opposite side of the lattice. In effect, with the 

imposition of periodic boundaries, the original lattice is now surrounded by periodic images or 

replicas of itself. The use of periodic boundaries thus enables surface effects to be avoided 

completely. However, this lattice is a small system, and, if too small, historical effects may be 

perpetuated in some diffusion problems as a particle leaves one side and enters on the opposite 

side into what is, in effect, essentially the same environment that it has just left. In a problem 

such as diffusion in a thin film, a formal surface(s) is of course necessary and is retained in the 

calculation.  

 

There are two methods for calculating the diffusion coefficient. One releases all the particles at 

the same time at randomly chosen sites and then commences the movement by choosing them 

randomly to jump. Here the particles are capable of moving independently of each other over 

the lattice for the entire time considered in the simulation. The second method releases particles 

one at a time wherein all the particles are capable of having exactly the same time for exploring 

the lattice. However, at long times, both of these procedures become completely equivalent and 

would take about the same computational time. We preferred the latter method for convenience. 
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In our calculation here, a particle is created at some randomly chosen site where random 

numbers are used to generate the x and y coordinates for this site. The direction to jump is also 

chosen at random from the four available directions where the square planar lattice is used. We 

released N particles one at a time at randomly chosen sites in the lattice and then started the 

simulation allowing each of them to randomly explore the lattice for exactly the same time t . 

Provided that we permit multiple occupancy of a given site, the particles would diffuse 

independently of each other for the entire time Nt . Whilst the random walk of the particle is 

being directed by computer-generated random numbers, step-by-step contributions to the vector 

displacement of the particle ∆ R  are also being accumulated. It was found that it is best to do 

this by assuming that each particle starts from its own origin (0, 0). It should be especially noted 

that if the particle crosses a periodic boundary and is therefore plugged into the opposite side of 

the lattice, this process is completely ignored in the calculation of the displacement ∆ R . The 

process of directing the random walk of the particle continues for 106 jump attempts. The entire 

process is then repeated with further particles until a total of 50000=N particles have been 

released, all having had 106 jump attempts in their walks. Here every attempt to jump is 

permitted to be successful ( 1=Γ ). The jump distance here 1=a is the lattice spacing. From 

Equation 2.18, when 2=d , it is evident that K should equal 1/4 and also carries the units: 

lattice spacings squared per jump attempt. A calculation of K  directly from the Monte Carlo 

calculation using the Einstein equation (Equation 2.16), verifies this perfectly. The value here of 

4/1  taken by K  then must be scaled to the actual thermal diffusivity of the material.  

 

 

2.2.2 Effective Thermal Conductivity/Diffusivity in a Two Phase 

Material 
 

2.2.2.1 Models  

 
Figure 2.1 represents the basic 2D models used for the simulation. For 2D simulations square, 

circular and elliptical inclusions are considered. The 3D models, which are not displayed, are 

cubic and spherical inclusions within a simple cubic lattice. It is considered that the dispersed 

phase or inclusions, which are embedded in the matrix phase, are themselves arranged for 

convenience in a square planar arrangement for 2D simulations or a simple cubic arrangement 

for 3D simulations. Generally, the host material represents the metal matrix and an inclusion 

represents the insulating phase. The thermal conductivity in the inclusions themselves is 2λ  and  

the thermal conductivity in the matrix is 1λ .  
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Figure 2.1 Schematic representation of a 2D model of Ag/MgO composite. (a) square 

inclusions (b) spherical inclusions (c) elliptical inclusions in a simple cubic arrangement 

overlaid by a simple cubic lattice 

 

(a) (b) 

(c) 
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2.2.2.2 Method 

 
The Monte Carlo simulation method containing differently shaped inclusions for 2D and 3D 

models is described as follows. A fine grained square planar lattice (151×151) was considered 

for the 2D simulations and a cubic lattice (151×151×151) was considered for the 3D simulations. 

The fine grained lattice is overlaid on the system, so that the inclusions are within the 2D and 

3D lattices. The requirement here of course is that the lattice is sufficiently fine grained that it 

can adequately capture the shape of inclusions. The area/volume fraction of inclusions φ  is 

simply the number of lattice sites in the inclusion(s) divided by the total number of sites (there 

is usually a small correction that depends on the choice of the jump frequencies between the two 

phases and will be discussed below). The lattice also has periodic boundaries which are 

implemented exactly as for the homogeneous system described above. Since there are periodic 

boundaries, it does not actually matter in this particular example if the inclusion is in the centre 

of the lattice because the arrangement of the inclusions itself is also simple cubic for 3D 

simulations and square planar for 2D simulations. This in turn results in the lattice being 

surrounded by images itself. However, for more complicated arrangements of the inclusions in 

the lattice, which effectively acts like a unit cell of the structure of the chosen arrangement, the 

inclusions would need to be located with care.  

 

As for the homogeneous system described above, each particle is created and released from a 

randomly chosen site in the lattice. As before, no correlation effects need to be considered here 

since the particles diffuse completely independently of one another. The two conductivities 

1λ and 2λ  are now simply individually represented by two different jump probabilities (per unit 

time) 1Γ  and 2Γ . It is best to scale the higher Γ  to unity for computational efficiency. The jump 

rate of the particle now varies according to position within the lattice. Thus if the particle is 

currently on a site known to be within the inclusions, it has a jump rate 1Γ , whereas if the 

particle is currently on a site known to be within the metal matrix, then it has a jump rate of 2Γ . 

We modelled for a range of values of 21 / λλ , as an example for a range of values from 0.1 ( 1Γ = 

0.1 and 2Γ = 1) to 10 ( 1Γ = 1.0 and 2Γ = 0.1). Let us consider 1Γ = 1 and 2Γ = 0.1, where the 

ratio of conductivities 10/ 21 =λλ . Thus when a particle is on an inclusion site, another random 

number r  needs to be generated to determine the outcome of the jump attempt. If r  is less than 

or equal to 2Γ  then the jump attempt is said to have been successful and the particle is permitted 

to move. A small difficulty occurs at the boundary between the phases. When a particle is just 

about to cross a boundary, a consistent choice must be made about the jump rate to use. If the 

jump is from matrix to inclusion and 1Γ  is used, then the reverse jump (from inclusion to matrix) 
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must also use 1Γ . Otherwise, the principle of local detailed balance would be violated and there 

is an implication that there is some kind of segregation of the particles in the boundary between 

the two regions. It is to be noted that for thermal conductivity calculations, the term 

�segregation� has no meaning, however, for the mass diffusion calculations, this is not the case 

of course. Segregation related simulations are discussed in Chapter 3. Now let us return to the 

jump frequencies at the boundary in the thermal conductivity problem again. Similarly, if the 

jump between inclusions and matrix used 2Γ  then 2Γ  must also be used for the reverse jump. In 

practice, the choice made here of Γ  has almost no effect on the calculated results of the 

effective thermal conductivity. The correction is actually to the apparent fraction of inclusions 

(φ ). This will arise as a result of this procedure because of the following reason. Obviously, a 

path of the particle jump with jump rate iΓ should belong to the phase i . Because we introduce 

the fraction of sites (exactly z/1 , where z  is the coordination number) being taken from one 

phase and added to the other phase according to the method of handling the jump at the 

boundary between the phases it was introduced above. The correction is usually very small and 

can be shown to be inversely proportional to the number of sites representing an inclusion of a 

different type.  

 

Similar to the homogeneous material, after a large number of particles have been released, say 

50000=N  and allocating 106 jump attempts per each, then the effective thermal conductivity 

for the composite can be formed directly from the Einstein equation.  

 

 

2.3 Results & Discussion 
 

There have been many attempts to describe the relative effective conductivity in composite 

material in the past [3]. Recent simulations [4, 19, 29] have shown that treatments based on the 

Maxwell-Garnett treatment [11] invariably provide superior agreement over other treatments 

that are often far more sophisticated. For two dimensions, the Maxwell-Garnett equation is: 
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where 1λλ =i  if 01 λλ > and 0λλ =i  if 01 λλ < . An equation describing the effective 

conductivity for the case of square inclusions in a square planar arrangement has been derived 
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especially for very high values of φ  [19]. This was found to be in excellent agreement with 

simulation results in the region of interest. That equation reads: 
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where 1λλ =i  if 01 λλ > and 0λλ =i  if 01 λλ < .  

 

For the three dimension situation, the Maxwell-Garnett equation is: 
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For all values of 1λ  and 0λ .  
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     (c) 

Figure 2.2 Relative effective thermal conductivity of a composite with (a) circular inclusions (b) 

square inclusions (c) elliptical inclusions where inclusions referred to as 0 and matrix as 1 in a 

square planar arrangement as a function of area fraction of inclusions for several values of the 

matrix and dispersed phase thermal conductivities. 

 

 

In Figure 2.2 we give LMC results by the Einstein equation method for the relative effective 

thermal conductivity as a function of area fraction φ  of circular, square and ellipse inclusions as 

in 2D simulations for a range of values of the matrix and inclusion conductivities within an 

order of magnitude. In Figure 2.3 we give the same results for spherical and cubic inclusions 

and compared with an analytical solution. It is to be noted that in Figure 2.2 (c) the given 

relative effective thermal conductivity values are equivalent to a randomly oriented elliptical 

inclusion system.  

 

 

 

 

 

 

 

 

 

 

 

 

Area fraction of inclusions Φ

R
el

at
iv

e 
ef

fe
ct

iv
e 

th
er

m
al

 c
on

du
ct

iv
ity

  λ
Ef

f/λ
i

0

0.2

0.4

0.6

0.8

1.0

0 0.15 0.30 0.45 0.60 0.75

λ0 / λ1 = 1
λ0 /  λ1 = 10
λ0 / λ1 = 2
λ0 / λ1 = 0.5
λ0/ λ1 = 0.1

Area fraction of inclusions Φ

R
el

at
iv

e 
ef

fe
ct

iv
e 

th
er

m
al

 c
on

du
ct

iv
ity

  λ
Ef

f/λ
i

0

0.2

0.4

0.6

0.8

1.0

0 0.15 0.30 0.45 0.60 0.75

λ0 / λ1 = 1
λ0 /  λ1 = 10
λ0 / λ1 = 2
λ0 / λ1 = 0.5
λ0/ λ1 = 0.1



Chapter 2 - Calculation of the Effective Thermal Conductivity in Composite Materials 

35 

 

 

 

 

 

 

 

      

 

                           (a) 

 

 

 

 

 

 

 

 

 

     

     (b) 

 

Figure 2.3 Relative effective thermal conductivity of a composite with (a) spherical inclusions 

(b) cubic inclusions where inclusions referred to as 0 and matrix as 1 in a cubic arrangement as 

a function of volume fraction of inclusions for several values of the matrix and dispersed phase 

thermal conductivities.  

 

 

The ellipse is modelled in such a way that the distance between the center to the foci is set to be 

half from the distance of the centre to the vertex. The resulting eccentricity then equals one half, 

where the semi-minor axis equals √3 /2 of the semi-major axis of the ellipse we considered. It is 

to be noted that the conductivity values are described only up to 0.7854 for circular inclusions, 

due to the touching of inclusions beyond those values. However, there is no such limitation for 

square inclusions (in a square arrangement) to be considered because by the time inclusions are 

touching; the whole matrix becomes completely filled with inclusions. In such a situation, 
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Figure 2.2 represents some interesting results. Let us consider the situation where the 

conductivity ratios ( 10 / λλ ) equals 0.5 and 2 for the square inclusion composite. For 

5.0/ 10 =λλ , when the matrix is entirely full of inclusions the relative effective thermal 

conductivity reaches a value 0.5, which is equivalent to that of the curve where 2/ 10 =λλ , 

when the matrix is completely empty of inclusions. This observation can be further extended to 

1.0/ 10 =λλ  and 10/ 10 =λλ . Similarly when the matrix is entirely filled with inclusions for 

2/ 10 =λλ  and 10/ 10 =λλ , the relative effective thermal conductivity reaches unity, which is 

obvious. However, when the conductivity ratio equals unity, the relative effective thermal 

conductivity is kept unchanged irrespective of the inclusion fraction. A similar situation when 

10/ 10 =λλ   is observed for circular and elliptical inclusions as well. It is noted that in Figure 

2.2 (a) and (c), when 2/ 10 =λλ  and 10/ 10 =λλ  the highest relative effective thermal 

conductivity for circular inclusions is comparatively higher than for the elliptical inclusions. 

This is also obvious since the area fraction of the inclusion phase is higher in circular inclusions 

compared to elliptical inclusions.  The observations discussed above for the square inclusion 

composite in Figure 2.2 (b) are shown to be quite similarly connected with Figure 2.3 (b) for the 

cubic inclusion composite. The maximum volume fraction of spherical inclusions is limited to 

0.5133, the point where a percolation threshold exists in Figure 2.3 (a).  
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     (b) 

Figure 2.4 Comparison of numerical and analytical approaches for 2D simulations 

 

 

Figure 2.4 (a) and (b) represents a comparison between the analytical Maxwell-Garnett equation 

(Equation 2.20 and 2.21) and computed LMC results for circular, square and ellipse inclusions 

for conductivity ratios 0.1 and 10. Here, the results are presented for the cases where the thermal 

conductivity of the inclusions differs from that of the matrix by an order of magnitude. It is clear 

that Equation 2.20 does very well with all three types of the above inclusion but, along with 

Equation 2.20, can not of course describe the change of the conductivity when circular 

inclusions are close to touching ( 7854.0=φ ). Equation 2.21 does very well for high values of 

φ  for square inclusions (for which it was derived) but less well at low values ofφ .  
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Figure 2.5 Comparison of numerical and analytical approaches for 3D simulations 

 

 

Figure 2.5 (a) and (b) also represents a comparison between analytical Maxwell Equation 

(Equation 2.21) and computed Monte Carlo results for spherical and cubic inclusions for 

conductivity ratios 0.1 and 10. Similar to the 2D simulation we present results where the 

thermal conductivity of the inclusions differs from that of the matrix by only an order of 

magnitude. It can be observed that there is excellent agreement of the computed results for 

Monte Carlo data for spherical and cubic inclusions with the analytical Maxwell Equation. 

Therefore it is evident from the results that relative effective thermal conductivities with 

increasing volume fraction of spherical and cubic inclusions are best described by Equation 2.21.  

 

The principal difficulty in the LMC method for determining the effective 

diffusivity/conductivity is ensuring that the number of jump attempts is sufficiently large to 

ensure that the long-time effective diffusivity/conductivity of the composite is accurately 

determined. At very short diffusion times for each particle (one or two jumps), as might 

expected, the effective diffusivity/conductivity is simply given by the approximate Equation 

2.19 because this would in effect also be the instantaneous effective diffusivity/conductivity. At 

very long diffusion times, after each particle has adequately explored the structure, the correct 

long-time limit effective diffusivity of the composite is obtained. As a good estimate for what 

would be a sufficiently long time for a given calculation, it is better to first form the effective 

diffusivity/conductivity according to the approximate Equation 2.19 and then use this via a 

calculation of the �diffusion length�, ( ) 2/12 tdK Eff  to determine the number of jump attempts ( t ) 

appropriate for the problem. Roughly, the diffusion length should be at least half the length of 
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the lattice, or the unit cell of the ordered arrangement of inclusions. As noted above, the highest 

jump rate is scaled to unity for efficiency. When one of the diffusivities is very small, the LMC 

method with the basic algorithm described above frequently runs into difficulties arising from 

rather large computational inefficiency (most attempts to jump are rejected in that region) and a 

slight non randomness in the random number generation and subsequent inhomogeneity of the 

random numbers generated over the range of zero to unity. This will be magnified for the 

diffusion in a low diffusivity region. These difficulties can be avoided or at least minimized by 

making use of straightforward residence time algorithms [26-28]. Such algorithms can be very 

useful when diffusivities vary by many orders of magnitude. A popular choice makes use of an 

algorithm that guarantees a jump on every attempt [28] wherein the particle�s site residence time 

(the reciprocal of the jump rate) is simply added to the elapsed time at each move. In principle, 

this can lead to overshooting of the specified time though this is unlikely to be serious problem 

at very long diffusion times. There is, of course a significant computational overhead with such 

algorithms that may offset at least some of the efficiency gains.  
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Chapter 3  
 

3. Modelling of Oxygen Diffusion and 

Segregation at Interfaces in Ag/MgO Composites 
 

3.1 Introduction 
 

3.1.1 Metal/Ceramic Composites and Applications 
 

Internal interfaces play an important role in controlling the mechanical, thermal and electrical 

properties of many advanced materials. This has motivated numerous studies to investigate such 

interfaces. Currently metal/ceramic composites are employed in such diverse applications as 

thin solid films, anti-corrosion coatings, electronic packaging, gas sensors and combustion 

engines [1, 2]. Therefore, it can be expected that an understanding of the properties of the 

interfaces of such composites will help to improve their mechanical, thermal and electrical 

properties. In metal/ceramic oxide composites the oxide and metal components are chemically 

very different materials. Metals show metallic bonding which is characterized by the 

delocalization of electrons. Oxides generally have mixed ionic-covalent bonding because of the 

high electro-negativity of oxygen. The bond that forms between the ceramic and the metal 

components is due to the Coulombic attraction between the ions of the ceramic and the 

screening charge density in the metal [3].   

 

To investigate experimentally the metal/ceramic interfaces, spatially resolved EDX [4], surface 

spectroscopy [5], high resolution electron microscopy (HREM) [6, 7] and field-ion microscopy 

with atom-probe (FIP-AP) [8] have so far been used. Electron energy loss spectroscopy (EELS) 

is also important in determining the bonding states of chemical elements at interfaces that are in 

the nanometre scale by analysing their near edge fine structure (ELNES) of an EELS spectrum 

[9]. In addition to the above mentioned experimental techniques, so far, there have been two 

types of computational approaches conducted for theoretical interface investigations namely: ab 

initio calculations [10, 11] and atomistic simulations [12, 13]. However, what is needed is a 
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higher level simulation method that can address interface and inclusion configurations at a 

larger distance scale. 

 

 

3.1.2 Studies of the Ag/MgO Interface 
 

The bonding of a ceramic to a transition metal has been well described by Schönberger et al. 

[10]. They determined that strong covalent pd-bonds could be formed across the interface 

between oxygen and the transitions atoms as the adhesion correlates with the free energy of 

oxide formation for the transition metal, increasing in the order of Ag < Cu < Ni < Fe � That 

study concluded that atomically sharp transition metal-ceramic interfaces can exist without 

inter-diffusion and the formation of a transition-metal oxide layer. Schönberger et al. 

investigated the bonding state of the Ti/MgO interface and the Ag/MgO interface by ab initio 

density-functional calculations. In the first case, they found that the Ti-O bonding is 

predominantly covalent with the Ti oxidation state less than + 1 whereas in the second case the 

Ag-bonding is predominantly ionic as in the oxide Ag2O with the Ag oxidation state being close 

to +1. They used the interfaces with (001)Ag|| (001)MgO and [100]Ag || [100]MgO. Ag was replaced 

with Ti for the comparison.  

 

Experimentally, a Ag/MgO composite is formed by starting with a Ag-Mg alloy that is then 

gently internally oxidized by heating the sample in an oxygen atmosphere [14, 15]. The oxygen 

diffuses into the alloy from the surface and, if the temperature is high enough so that Mg atoms 

can also diffuse, the oxygen and Mg atoms are able to react and form a highly dispersed oxide 

second phase of MgO since oxygen preferentially reacts with Mg.  The MgO is very insoluble 

in the metallic Ag alloy and there is thus a very sharp discontinuity between the metallic phase 

and the oxide precipitates. In this sense, the MgO precipitates are present as internally produced 

�inclusions� within the metallic phase. The boundaries between the MgO and the metallic phase 

are thus formally interphase boundaries. It is known that very substantial amounts of oxygen 

segregate to these boundaries [16-18]. This oxygen probably relieves any local strain that might 

have developed at the boundaries between Ag and MgO by providing the possibility of new Ag-

O bonds. It also has the effect of greatly weakening the adhesion between the oxide phase and 

the metallic alloy with consequent loss of functional mechanical properties of the composite. 

Some of this oxygen probably originates from the initial treatment of the alloy in the oxygen 

atmosphere. But most comes from in-service conditions when the composite becomes hot and 

allows significant oxygen to diffuse into the sample. In principle, this segregated oxygen can be 

removed and the composite�s properties restored by heating the sample in a vacuum at a higher 
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temperature so that the oxygen is desorbed. Both the absorption and desorption oxygen 

processes are limited by oxygen diffusion and the degree of segregation. These factors are 

addressed in the present study.  

 

It is well-known in the literature that in general materials terms, segregation to grain boundaries 

can lead to fracture along grain boundaries as a result of temper brittleness, creep embrittlement, 

stress relief cracking of weldments, hydrogen embrittlement when exposed to uncontrolled 

atmospheres, environmentally assisted fatigue, grain boundary corrosion and inter-granular 

stress corrosion cracking [19]. This will change the physical properties of the interface 

ultimately adversely affecting the bulk properties of the composite. A good example describing 

segregation phenomena occurring at Ag/MgO and Pd/MgO interfaces was described by Gegner 

et al. [14]. They analysed the interface using a structural model, purposely allowing vacancies in 

the terminating (111)-plane of MgO. It was concluded from their results that segregation would 

be unavoidable to such vacancies, leading to the formation of Ag2O at the Ag/MgO interface.  

 

Later, Pippel et al. [15] made a thorough experimental investigation of the Ag/MgO interface. 

They found that the bonding state of oxygen at the interface remains the same after annealing an 

Ag/MgO specimen in vacuum. It was concluded that the oxygen presence at the interface solely 

belongs to the stoichiometry of MgO. However, after annealing in an oxygen atmosphere, the 

precipitation of Ag2O was shown by having close values between the average free enthalpy of 

segregation (-70 kT/mol) and free reaction enthalpy (-78 kJ/mol) for oxygen.  The bonding state 

of Ag2O and MgO was further explained by the bonding energies. For example, from the lower 

bonding energy (∆E = -0.24 eV) for Ag2O compared with the much higher bonding energy for 

MgO (∆E = -5.90 eV) it was concluded that oxygen is loosely bound in Ag2O. These 

experimental findings were further illustrated by a structural vacancy model of the segregation 

of oxygen at Ag/MgO interface.  This model represents the Ag/MgO interface during annealing 

in vacuum and with high oxygen partial pressures and can be generalized into describing 

numerous metal/oxide phase boundaries. Both Gegner and Pippel and colleagues discussed the 

occurrence of hydrogen embrittlement and the formation of H2O at the Ag/MgO interface at 

high oxygen pressures. Therefore, it is important to establish the means for predicting the time-

dependence of the concentration of oxygen that can segregate at the various internal interfaces 

of the material under selected atmospheric conditions.  

 

Recently, the time-dependence of the diffusion of oxygen into an Ag/MgO composite and the 

subsequent segregation of oxygen in interfaces has been studied theoretically by one-

dimensional finite difference models [20]. The principal input parameters to these calculations 

are the diffusivity of oxygen in the Ag matrix and an estimate of the segregation factor [21] of 
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oxygen at the Ag/MgO interfaces. The influence of effects such as the kinetic order or non-

homogeneity of the ceramic oxide inclusions were investigated by solving the relevant partial 

differential equations with a one-dimensional finite difference scheme. Later, more 

sophisticated geometries and particle distributions were investigated with a two-dimensional 

finite element scheme making use of commercial code that had been extended with special user-

subroutines [22]. This numerical approach allowed for the consideration of somewhat more 

general boundary conditions, specimen sizes and time or concentration-dependent material and 

material process parameters.  

 

 

3.1.3 Segregation Effect in Mass Diffusion at the Internal Crystal 

Interfaces  
 

The segregation effect can be explained using the terminology of grain boundary self 

and impurity diffusion processes. During self-diffusion in pure elements, the following 

equation is valid at the interface between the grain boundary and the adjacent crystal where the 

interface is considered [21]: 

 

gb CC =           (3.1) 

 

where bC  is the concentration of the diffusant in the boundary and gC  is the concentration of 

the diffusant in the grains. However, in the situation of hetero-diffusion in the Ag/MgO 

composite, equilibrium solute segregation of oxygen will occur. At the Ag/MgO interface the 

segregation factor s is defined by: 

 







−==

RT
E

C
Cs s

g

b exp          (3.2) 

 

Equation 3.2 describes the equilibrium adsorption and desorption of oxygen at the interface 

according to the Henry Law segregation isotherm.  Here, bC  is the concentration of diffusant at 

the interface, gC  is the concentration of diffusant in the Ag matrix, R is the ideal gas constant, 

Es is the segregation energy of the diffusant at the interface of the dispersed phase and the bulk 

and T is the absolute temperature. 
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In a situation where the solute concentration in the boundary or interface is low, Kaur et al. [21] 

have shown that the experimental segregation obeys Henry�s Law. However, in systems with a 

high level of segregation, i.e. where a high concentration of oxygen is found at the interface at 

relatively low temperatures, bC  and gC  can no longer be considered to depend linearly on s 

due to the saturation by solute atoms. In such situations, the equilibrium distribution of oxygen 

is rather better described by the McLean segregation isotherm: 
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        (3.3) 

 

 

3.1.4 Out-Diffusion (Diffusion-Limited Evaporation) 
 

Out-diffusion or diffusion-limited evaporation occurs when one or more components selectively 

evaporate from the material. It is most prominent when the diffusion rate of the evaporating 

species to the surface is much slower compared with other surface processes and the 

evaporation rate itself into vacuum. Out-diffusion is well-known in the preparation of alloys [23, 

24], polar liquid films [25], catalysis [26], molten glass systems [27, 28] and in semiconductor 

systems [29-33]. Recent experimental developments are mostly in the semiconductor industry. 

Few analytical solutions [34] are available. No literature has been located regarding the study of 

out-diffusion in metal/ceramic composites. It is important because out-diffusion represents 

perhaps the only way for a composite containing oxygen segregated at the interfaces to be, in 

effect, regenerated. By taking the composite to a high temperature in vacuum the oxygen can 

diffuse out. High temperature diffusion processes, especially out-diffusion ones, occur in 

electronic components leading to premature failure of such components unless careful 

consideration is made. This is because physical and mechanical properties are affected by the 

out-diffusion process. Therefore, a simulation means to investigate out-diffusion is important to 

develop. 

 

 

3.1.5 Monte Carlo Approach for In-Diffusion and Out-Diffusion 
 

Although there are quite a number of experimental and theoretical methods to address diffusion 

problems in composites, as the problem becomes more and more complex, the setting up of the 

phenomenological diffusion equations and obtaining analytical solutions becomes more and 
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more difficult. Numerical methods such as finite element and finite difference methods can be 

used to find a fair solution. However, due to meshing difficulties, finite element methods are 

restricted to quite simple particle distributions and boundary conditions. An alternative general 

approach to the problem is the Monte Carlo method. This method adopted here is based on a 

lattice model and hence termed the Lattice Monte Carlo (LMC) method. Recently, the LMC 

method has been used to address phenomenological diffusion problems by using virtual random 

walking particles [35, 36]. The LMC methods can be regarded as a simulation form of a finite-

difference method which can cope with multi-scale modelling in both space and time in a very 

convenient way. Accordingly, the LMC method had potential to represent the time-dependent 

oxygen in/out diffusion and segregation in Ag/MgO composite material and will be discussed in 

this chapter. The first use of the LMC method was to simulate concentration depth profiles in 

the presence of dislocation pipes parallel to the diffusion direction [34]. The method has been 

used since for such problems as diffusion in the presence of grain boundaries, diffusion-limited 

evaporation and diffusion in nanocrystalline material [34, 37-39]. These studies motivated us to 

study both in-diffusion and out-diffusion processes occurring in the Ag/MgO composite with 

the LMC method.  
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3.2 Methodology 
 

3.2.1 Oxygen in-diffusion in a single phase material 

 
3.2.1.1 The model  

 

 

 

 

 

 

 

 

 

 

                      

 

 
Figure 3.1 Schematic representation of the model for the diffusion of oxygen into a single-

phase material 

 

We use Figure 3.1 to represent a 2D model for diffusion in a single-phase material. Here, 

the outer surface boundary Π0, is set as the surface plane or the source of oxygen. We 

modelled the source in a sandwich configuration in order to avoid edge effects. This simply 

means that there is a mirror image of Figure 3.1 to the left which shares the same boundary Π0. 

The Π0
1 boundary is treated as a periodic boundary: this assumes the model to be periodic in the 

direction normal to diffusion direction.  Depending on the boundary condition at Π0
2, Figure 3.1 

can represent a semi-infinite material or a thin-film material. If a periodic boundary condition is 

given to Π0
2, then we can consider it as a thin-film material.  

 

Inside the thin-film bounded by Π0, the oxygen concentration C0 is described by: 
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where 0D is the diffusion coefficient of oxygen in the Ag matrix and 2∇ is the Laplacian 

operator. 

 

For the boundary conditions at boundary Π0, a constant concentration for the source is defined 

by: 

 

constC =Π 0|0           (3.5) 

 

for all diffusion times t ≥ t0, where t0 is the initial time. 

 

For the boundary conditions at boundary Π0
2: 

 

02
0|0 =

Π
C  at t = t0         (3.6) 

 

For the initial conditions 00 =C  everywhere. 

 

For the purposes of calculation Figure 3.1 is mapped onto a square planar lattice as described 

below. 

 

 

3.2.1.2 Method of computation  

 

The Monte Carlo simulation is conducted by mapping Figure 3.1 onto a 101×50 mesh matrix to 

simulate a thin-film material. The source was placed at the 51st plane and was modelled with a 

large number of particles (105) starting at random locations along the plane. The diffusion 

process itself was started by releasing particles all at one time (t = 0) from random locations 

chosen at the source. These particles were permitted to explore the lattice according to a 

hopping model. Each particle has a coordination of four in this problem. For a jump attempt, a 

particle was chosen randomly to jump in a random direction at a rate reflected in an inter-site 

transition rate Γ . This was repeated. These randomly chosen particles move on random walks 

and explore the structure for a given �diffusion anneal� time t (which is scaled directly to an 

attempt to jump). In this simulation, this time comprises some 105 - 1010 jump attempts. This 

problem is modelled in such a way that multiple occupancy of a site is permitted and thus there 

are no diffusion correlation effects. The diffusion coefficient (D0) of oxygen in the Ag matrix is 

represented by: 
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4/2
11

0 aD Γ=           (3.7) 

 

where 11Γ  is the inter-site transition rate for the Ag matrix and a  is the lattice spacing. The 

factor 4 comes from the fact that the simulation is in 2D. This factor would be 6 if the 

simulation were in 3D.  

 

We now describe the constant source condition in a detailed way. When a particle jumps from 

the source into the lattice the source particle number drops by one particle. A new particle was 

then immediately implanted at a random location in the source plane thus keeping the number of 

particles at the source concentration. On the other hand, when a particle returns to the source 

plane, this would mean that the source concentration would exceed the number designated. 

Then that particle is removed permanently from the system. Over a period of time, the number 

of particles in the system naturally increases because particles diffuse away from the source. 

Therefore, the diffusion time t  was rescaled each time with the total number of actual particles 

in the system at the time when an attempt to jump was made. The diffusion time is proportional 

to the number of attempts per particle.  

 

An �infinite� material can be represented by a sufficiently large lattice. This is modelled by 

mapping a 400×50 lattice onto Figure 3.1, by placing the source on the 201st plane. It is also 

assumed that the difference between modelling a thin-film and an infinite material is that in the 

latter case just one source is available unlike the former case where both surfaces are joined 

onto one source plane. Moreover, in the infinite material the Π0
2 boundary is assumed to be at 

zero concentration at all times during simulation. This is only possible if that boundary is kept at 

an infinite distance from the source.  

 

It is useful to discuss the meaning of �distance� in the present problem. Let us modify Equation 

3.7 to consider diffusion in some characteristic distance d, between the surface and the leading 

edge of an inclusion. In the simulation, the distance d is represented by 20 lattice spacing. We 

assume this value at say 0.005 mm. Then the basic mesh size of the lattice in the problem 

becomes 2.5×10-7 m of real distance (x*).  

 

Now let us consider �time� in the problem. We considered Equation 3.8:  

 

4/*)( 2
11

0 xD Γ=               (3.8) 
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and   
t

*11
11

Γ
=Γ                

 

The oxygen diffusion coefficient in the Ag matrix 0D  takes a value of 2.1 × 10-11 m2 s-1 at 773 

K [22]. In real time problems the jump frequency Γ11 in Equation 3.7 will of course take some 

value other than unity. For convenience of the numerical simulations, we scaled this value to 

unity (Γ11*) in the program and t is the diffusion annealing time in real time (in seconds). While 

x* and D0 are known, t can be calculated as 0.744 × 10-3 s. This is the basic unit of time in the 

problem. It means that if a particle is selected to jump 1000 times, then real time is advanced by 

0.744 s.  

 

 

3.2.2 Oxygen in-diffusion in a square inclusion composite 
 

3.2.2.1  The model 

 

As with the same conditions in Π0, Π0
1 and Π0

2 boundaries of Figure 3.1, the Ag matrix is 

represented as the Ω1 region in Figure 3.2. Each square inclusion of MgO (indicated by Ω3) is 

surrounded by a very thin interface region Ω2 where the oxygen can adsorb and desorb (i.e. 

segregate). The region Ω3 is considered impermeable to particles at the temperatures of interest. 

However, the segregation layer itself is capable of accommodating and allowing the movement 

of particles within it depending on the scenario to be modelled. The interface boundaries are Π1, 

which lies between regions Ω1 and Ω2, and Π2 in between Ω2 and Ω3. The square inclusions are 

arranged in a square planar arrangement. The model is assumed to be periodic in the direction 

normal to the diffusion direction.  
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Figure 3.2 Schematic representation of the model for the adsorption/ desorption of oxygen at 

internal interfaces after diffusion through the matrix from an external surface 

 

 

I. In region Ω1 the oxygen concentration C0
1 is given by: 

 

1
0

21,0
1
0 CD

t
C

∇=
∂

∂
         (3.9) 

 

where 1,0D  is the diffusion coefficient of oxygen in the Ag matrix and 2∇ is the Laplacian 

operator. 

 

II. In region Ω2, the oxygen concentration is assumed equivalent to the coverage. In a real 

situation, it is the 2D analogue of the 3D concentration C2
0. We assume our model to display the 

1D analogue of 2D concentration C2
0.  

 

)( 0
22,00

2

CDdiv
t

C ∇=
∂

∂         (3.10) 

 

In principle, 2,0D  can take a different value along and perpendicular to Π 1 (Π 2). It can take any 

(constant) value when oxygen moves along the interface. This has been put equal to zero in the 

current calculation thus enabling oxygen to adsorb and desorb at the interface but not to move 

along the interface itself. In the perpendicular direction the quantity is redundant because (by 

definition) we only have one numerical point across the region.  
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ІІІ. In region Ω3, since there is no oxygen concentration due to the impenetrable inclusions, we 

have that 03
0 =C .          

  

For the boundary conditions at the boundary Π0, the constant concentration for the source is 

defined by: 

 

constC =Π 0|0           (3.11) 

 

at all times t ≥ t0, where t0 is the initial time. 

 

For the inner boundaries we have the following conditions for the concentrations and fluxes. At 

the Π1 boundary: 

 

11 |0
2

|0
1

ΠΠ ≠ CC           (3.12) 

 

At steady-state or during longer diffusion times where the interfaces are closer to the surface 

(source) this will be 11 |0
2

|0
1

ΠΠ = CsC , where s is the segregation factor and is known before the 

calculation according to the Henry Law segregation isotherm [21]. In principle, s can be made 

dependent on )( 0
1

0
2 CC but this factor was modelled here as a constant. This condition can be 

used as a definition for the segregation factor. The McLean segregation isotherm [21] would be 

the more appropriate one to describe the segregation factor. However, in the present calculations 

we have restricted ourselves to the Henry Law conditions. 

 

Then the flux is determined by: 

 

1

1

0
1

1,0
|0

2

Γ
Π

∂
∂=

n
CDJ r   ,        and at steady state: 

 

 0210
2

120
10

2

=Γ−Γ=
∂

∂ CC
t

C           (3.13) 

 

where Γ12 , Γ21 are the local lattice site to lattice site transition rates which are related to the 

equilibrium segregation factor s simply as: 
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2112 / ΓΓ=s           (3.14) 

 

At Π 2 we have that: 

 

21 |0
2

|0
2

ΠΠ = CC              (3.15) 

 

and    02|0
2 =ΠJ          (3.16) 

 

For the initial conditions 00 =C  everywhere. 

 

 

3.2.2.2  Single Lattice (SL) Method 

 
For the purpose of calculation Figure 3.2 is mapped onto a square planar lattice of 400×50 

dimensions to model a semi-infinite material. We let eight inclusions of size 9×9 to be 

contained in the structure whilst maintaining the area fraction of approximately 3%. There is 

also an interface segregation layer of about 2% area fraction, the size of a mesh point width 

covering the inclusions. Similar to the simulation for oxygen diffusion in the Ag matrix, the 

source was located at the 201st plane and equipped with 105 particles randomly on the source 

plane. Once the particles were released they were permitted to explore the structure according to 

the hopping model. The jump rate depends on the location as reflected by an inter-site transition 

rate Γ. This means that there are different values for jump rates defined for the metal matrix, 

interface layer and inclusions. During jumps, multiple occupancy of a site is permitted and thus 

the diffusion process is considered as having no correlation effects. The diffusion time consisted 

of 105 � 1011 jump attempts. We consider three regions to describe the diffusion coefficient.  

 

The diffusion coefficient 1,0D of oxygen in the matrix Ω1 has the same meaning of Equation 3.9 

and is given by: 

 

4/2
11

1,0 aD Γ=           (3.17) 

 

We can associate an oxygen diffusion coefficient 12,0D  locally with the interface by: 

 

4/2
12

12,0 aD Γ=          (3.18) 
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Similarly the reverse diffusion coefficient 21,0D  is defined by: 

 

4/2
21

21,0 aD Γ=          (3.19) 

 

where Γ12 is the inter-site transition rate from the matrix region Ω1 to the interface region Ω2. 

This can be regarded as an adsorption process of oxygen by diffusion to the interface from the 

matrix. Γ21 is the inter-site transition rate from the interface region Ω2 to the matrix region Ω1. 

This can be regarded as a desorption process of oxygen by diffusion from the interface back into 

the matrix. As mentioned above, diffusion along the interface in this problem can be suppressed 

for convenience. Diffusion within the inclusion itself was not permitted. We modelled the 

highest transition rate as Γ1, and the rest were scaled accordingly. For example, we set Γ1 as 

unity and Γ12 also as unity and Γ21 at 0.001, whilst keeping the segregation factor equal to 1000. 

The basic mesh size a in Equations 3.17 and 3.18 was calculated in same way as with single 

phase material and was 2.5×10-7 m. Also the basic time unit in the problem was 0.744×10-3 m.  

 

Let us consider the problem of width of the segregation layer. In this preliminary simulation, the 

interface region was treated as rows of lattice sites within the basic lattice. It is clear from 

Equations 3.18 and 3.19 that the width of the segregation or interface layer would first appear to 

be simply the basic lattice spacing a = 2.5×10-7 m. This width is seen to be physically rather too 

large for an interface layer. A more reasonable value might be in the vicinity of 10-8 m or even 

less. We can achieve this because we have flexibility with the value of the width of this layer 

simply through a rescaling of Γ12 and Γ21 that defines the segregation factor s as in Equation 

3.14. Thus if we, say multiply both Γ12 and Γ21 by a factor of 6.25×102 then the segregation 

layer is seen to have a new apparent width of 10-8 m.  

 

 

3.2.2.3  Virtual Plane (VP) Strategy  

 

As an alternative way to address the problem of the width of the segregation layer, one may 

consider the interface sites as special virtual sites that do not appear formally in the Monte Carlo 

lattice itself but can be reached only via the lattice sites immediately around the inclusions. In 

that situation, Equation 29 and 30 then becomes irrelevant and the rates Γ12 and Γ21 then need to 

be specified to gain access to and from these special sites. In this way, the width of the 

segregation layer does not need to be specified. To simulate this phenomenon, we take two 

identical 2D lattices of size 400×50 described in the SL method above and place them exactly 
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on top of each other (see Figure 3.3). The VP lattice is placed just above the IP lattice so that all 

of the sites of the bottom plane and virtual plane coincide. Now the actual segregation layer 

shifts to the virtual plane and the regions. Although there are two identical lattices, the source 

was only designed for the IP (refer Figure 3.3). The only possible regions where particles could 

be located are in the Ag matrix region and the interface region. We consider regions Ω1 and Ω2 

belonging to the Ag matrix; Ω4 serves as the segregation layer and Ω3 as the inclusion in a 

50×50 unit size. In this simulation, a particle is allocated a coordination number of 5 

everywhere, but depending on the location certain restrictions are given. As an example, a 

particle in region Ω1 has one direction blocked and the related transition rate (Γ11) is scaled to 

unity. A particle in region Ω2 is free to move in all 5 directions, whereas in region Ω4 only one 

direction is possible. The jump transition rates associated with it are jumps from Ω2 to Ω1 (Γ21) 

and vice versa (Γ12), jumps along Ω2 (Γ22) and jumps into to the segregation layer (Γ23).  

 

A particle in the segregation layer has a coordination of two: a jump directly from region Ω2 to 

Ω4 (Γ23) and vice versa (Γ32). For the sake of the present simulation it is assumed that there is no 

movement of particles along the segregation layer. This means oxygen can adsorb or desorb but 

not travel around the interface and settle down at low concentration regions. The simulation was 

carried out by leaving Γ11, Γ12, Γ21, Γ22 and Γ23 as equal to unity and Γ32 equal to 0.1×10-2 by 

keeping the segregation factor to be 103 as follows. As already described, the oxygen source is 

regarded as a constant source. The particle which leaves the source explores the IP according to 

a random hopping model. Typically it takes about 108 - 1011 jump attempts to realize the 

specified diffusion anneal time. At each jump attempt a particle is selected randomly within the 

system. Therefore before allowing a particle to move it is checked that there is a particle in that 

site, if not, another real site is selected. Then the jump attempt counter is increased by one and 

provides a random direction (out of 5) for the particle to move. These five directions are 

classified according to transition rates. This means for a jump in + x, - x , + y and - y direction 

jump frequencies Γ11, Γ12, Γ21 and Γ22 are specified, whereas for + z, - z jumps the frequencies 

Γ23 and Γ32 are specified. The concentration in the source plane is only affected by +x and �x 

jumps. Therefore, once a particle is removed from the plane another particle is added to a 

random location along the plane to keep the concentration constant. Conversely, when a particle 

arrives at the source plane then that particle is regarded as a �ghost particle� and the total 

concentration is reduced by one.  The total number of real particles in the system is adjusted at 

each time. If the jump is beyond the source plane then the validity of that jump is checked by 

the probability of that jump being lesser or equal to the relevant jump frequency. Similarly + y 

and � y jumps are validated. For a +z jump to occur it is important that the particle should be 

located in the Ω2 plane and Ω4 plane for a -z jump. Now the particle identification arrays are 
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filled with unwanted �ghost particles� as well. There needs to be a method to periodically 

remove the unwanted locations (or �ghost particles�) from the system. This is achieved by 

rearranging the arrays at regular time intervals (every 10000 attempts). After this it was checked 

whether the jump attempt counter reached the maximum jump attempts allocated for the 

program. If it is not, this procedure was repeated until the diffusion time was reached. Once the 

diffusion part of the calculation was over, the concentration profiles were adjusted.  

 

We also simulated the scenario that allows mobility of particles along the segregation layer 

itself. This means the possibility of a jump in directions + x, - x, + y and - y in the Ω4 region. 

The relevant jump frequency (Γ33) was scaled to unity.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.3 Schematic representation of a lattice model to display the Virtual Lattice Plane 

 

 

3.2.3 Oxygen in-diffusion in a composite containing randomly placed 

multiple inclusions  
 

Randomly placed multiple inclusions can be modelled by either a SL or a lattice with a VP. Due 

to the ease of presentation we were interested in the VP presentation. Instead of a square 

inclusion in Figure 3.3, let us assume a point inclusion without an interface layer. Such a point 

inclusion contains the interface and inclusion collapsed into one point. The (indirect) 

implication in such a model is that the mobility around the inclusion is very fast compared with 
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other processes. We located such inclusions randomly in a 400×50 matrix. The conditions were: 

the size of an inclusion must always be one lattice point but they were generated in such a way 

that there are no nearest neighbour inclusions. From a macroscopic point of view this means that 

there will not be a cluster of inclusions. We took special care to leave no inclusions on the 

source plane. Also, we maintained a depletion region of two parallel lattice planes next to the 

source plane. Whilst achieving those conditions we embedded 500 inclusions in each 50×50 

repeating units (inclusion fraction of 20%). We mirrored the IP into the VP whilst leaving the 

sites behind the real inclusions to be part of the Ag matrix but this serves the purpose of entering 

points to the inclusions. The inclusions themselves serve as sites for segregation but no 

movement of particles within them can be considered as no inclusions are adjacent. Similar to 

the square inclusion simulation jump frequencies the following frequencies are considered: Γ11 

is the jump frequency from matrix site to another matrix site in the IP plane, Γ12 is the jump 

frequency from matrix site to an entry point to the inclusions and Γ21 is vice versa, Γ23 is the 

jump frequency from an entry site to inclusions into inclusions in the interface layer and Γ32 is 

vice versa. In the simulation the frequencies Γ11, Γ12, Γ21 and Γ23 are scaled to unity and Γ32 is 

scaled to 0.001 (a segregation factor of 103). The source plane is placed at the 201st plane in the 

400×50 lattice and is regarded as a constant source. Depending on the size of lattice and 

periodic boundary conditions we simulated both semi-infinite and thin-film materials.  

 

 

3.2.4 Oxygen out-diffusion in a single phase material 
 

To model the out-diffusion process of a semi-infinite medium, we considered a much smaller 

lattice of size 45×11 and filled the entire lattice with particles randomly leaving a maximum 

number of particles per site as 1000. This number is regarded as the �occupancy per site� and 

affects the statistical nature of the averaged concentration profiles. In other words, a more 

uniform concentration profile can be obtained via high occupancy levels. We modelled a 

(surface) sink at the 23rd plane capable of �attracting� particles towards it and assumed that the 

sink was always at a zero concentration. In order to obtain 1000 particles per site, except on the 

sink plane, a total of 484,000 particles must be accommodated in the matrix. Therefore, a much 

smaller lattice was selected for out-diffusion calculations. The initial concentration inside the 

material was made according to the following.  

 

The matrix is filled in such a way that a lattice site is selected randomly and then it is checked if 

occupancy has reached the maximum value (e.g. 1000). If not, a particle will be added to the 

same location and the coordinates are recorded in corresponding arrays with respect to the 
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unique particle identification number. If the occupancy is exceeded at that site, a new site will 

be chosen randomly and this process is repeated until the total numbers of available sites are 

filled. It is assumed that particles do not �see� each other, i.e. multiple occupancy of a given site 

is allowed. As before, this conveniently avoids diffusion correlation effects. Once the matrix is 

completely filled with oxygen, the out-diffusion process is permitted to commence. After the 

diffusion process ceases, either satisfying all the jump attempts (i.e. the specified time the 

diffusion process is running for) or the system is completely empty of oxygen. This 

phenomenon was modelled as follows. An arbitrary lattice site was chosen randomly to check if 

a particle exists at that location. If it is an empty site then the total system is scanned to see if 

any real particles remain to carry on the diffusion process. If there are particles found in the rest 

of the Ag matrix, then control is transferred to the selected location of another randomly chosen 

particle. If the matrix is completely empty before the total number of jump attempts is achieved, 

control will be taken to the end of the program without calculating concentration profiles. In that 

situation the real time taken to empty the lattice will be displayed in units. If the previously 

selected particle exists then it is permitted to jump in a random jump direction chosen from 4 

(+x, -x, +y and -y). This jump is also validated according to the inter-site transition rate in the 

matrix.  The inter-site transition rate Γ11 is scaled to unity. The system is modelled in a way that 

periodic boundary conditions are specified in the y direction for a semi-infinite material. The 

diffusion process is continued until either the composite become completely emptied of particles 

or the specified number of jump attempts (103�1011) is satisfied. Once the specified number of 

jump attempts is satisfied the concentration profiles for the out-diffusion process were 

calculated. 

 
 

3.2.5 Oxygen out-diffusion in a composite with square inclusions 
 

We modelled the composite according to the VP method with the same lattice size of 45×11. 

Square impenetrable inclusions of size 3×3 were incorporated at the centre of a square unit cell 

of size 11×11 each. Moreover, an interface layer was also designed covering inclusions of a 

width of one lattice point.  Therefore inclusions take about 7% and the segregation layer takes 

about 13% of the area fraction from the entire lattice. We let the maximum occupancy for a 

matrix site to be 10 and the segregation coefficient to be 100. With respect to initial values, 

inter-site transition jump rates were scaled. To fill the whole model except on the sink plane and 

on inclusions, 68,840 particles were required.  Initial filling of the lattice was carried out in a 

way similar to that described in the previous section �without inclusions�. However, a problem 

arises when filling in the interface layer as how a particle should be filled in the interface layer 

at the VP and the corresponding sites in the matrix immediately below the segregation layer. 
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This was resolved as follows. In that situation, a random variable was generated which can take 

only one of two values: 1 or 2. If the value of the variable equals one then it corresponds to the 

matrix and if the value is 2 then the corresponding location would be in the VP. It is important 

that the maximum number of particles that can be accommodated at a site in the segregation 

layer is 1000. It is a product of maximum occupancy of a site in the matrix just below the 

interface layer and the segregation factor.  

 

Similar to the in-diffusion process (Section 3.2.2.3), the out-diffusion process also has the same 

meanings and values for inter-site jump frequencies except Γ32. Here, Γ32 was set at 0.01 to be 

compatible with the segregation factor. We simulated two situations, one by restricting mobility 

at the interface (Γ33 = 0) and the other by permitting rapid mobility at the interface (Γ33 = 1.0).  

 

 

3.2.6 Oxygen out-diffusion in a composite containing randomly placed 

multiple inclusions  
 

Randomly placed multiple inclusions can be modelled in a similar way as in section 2.2.3 (in-

diffusion process). We modelled inclusions in the VP for ease of calculation: however it 

can also be achieved in a single lattice simulation as well. We modelled a 51×25 lattice 

with a fraction of 3.03 % inclusions to model a semi-infinite material. Similar conditions 

described as in the in-diffusion process were employed whilst generating inclusions. A 

segregation factor of 100 was employed. The 26th plane was considered as the surface. 104 

observations were considered in order to average the different configurations of inclusions in 

the structure to achieve an average concentration profile.  
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3.3 Results and Discussion 

 
3.3.1 Oxygen in-Diffusion Process 
 

3.3.1.1 Diffusion in a single phase material 

 

Here, we describe the results for the oxidation process in the Ag metal matrix. Two material 

geometries were considered depending on the length of the specimen: namely semi-infinite and 

thin-film materials. As with the oxygen diffusion process, it would be interesting to ascertain 

some knowledge about the oxygen diffusion coefficients associated with both materials. We 

used the concentration profile method (Refer Chapter 2) in calculating the effective diffusivity 

in both systems. This method is equivalent to solving Fick�s second law: 
 

2

2

x
CD

t
C

∂
∂=

∂
∂                (3.20)                

 

where D is the diffusion coefficient, C is the concentration and x is the diffusion distance. The 

analytical solution for Equation 3.20 will not be the same for both materials. At first, let us 

consider the solution for semi-infinite material. The concentration profile C (x, t) for semi-

infinite geometry is given by solving Equation 3.20 [41]: 
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where erf, the error function, is given by: 

 

erf ∫ −=
z

t dtez
0

22
π

         (3.22) 

 

where C0 is the initial distribution given by: C = C0, 0 < x < h, C = 0 , x > h and C1 is the 

constant concentration maintained at the surface. According to the boundary condition in the 

previously described simulation C0 = 0 because initially the Ag matrix is completely empty of 

oxygen before the simulation is started. Therefore, Equation 3.21 reduces to: 
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The concentration profiles should take the form of a complementary error function. According 

to the concentration profile method, analytical and computational data must be plotted in the 

same concentration vs. distance graph and compared. For graphing, we considered a 400×50 

lattice with a constant source condition on plane 201. In Equation 3.23, x and t are the variables 

and D is the unknown. t, which is the diffusion time can be calculated in units. If Equation 3.23 

is plotted for different time scales according to Table 3.1 below, it can be observed that there is 

a relationship between the comparable Monte Carlo data. Most importantly, these graphs 

coincide when the value of D equals 0.25 (see Equation 2.11 in Chapter 2), which comes from 

the Einstein equation method.  

 

Figure 3.4 represents typical concentration profiles at a comparison of computed results and 

LMC results for 105 � 1010 jump attempts in a semi-infinite material. Table 3.1 is related to 

Figure 3.4.  

 

 

Diffusion Time 

Jump attempts  Real Time (Units) Real Time (s) 

105 5.1395 0.0038 

106 25.6326 0.0191 

107 121.7493 0.0906 

108 615.1260 0.4576 

109 2866.2757 2.1325 

1010 9310.7425 6.9272 

 

Table 3.1 Typical mappings between diffusion times used in the LMC method for semi-infinite 

material. 
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Diffusion Time 

Jump attempts  Real Time (Units) Real Time (s) 

105 5.1395 0.0038 

106 25.6326 0.0191 

107 121.7493 0.0906 

108 615.4172 0.4579 

109 3057.5922 2.2748 

1010 22244.0401 16.5496 

 

Table 3.2 Typical mappings between diffusion times used in the LMC method for a thin-film 

material. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4  Typical concentration profiles averaged in the y-direction (y = 1-50, x-direction is 

shown as lattice plane number), calculated by the LMC method for diffusion times ranging from 

105 jump attempts to 1010 jump attempts. Markers refer to the LMC solution and dashed lines 

refer to the complementary error function solution for a semi-infinite material according to 

Equation 3.23. Diffusion times are related with Table 3.1. 
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Figure 3.5 Typical concentration profiles averaged in the y-direction (y = 1-50, x-direction is 

shown as lattice plane number), calculated by the LMC method for diffusion times ranging from 

105 jump attempts to 1010 jump attempts. Markers refer for LMC solution and the dashed line 

refer for computed results according to Equation 3.28. Diffusion times are related with Table 

3.2. 

 

 

Figure 3.5 shows a typical concentration profile according to the LMC method for different time 

scales shown in Table 3.2 for a thin-film material. For ease of presentation, Figure 3.5 is 

considered for representation of only a half of the profile of the thin-film material. The other 

half takes the form of a mirror image of the profiles in Figure 3.5 showing both source planes in 

the lattice. This thin-film material was initially mapped to a lattice of size 101×50, placing the 

source at the 51st plane. Both profiles from left and right from the source are nearly identical and 

one side of the profile is considered for Figure 3.5. Comparing Table 3.1 and Table 3.2, a 

similarity is observed between the two tables at early diffusion annealing times (e.g. consider 

105 � 108 jump attempts). This means that during early times, the concentration profiles in a thin 

film material are similar to those for the semi-infinite material. We compared LMC data with 

the solution for 1D diffusion in a medium bounded by two parallel planes under non steady-

state conditions [40]. The standard solution is in a trigonometric series form for the boundary 

conditions given below:  
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C = C1,         x = 0,                  t ≥ 0       (3.24) 

C = C2,         x = l,                   t ≥ 0       (3.25) 

C = f(x),        0 < x  < l,           t = 0       (3.26) 
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  (3.27) 

 

 

In our situation, C1 and C2 are the same and were scaled to unity. f(x) is zero as there is no initial 

concentration of oxygen involving at the beginning of the diffusion program. Therefore, 

Equation 3.27 reduces to Equation 3.28:  
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Here, the variables are D, t, n and x. We selected n at 100 because values above 100 give almost 

the same profiles as with n = 100. The quantity t represents the diffusion time in units and l is 

the total length of the sample. Similarly with Equation 3.23, D was replaced with 0.25. One half 

of the calculated data were selected for presentation in Figure 3.5. The calculated profiles are 

seen to be in excellent agreement with the LMC data. The results show an excellent agreement 

between the concentration profile method and the Einstein equation method for calculating the 

effective diffusivity.  

 

 

3.3.1.2 Diffusion in two phase material with square shape inclusions 

 

In this section, we discuss the oxygen in-diffusion process occurring in the Ag/MgO composite 

medium. Before moving to the real situation, let us consider a situation with impenetrable 

inclusions without segregation.  
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In Figure 3.6 (a) we show an example of an averaged concentration profile for the case where 

there is no segregation and the inclusions simply are impenetrable to oxygen. Figure 3.6 (b) 

gives the corresponding 2D concentration profile. The behaviour is as expected with a drop in 

the profile where the impenetrable inclusion impedes the flux of oxygen atoms. Figure 3.7 (a) is 

an example of an averaged concentration profile where a segregation factor s of 103 has been 

assumed and in Figure 3.7 (b) the corresponding 2D concentration profile is given. Both graphs 

were considered by restricting movement of particles along the interface in the SL method. In 

Figure 3.7 (b), it can be seen that the higher concentration near the source in the segregation 

layer and the concentration, gradually decrease with distance away from the source. Similarly, 

Figure 3.7 (c) shows an averaged profile for the same segregation factor and the corresponding 

2D concentration profile in Figure 3.7 (d) for the mobility permitted situation along the interface. 

In Figure 3.7 (d) it is also observed that the higher concentration at the segregation layer near 

the source and gradual decrease of it with distance away from the surface.  

 

The maxima in the concentration in the four figures correspond to oxygen that has segregated to 

the interface region. It is noted in Figure 3.7 (b) that the corners of the interface region have a 

much higher concentration than elsewhere on the interface. This would appear to result from the 

fact that in the lattice model the corner sites of the interface region have two neighbouring sites 

that can �provide� oxygen to them whereas other sites have only one such provider site. 

However, when mobility is permitted at the interface a corner of an interface site is expected 

with the highest concentration compared to the other sites in the interface. But Figure 3.7 (d) 

shows that the higher concentration is still observable. However, due to the rapid movement of 

particles along the interface, such very high concentrations are not observable. In all four figures 

we have scaled the inter-site jump rate in the interface layer to be exactly the same as in the Ag 

matrix. Table 3.3 and Table 3.4 give corresponding diffusion time of simulations carried out at 

105 � 1011 jump attempts. From the two tables it can be seen that there is little difference 

between real diffusion times taken to satisfy the required number of jump attempts.  

 

It is likely that the maxima seen at the corners is an artefact of the lattice model being used here 

to model segregation and that a superior way to model segregation is to invoke the local virtual 

interface sites as in the VP method. In the implementation of this method we effectively added 

one more coordination direction to all sites to keep the time steps equally spaced. Therefore, 

Equation 3.27 should be used now with a factor of 5 not 4.  
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Figure 3.6 (a) A typical concentration profile calculated by the LMC method and averaged in 

the y-direction (y = 1-50, x-direction is shown as lattice plane number). No segregation effect (s 

= 1.0). Total number of jump attempts: 109, real time: 0.4166 s, diffusivity in the matrix: 

2.1×10-11 m2s-1, inclusion fraction: 0.0324. (b) The 2D concentration profile for the same 

conditions.  

0

0.2

0.4

0.6

0.8

1.0

150 160 170 180 190 200

Analytical solution for Ag at 109 jump attempts
Monte Carlo Solution

C
 / 

C
(2

01
)

x
0

0.2

0.4

0.6

0.8

1.0

150 160 170 180 190 200

Analytical solution for Ag at 109 jump attempts
Monte Carlo Solution

C
 / 

C
(2

01
)

0

0.2

0.4

0.6

0.8

1.0

150 160 170 180 190 200

Analytical solution for Ag at 109 jump attempts
Monte Carlo Solution

C
 / 

C
(2

01
)

xx

y
x

C
 /

C
(2

01
)

150
170

19010
20

30
40

50

0

0.2

0.4

0.6

0.8

1.0

y
x

y
x

C
 /

C
(2

01
)

150
170

19010
20

30
40

50

0

0.2

0.4

0.6

0.8

1.0



Chapter 3 - Modelling of Oxygen Diffusion and Segregation at Interfaces in Ag/MgO 
Composites   

68 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    (a) 

 

 

 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       (b) 

 

C
 / 

C
(2

01
)

0

2

4

6

8

10

150 160 170 180 190 200

x

C
 / 

C
(2

01
)

0

2

4

6

8

10

150 160 170 180 190 200

C
 / 

C
(2

01
)

0

2

4

6

8

10

150 160 170 180 190 200

xx

C / C (201)

y
x

150
160

170
180

190
200

10

20

30
40

50

0

20

40

60

80

100

C / C (201)

y
x

y
x

150
160

170
180

190
200

10

20

30
40

50

0

20

40

60

80

100



Chapter 3 - Modelling of Oxygen Diffusion and Segregation at Interfaces in Ag/MgO 
Composites   

69 

 

 

 

 

 

    

 

 

 

 

 

                    (c) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(d) 

Figure 3.7 (a) A typical concentration profile calculated by the LMC method and averaged in y- 

direction (y = 1-50, x-direction is shown as lattice plane number) according to the SL strategy. 

Movement along the interface is restricted. Segregation factor s = 103, total number of jump 

attempts: 109, oxygen diffusivity in the matrix: 2.1×10-11 m2s-1, inclusion fraction: 0.0324. (b) 

The 2D concentration profile for (a). (c) The averaged concentration profile for the same 

conditions when the mobility along the interface layer is permitted. Inter-site transition jump 

rate is kept equal to unity. (d) The 2D concentration profile for (c). 
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             (d) 

Figure 3.8 (a) A typical concentration profile calculated by the LMC method and averaged in y- 

direction (y = 1-50, x-direction is shown as lattice plane number) according to the VP strategy. 

Movement along the interface is restricted. Segregation factor s = 103, total number of jump 

attempts: 109, oxygen diffusivity in the matrix: 2.1×10-11 m2s-1, inclusion fraction: 0.0324. (b) 

The 2D concentration profile for (b). (c) The averaged concentration profile for the same 
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conditions when the mobility along the interface layer is permitted. Inter-site transition jump 

rate is kept equal to unity. (d) The 2D concentration profile for (c). 

 

 

Figure 3.8 (a) and (b) represents concentration profiles for the restricted particle mobility at the 

interface and (c) and (d) represents for mobility permitted at the interface. All four figures of 

Figure 3.8 are modelled according to the VP strategy. As compared with the profiles described 

in Figure 3.7, similarities are observed in Figure 3.8. However, the total number of particles 

located in segregation layer of VP strategy seems lower compared to the SL strategy. Moreover, 

the corners of the segregation layer are observed with a much lower concentration thus 

removing the artefacts mentioned above. The reason for this phenomenon is as follows. In the 

SL strategy, the corner sites in the interface layer are prone to take more particles compared to 

the VP strategy where the corner sites in the interface layer can only gain particles from one site 

in the matrix. With this scenario, it is possible to explain the drop of concentration in the 

segregation layer in Figure 3.7 (d) and Figure 3.8 (d). In Figure 3.7 (d) it is observed that the 

concentration drop between the edge near the source and the farthest edge in the interface layer 

is having a considerably small drop compared to Figure 3.8 (d). This is due to the rapid 

movement of an extensive amount of particles located in the interface layer in the SL strategy.  

 

 

Diffusion Time 

Jump attempts  Real Time (Units) Real Time (s) 

105 5.1358 0.0038 

106 25.5518 0.0190 

107 120.7536 0.0898 

108 573.9542 0.4270 

109 2349.5648 1.7481 

1010 5666.5899 4.2159 

1011 13275.8234 9.8772 

 

Table 3.3 Typical mappings between diffusion times used in the square inclusion semi-infinite 

composite mapped with a 400×50 mesh by the SL strategy. Particle mobility along the interface 

layer is restricted. 
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Diffusion Time 

Jump attempts  Real Time (Units) Real Time (s) 

105 5.1328 0.0038 

106 25.5518 0.0190 

107 120.6675 0.0898 

108 574.6724 0.4275 

109 2383.0933 1.7730 

1010 5999.6779 4.4638 

1011 14486.0374 10.7776 

 

Table 3.4 Typical mappings between diffusion times used in the square inclusion semi-infinite 

composite mapped with a 400×50 mesh by SL strategy. Mobility is permitted along the 

interface layer. 

 

 

Diffusion Time 

Jump attempts  Real Time (Units) Real Time (s) 

105 5.4729 0.0041 

106 27.0221 0.0201 

107 121.8819 0.0907 

108 524.5297 0.3902 

109 1860.0709 1.3839 

1010 5163.5902 3.8417 

1011 13736.2942 10.2198 

 

Table 3.5 Typical mappings between diffusion times used in the square inclusion semi-infinite 

composite mapped with a 400×50 mesh by the VP strategy. Mobility is restricted along the 

interface layer. 
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Diffusion Time 

Jump attempts  Real Time (Units) Real Time (s) 

105 5.4585 0.0041 

106 27.0526 0.0201 

107 122.1400 0.0909 

108 524.6795 0.3904 

109 1904.9428 1.4173 

1010 5491.7005 4.0858 

1011 14454.1583 10.7538 

 

Table 3.6 Typical mappings between diffusion times used in the square inclusion semi-infinite 

composite mapped with a 400×50 mesh by VP Method. Mobility is permitted along the 

interface layer. 

 

 

 

 

 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9 The 2D Oxygen concentration distribution profile for a system of randomly arranged 

multiple inclusion distribution, real time 14211.7952 time units equivalent to 10.5736 s, 

segregation factor s = 103, oxygen diffusivity in the matrix: 2.1×10-11 m2s-1 . 
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We simulated the random inclusions model under the same conditions described in the VP 

strategy. Figure 3.9 represents the 2D oxygen concentration profile taken at 1011 jump attempts. 

It is possible to observe the gradual decrease of concentration in the interface layer with time. 

 

 

3.3.2 Oxygen Out-Diffusion Process 
 

Here, let us consider the out-diffusion process in a single phase material. The concentration 

profile C  for a semi-infinite geometry for an out-diffusion process is given by Equation 3.29 as 

follows [41]: 

 

 
[ ]

[ ] 







++−=
−

− Dth
Dt
xerfcDthhx

Dt
xerfc

CC
CtxC

e

)
2

()exp()
2

(),( 2

0

0    (3.29) 

 
 
Putting h → ∞, we have that: 
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where 0C is the initial concentration in the semi-infinite medium. eC  is the equilibrium oxygen 

concentration in the atmosphere and we put this value equal to zero assuming no oxygen 

concentration at the sink plane. D is the diffusion coefficient of the semi-infinite medium and t 

is the real time (in units). erfc is the  complementary error function where )(1)( zerfzerfc −= . 

We let 0.10 =C and compared Equation 3.31 with the LMC solutions at different time scales. 

Figure 3.10 was obtained by such a comparison and related timing is displayed in Table 3.7. 

Results show an excellent agreement of Monte Carlo solution with the analytical solution.  
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Figure 3.10  Time-dependent concentration profiles resembling the out-diffusion process in a 

semi-infinite Ag metal matrix. Profiles are averaged in the y-direction (y = 1-11, x-direction is 

shown as lattice plane number), calculated by the LMC method for diffusion times ranging from 

105 jump attempts to 107 jump attempts. Markers refer to Monte Carlo simulation results and 

solid lines refer to the analytical solution according to Equation 3.31. Occupancy per site is 103. 

Size of the mesh 45×11. Total particles in the system 484,000. Diffusion times are related with 

Table 3.7.  

    

    

 

Diffusion Time 

Jump attempts  Real Time (Units) Real Time (s) 

105 0.2068 0.0001 

106 2.0876 0.0015 

2×106 4.2094 0.0031 

4×106 8.5323 0.0063 

6×106 12.9414 0.0096 

8×106 17.4256 0.0130 

107 21.9786 0.0163 

 

Table 3.7 Typical mappings between diffusion times for the out-diffusion process by the LMC 

method. Single phase semi-infinite material was mapped with a 45×11 mesh by the VP strategy.  
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Figure 3.11 displays concentrations profiles in a material with square impenetrable inclusions in 

a similar diffusion process at three different times (jump attempts 2×106, 4×106 and 107). The 

profiles are averaged over 105 observations. In an out-diffusion process two major phenomena 

can be observed. One is the dropping of the interface concentration and the other is the 

commencement of the out-diffusion process itself from the surface of the composite. These two 

processes are clearly shown in Figure 3.11. Figure 3.11 (a) and (b) shows the gradual dropping 

of the concentration in the matrix that is related to the out-diffusion process from the matrix. 

Figure 3.11 (c) and (d) shows the dropping of the concentration at the interface with time. Both 

profiles from Figure 3.11 (a) and (b) seem quite similar. Generally a higher concentration is 

observed near inclusions in both figures. This is due to the desorbing of particles from the 

interface layer to the metal matrix. It is interesting to note that the drop of concentration in the 

interface layer of the first inclusion is clearly comparable to the next inclusion. We can observe 

this situation in both Figure 3.11 (c) and (d). It is important to obtain a clear idea about the 

diffusion process occurring in the vicinity of the interface layer. We assumed that s is consistent 

with the jump frequencies Γ23 and Γ32 in the present simulation. Yet, in reality it is not the 

situation, because the segregation factor (out-diffusion process) depends on jump frequencies, 

which in turn depend on temperature. This means that changes in jump frequencies involved at 

the interface layer will affect the segregation factor in high temperature out-diffusion processes. 

 

Now let us explore the details of processes happening at the interface and its impact on the 

results. Adsorption associated with the jump frequency Γ23, desorption associated with the jump 

frequency Γ32 are the common processes that can occur in Figure 3.11 (c) and (d). Let us 

consider Figure 3.11 (c). It is noted that the concentration of the interface layer of the 2nd 

inclusion is only a little higher compared to the right edge of the 1st inclusion�s interface layer. 

Also the left edge of the 1st inclusion�s interface layer is observed with decreasing concentration 

with time. The reason for the dropping of the concentration is due to the out-diffusion process at 

the surface. This leaves fewer particles available for adsorption into the interface layer and 

hence gradually there is a decrease in the total concentration of particles in the interface with 

time. In Figure 3.11 (d), we can observe an even concentration distribution at the interface layer 

of the 1st inclusion and a considerable drop of concentration in the two inclusions. As mobility 

of particles along the interface layer is being permitted with the very high jump rate Γ33 scaled 

to a value of unity, it is assumed that the particles travel at a rapid rate along the interface, 

compared to the desorption process where Γ23 = 0.01. Due to this effect, nearly the same 

concentration is observed at both edges of the interface layer at the first inclusion. The 

concentration of the second interface can also be explained by the same reasoning. However, it 

is also observed that the concentration in the interface gradually decreases with time due to 
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fewer particles being found in accordance with the out-diffusion process. It is noted that 

inclusions placed at a considerable distance away from the surface (e.g. 2nd inclusion) in Figure 

3.11 (c) and (d) show a higher concentration compared to the other inclusions located closer to 

the surface. The reason behind the above observation would be not having a considerable 

concentration gradient in the matrix region in-between the above mentioned inclusions types. 

This could be more likely due to the availability of more oxygen particles in the matrix from 

closer inclusions due to desorption process. These particles tend to compensate for the lost 

particles in the matrix due to surface evaporation. However, once the desorption process at 

closer inclusions is not capable for compensating for the loss of particles from the matrix, then 

diffusion of particles occurs from high concentration regions towards the surface.  

 
The analytical equation describing the effective diffusivity in the presence of a random 

distribution of multiple inclusions (traps) is given as [42]: 

 









+−

=
sgg

DEff 1
1

4
1          (3.32) 

 

where g is the fraction of inclusions and s  is the segregation factor. The factor 4 comes from 

the fact that the experiment is modelled as a 2D lattice. We considered the 2D lattice having an 

inclusion fraction of 3.03 % at segregation coefficient of 100. Hence the effective diffusivity of 

the system results in 0.25 according to Equation 3.32. Concentration profiles are averaged over 

104 observations in such a way to get even profiles for ease of comparison. The out-diffusion 

simulations are explained in Figure 3.12 as below. 

 

In Figure 3.12 (a), a contour concentration plot for an averaged distribution of 104 different 

configurations of randomly arranged multiple inclusions are shown at a segregation factor of 

100. Figure 3.12 (b) gives the total concentration profile averaged in the x-direction. The 

corresponding 2D concentration profile is shown in Figure 3.12 (c). Here, we considered the 

LMC results and the analytical solution (Equation 3.32) where it is observed that the LMC 

results show excellent agreement with the analytical solution. It inevitably means that if the 

randomly arranged point inclusion model was averaged over a large number of configurations 

then the whole model acts as a pseudo single-phase material.  
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Figure 3.11 (a) Average time-dependent oxygen concentration profile of a diffusion-limited 

evaporation process in a semi-infinite Ag/MgO composite medium observed in the Ag matrix 

according to the VP strategy. Movement along the interface is restricted. Segregation factor s = 

103, total number of jump attempts: 2×106, real time: 0.2217 s; 6×106, real time: 0.6889 s; 107, 

real time:  1.1896 s. Oxygen diffusivity in the matrix: 2.1×10-11 m2s-1, inclusion fraction: 0.072. 
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(b) Averaged oxygen concentration profile in the metal matrix taken whilst permitting particle 

mobility at the same conditions (c) Averaged oxygen concentration profile in inclusions at the 

virtual plane under same conditions. Movement along the interface is restricted. (d) Averaged 

oxygen concentration profile taken in inclusions at the virtual plane under same conditions. 

Movement along the interface is permitted. 
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Figure 3.12 (a) A typical contour map of the averaged concentration distribution of diffusion-

limited evaporation process with random MgO inclusions in Ag matrix. Segregation factor s = 

102, total number of jump attempts: 108, real time:  15.69 s, oxygen diffusivity in the matrix: 

2.1×10-11 m2s-1, inclusion fraction: 0.0303. (b) The total concentration profile averaged in the x-

direction (y = 1-25, x-direction is shown as lattice plane number). (c) 2D profile of (a). 
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Chapter 4 
 

4. Concluding Remarks 
 

4.1 Summary 
 

Metal/ceramic composites are widely used in thin solid films, anti-corrosion coatings, electronic 

packaging, gas sensors, and combustion engines. The interface between the metal and the oxide, 

the orientation of oxide inclusions, the geometry as a whole with the individual properties of 

metal material and the oxide materials determine the overall physical and mechanical properties 

of the composite. Predicting such properties plays a central role in designing new materials and 

enhancing existing materials. Not only predicting such properties as thermal resistance 

properties but also studying the ability to withstand oxidation and de-oxidation reactions at 

elevated temperatures help to obtain an overall understanding of the behaviour of new material 

for future applications. Our study was based on the LMC method which in turn is based on the 

lattice model with hopping kinetics. The LMC method is a powerful method which can be used 

to treat both mass and thermal diffusion problems at the phenomenological level. The aims of 

the study of the metal/ceramic composites were two-fold. One objective was to calculate the 

effective thermal conductivity of composites with different shapes, size and orientations. The 

other objective was to study oxygen in-diffusion, out-diffusion of metal/ceramic oxide 

composites and the segregation process of oxygen at the metal/ceramic interface. Historically, 

Monte Carlo methods of diffusion problems required a great deal of computer time and this has 

impeded their application. But this is now no longer a major consideration since the simulations 

described here were possible on a suite of high speed PCs. Comparison of the results obtained 

by theoretical methods and the LMC method provided an opportunity to validate the findings. 

 

 

4.2 Calculation of the Effective Thermal Conductivity in 

Composite Materials 
 

We considered the calculation of the effective thermal conductivity from a general point of view 

to determine the thermal conductivity properties of any composite material. In general, the 
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material can be a metal/metal, metal/ceramic and ceramic/metal composite material etc. The 

orientation and the geometry of inclusions were considered for analysis of the thermal 

conductivity properties. The thermal conductivity of the whole material was expressed in terms 

of an effective property, in this case the effective thermal conductivity. Effective properties are 

usually a result of an (unknown) average of the individual properties of the phases associated 

with the composite material. This also means that effective properties are affected by the 

individual properties of the constituent phases. Theoretical expressions to calculate effective 

thermal conductivity/diffusivity were considered starting from the Hart equation to the modified 

Maxwell-Garnett equation by Belova and Murch. Special attention was drawn towards the LMC 

method by addressing several possible strategies namely the Einstein equation method, Fick�s 

first and second law methods in calculating the effective thermal conductivity/diffusivity for 

composite materials. The effective thermal conductivity was calculated according to the LMC 

method for several models of a composite. In each model, the inclusions were arranged in a 

periodic square planar or cubic configuration of the matrix material. The inclusions considered 

were square, circular, elliptical, cubic and spherical. The effective conductivity values for 2D 

and 3D simulations were compared separately. In some of the published papers resulting from 

the thesis some of the LMC results obtained were compared with results obtained by overseas 

collaborators using the finite element method, see the Appendix. However, in the thesis itself 

LMC results are compared only with the modified Maxwell-Garnett equations.  

 

Further calculations could be made by including ellipsoid and randomly distributed inclusions. 

In elliptical inclusions, several orientations in the same periodic arrangement would be an 

interesting consideration. Similarly, this can be further extended to ellipsoid inclusions as well. 

The next step would be to consider two different inclusions in the same periodic cell such as 

circular/square, square/elliptical or elliptical/circular arrangements. This can be further extended 

to several different inclusions as well. The orientation of inclusions has a greater impact on 

effective thermal conductivity/diffusivity properties. Therefore, calculating effective properties 

with respect to orientation by changing the angle of tilt of some inclusions with respect to other 

inclusions would also be an interesting topic to consider. Not only the distributions discussed 

above but also a composite with randomly distributed point inclusions could relate to effectively 

dispersed particulate nano-composites. By analysing such situations it could be possible to 

predict how nano-composites might operate within certain temperature ranges. However, the 

square, circular, spherical, cubic, ellipse, ellipsoid and point inclusions provide reference points 

for real inclusions. Thus, they can never truly represent a real composite material. In general, it 

is very important to be able to accurately predict the properties of real materials. To simulate 

real material, one has to consider the shape and distribution of inclusions. This can be done by 

obtaining a three dimensional CT scan of an actual composite material. CT scanning would 
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provide a scan of the inclusions and their shape/distribution in an actual material and by 

digitizing the data points would help to model the real material. Incorporating such micro or 

nano structures into the LMC method would be a significant step forward in predicting the 

effective thermal and mass transport properties of real composite materials. 

 

 

4.3 Modelling of Oxygen Diffusion and Segregation at 

Interfaces in Ag/MgO Composites 
 

Internal interfaces play an important role in controlling the mechanical, thermal and electrical 

properties of many advanced composite materials. Therefore, understanding the interface 

reactions would help to understand and predict the behaviour of the materials at different 

atmospheric conditions. Oxidation and de-oxidation are such atmospheric conditions where the 

model Ag/MgO composite can be subjected. These processes were identified as a 

phenomenological diffusion problem, where diffusion of oxygen in the composite material is of 

primary consideration. Not only the oxygen in-diffusion and out-diffusion process, but also 

segregation of oxygen in the interface was the primary objects of our study. The method used 

was the LMC method with two types of MgO inclusions, square and randomly distributed 

multiple inclusions with periodic boundary conditions as discussed in Chapter 3. Initial 

investigations were made for oxidation and de-oxidation processes of a pure Ag metal matrix. 

Then segregation effects of oxygen to the metal/ceramic oxide interface were considered by 

making use of a virtual segregation layer around the square ceramic oxide inclusions by 

introducing a special virtual plane. A separate segregation layer was not considered for 

randomly placed inclusions each of which takes only a single site of the lattice. In that situation, 

the inclusions were considered themselves to be sources and sinks for the diffusant in the 

corresponding diffusion process. Simulation results for oxygen in-diffusion and out-diffusion 

processes for the metal matrix alone were compared with solutions of the diffusion equation and 

excellent agreement was found. In papers published from the thesis results for the composite 

with square inclusions were compared with results from collaborators using a Finite Element 

Method (see the Appendix). However, this comparison is not included in Chapter 3. For the case 

of random distributions of (point) inclusions a comparison was made with a theoretical 

expression for the effective diffusivity found in the literature. Excellent agreement was obtained.  

 

From a general perspective, future work in the area would probably focus further on the 

chemistry of oxygen at the metal/ceramic oxide interface using first principles methods and, if 

suitable inter-atomic potentials can be obtained or developed, the method of molecular 



Chapter 4 � Concluding Remarks 

88 

dynamics could be used to explore the nature of oxygen mobility at and near the interface. From 

such studies it would be possible to describe the oxygen diffusion processes and segregation 

from a detailed atomic perspective. Since such studies could not possibly be done at the large 

length scales of a composite body, they would in effect complement the present 

phenomenological diffusion analysis and provide useful input parameters to it.  

 

Since the amount of oxygen that segregates to the metal/ceramic oxide interface can be quite 

large and could influence the results, a useful immediate extension to the present work would 

make use of the McLean blocking expression for the segregation factor. Another extension of 

the present work would consider inclusions other than square or random point inclusions and 

extend the 2D simulations to 3D. Different examples for inclusions would be elliptical, 

spherical, cubic, ellipsoid and randomly shaped inclusions. Complex surface structures of the 

inclusions would make it more difficult to use the LMC method unless a very fine mesh was 

used that could capture the topological details of the inclusions. Analogous to what was 

discussed above (section 4.2) with respect to thermal conductivity in composites, in principle, 

CT scans of a real metal/ceramic oxide composite could be used in conjunction with the LMC 

method to model the oxygen in-diffusion/out-diffusion and segregation of an actual material.  
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