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In this paper, we test the idea of equilibrium similarity, for which all scales evolve in a similar way
in a turbulent round jet, for a prescribed set of initial conditions. Similarity requirements of the mean
momentum and turbulent energy equations are reviewed briefly but the main focus is on the velocity
structure function equation, which represents an energy budget at any particular scale. For similarity
of the structure function equation along the jet axis, it is found that the Taylor microscalel is the
relevant characteristic length scale. Energy structure functions and spectra, measured at a number of
locations along the axis of the jet, support this finding reasonably well, i.e., they collapse over a
significant range of scales when normalized byl and the mean turbulent energykq2l. Since the
Taylor microscale Reynolds numberRl is approximately constants.450d along the jet axis, the
structure functions and spectra also collapse approximately when the normalization uses either the
Kolmogorov or integral length scales. Over the dissipative range, the best collapse occurs when
Kolmogorov variables are used. The use ofkq2l and the integral length scaleL provides the best
collapse at large separations. A measure of the quality of collapse is given. ©2005 American
Institute of Physics. [DOI: 10.1063/1.1833414]

I. INTRODUCTION

The concept of self-preservation, which in essence as-
sumes that the flow is governed by single length and velocity
scales, has been of undeniable value for describing the spa-
tial evolution of laminar and turbulent flows. From a math-
ematical viewpoint, reducing the partial differential equa-
tions, which govern the fluid motion, to ordinary differential
equations represents a considerable advantage. The Blasius
solution for a laminar boundary layer over a flat plate is a
well known illustration of this. In the case of turbulent flows,
self-preservation has met with only mixed success, partly
because of the wide range of scales that are present in turbu-
lent flows and also because the notion of forgetfulness, or
disentanglement from initial conditions, which is implicit in
the notion of self-preservation, is an oversimplification.
There is now a sufficient amount of experimental evidence to
suggest(see, e.g., George1) that initial conditions can influ-
ence the type of self-preservation that can be achieved in
plane wakes(e.g., Wygnanski, Champagne, and Marasli2 and
Antonia, Zhou, and Romano3) and also round jets. In the
latter flow, different values—found in the literature—for the
velocity decay rate in the far field and for the virtual origin
point in this direction. George advanced the plausible sug-
gestion that this influence reflects the link between self-
preservation and coherent structures.

At a more fundamental level, George argued that the
previous difficulties, encountered with self-preservation, re-
late mainly to the restrictive manner in which the self-
preserving analysis was carried out. He showed that a more

general analysis leads to the possibility that a particular type
of flow can have a number of self-preserving states, each
uniquely determined by its initial conditions. The new ele-
ment in George’s approach was to determine the relevant
similarity scales from the analysis, instead of prescribing
them arbitrarily from the outset.

George1 applied the new analysis to both the plane wake
and the axisymmetric jet by investigating the similarity re-
quirements of the mean momentum and turbulent energy
equations. The analysis was also applied to decaying homo-
geneous isotropic turbulence4 and a homogeneous uniform
shear flow.5 The latter papers investigated the equilibrium
similarity of the spectral energy equation; as for the momen-
tum and mean turbulent energy equations, all terms in the
spectral energy equation are required to evolve in exactly the
same manner. In each case, the relevant length scale was
found to be the Taylor microscalel with kq2l1/2 (here taken
askq2l;u82+2v82, whereu8;ku2l1/2 andv8;kv2l1/2 are the
rms values of the streamwise and radial velocity fluctuations;
the angular brackets denote averaging with respect to time
and the prime represents the rms) as the characteristic veloc-
ity scale. Satisfactory support for this scaling was provided
by measured spectra and velocity structure functions in grid
turbulence6 and measured spectra in a constant mean shear
flow (cf. George and Gibson5 and references therein). Since
this similarity solution should apply to all scales of motion,
the nonconstancy ofRl;lu8 /n, wheren is the air viscosity
and l;u8 / s]u/]xd8 (for grid turbulenceRl decays withx;
for a uniform shear flow,Rl increases exponentially withx),
is not consistent with Kolmogorov’s concept of local simi-
larity (except possibly at infinite Reynolds number), i.e., the
idea that the appropriate normalizing parameters for the
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small dissipative scales are the Kolmogorov length scaleh
;sn3/4/ kel1/4d and velocity scaleuK;sn1/4kel1/4d, wherekel
is the mean energy dissipation rate. A recent study(Antonia
and Orlandi7), based on direct numerical simulation(DNS)
box turbulence data, indicated that the high wave number
part of the velocity spectrum collapsed better when normal-
ized byh anduK than withl andkq2l1/2. However, the latter
pair of scales provides a good collapse for the remainder of
the spectrum and is especially appropriate for calculating the
nonlinear transfer of energy from large to small scales.

There are a few self-preserving flows(e.g., Tennekes and
Lumley8 provide a detailed tabulation of free shear flows
which are self-preserving) for which the Reynolds number
should remain constant withx. For the plane wake, the mean
velocity defect decays asx−1/2 whereas the mean velocity
half-width grows asx1/2, so that the Reynolds number, de-
fined on the basis of these quantities, is constant. For a round
jet, discharging into still ambient surroundings, the mean ve-
locity on the axis decays asx−1, while the half-radius grows
linearly with x. Another such flow is the boundary layer be-
tween converging plane walls9 for which the free stream ve-
locity decays asx−1 and the boundary layer thickness grows
asx.

To our knowledge, there has been no previous attempt to
test the similarity of the spectra or velocity structure func-
tions in the above flows, even though the self-preserving
forms of the mean velocity and Reynolds stress distributions
have been well documented for the plane wake and round jet.
Mathieu and Scott10 noted, in the specific context of the cir-
cular jet, that the smallest scales should form part of the
similarity solution, given that the integral length scale should
be proportional toh, at least for sufficiently large Reynolds
numbers. Here, we focus on the circular jet, partly because
relatively large values ofRl can be achieved for moderate
values of the jet exit diameter and velocity, but also because
the absence of lateral boundaries should minimize any inter-
ference on the largest scales of the flow.

Similarity of mean momentum and turbulent energy in
the circular jet is reviewed only briefly in Sec. II, since it can
be found in many textbooks.8,10,11The equilibrium similarity
of the structure functions is investigated in more detail in
Sec. III. After providing relevant experimental details(Sec.
IV ) and a basic flow description(Sec. V), experimental sup-
port for the analysis is presented in Sec. VI. We consider
measurements of both energy structure functions and one-
dimensional(1D) spectra corresponding to the turbulent en-
ergy at several locations along the axis of the jet. The inves-
tigation is restricted to the region along the axis where the
influence of the terms involving the pressure—neglected in
the mathematical analysis of Sec. III—is deemed negligible.
To our knowledge, no measurements of the pressure related
terms have been published. The DNS results of Boersmaet
al.12 for the round jet do not clarify this point. Recently, DNS
data were reported for a plane jet:13 The pressure diffusion
terms were found to be negligible on the jet axis at the end of
the computational domain(about 12 jet widths).

II. SIMILARITY OF MEAN MOMENTUM AND
TURBULENT ENERGY EQUATIONS

Self-similarity solutions in the round jet can be sought,
in a straightforward manner, through dimensional
arguments.11,14Alternatively (see, for instance, Ref. 10), one
can assume a functional dependence for the mean streamwise
velocity of the following type:

U = U0sxd f̂szd, s1d

whereU0sxd is the axial streamwise velocity,f̂szd is the simi-
larity profile for U, andz=r / sx−x0d is the similarity variable
(r is the radial coordinate). In this approach, we are assum-
ing, from the outset, that there is just one characteristic
length, viz. the distancex from the virtual origin ofU0, x0.
From constancy of the momentum flux, viz.

E
0

`

2pU2rdr = const, s2d

it follows that

U0sxd , sx − x0d−1, s3d

sincerdr=sx−x0d2zdz. From the boundary-layer approxima-
tion to the first order, the momentum equations for the jet are

1
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]srkuvld
]r

,

from which the following functional forms for the radial ve-
locity and the Reynolds shear stress:

V , sx − x0d−1ĝszd,

− kuvl , sx − x0d−2ĥszd,

can be obtained, whereĝ andĥ are the similarity profiles for
the radial mean velocity and Reynolds shear stress.

Conversely, if the characteristic length scale isnot as-
sumedto be linearly proportional tox but is supposed instead
to be a general function ofx, saydusxd,1,10 so that the general
similarity variable is nowz=r /dusxd, the momentum conser-

vation yieldsU=fdusxdg−1f̂szd, that is to say

U0sxd , fdusxdg−1. s4d

From the boundary layer equations andthe assumption that
the mean and turbulent velocities have the same dependence
on x, viz.

− kuvl = duvsxd−2ĥszd, s5d

with duvsxd,dusxd, it follows that

ddu

dx
= constant, s6d

so thatdu (andduv) is linear withx
The assumptionduvsxd,dusxd can be avoided altogether

by considering the transport equations for the individual

025101-2 Burattini, Antonia, and Danaila Phys. Fluids 17, 025101 (2005)

Downloaded 01 Oct 2008 to 134.148.29.34. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



Reynolds stress components along the axis of the jet(e.g.,
Appendix C in Ref. 15). If a similarity form is assumed for
each of the terms in these equations, it can be rigorously
demonstrated that the length scaledu has to increase linearly
along the streamwise direction, for the equations to admit to
similarity solutions16 (see also Ref. 17 for the plane jet). This
development hinges also on the fact that the sum of the
pressure–strain terms in the equations for the Reynolds nor-
mal stresses is zero for an incompressible flow.

III. SIMILARITY OF ENERGY STRUCTURE FUNCTION
EQUATION

The far field of the circular jet evolves spatially, in terms
of mean and fluctuating quantities, according to the criteria
set out in the previous section. As a further step, it is of
interest to investigate the similarity ofall possible scales
contributing to the energy, not just the largest ones or those
associated with the dissipation of energy. This approach, re-
ferred to as equilibrium similarity by George,4 contrasts with
that which addresses only a localized range of scales, such as
the local similarity concept of Kolmogorov.18 The evolution
of spectra or second-order structure functions of the velocity
is typically used for this purpose, since both sift out the
distribution of the energy among the different scales. In this
section, we investigate the consequences of applying similar-
ity to the velocity structure function equation. Experimental
corroboration will be presented later(Secs. VI A and VI B),
for both structure functions and spectra.

We consider both these quantities since, even though
they are related—the formal relationship involves a cosine
transform, see for instance, Ref. 19—the treatment, in physi-
cal space, is more amenable to experimental verification. We
thus avoid having to deal with three-dimensional(3D) en-
ergy spectra and energy transfer functions. The evolution
equation for the structure functions on the axis of a circular
jet was recently derived from the Navier–Stokes equations
by Danailaet al.20 It was assumed that local isotropy was
satisfied by the turbulent advection, molecular diffusion, and
pressure diffusion terms and the effect of the large scale in-
homogeneity was treated in a quasi-isotropic manner. In a
recent paper,6 a similar approach, starting with the structure
function equation for grid turbulence in Ref. 21, was applied
to experimental data. For that flow, which is arguably the
simplest one available since there is no mean shear and
hence no turbulent energy production, the experimental veri-
fication of the scale-by-scale energy budget is particularly
satisfactory. There was also quite adequate support forl and
kq2l1/2 as the appropriate similarity parameters over a signifi-
cant range of length scales.

Along the jet axis, the transport equation for the turbu-
lent energy is given by20

− kdusdqd2l + 2n
d

dr
ksdqd2l −

U0

r2 E
0

r

s2 ]

]x
ksdqd2lds

− 2
]U0

]x

1

r2E
0

r

s2sksdud2l − ksdvd2ldds=
4

3
kelhomr , s7d

wheres is a dummy variable,r is the spatial separation over

which the increments are evaluated. The first term in Eq.(7)
is the generalized third-order structure function, while the
second represents the viscous effect. The third and fourth
terms quantify the role of the streamwise inhomogeneity and
of the turbulent energy production, respectively. Finally, the
term on the right side of Eq.(7) is proportional to the energy
dissipation rate and balances the sum of the other terms.
Here, we use a homogeneous form of the mean energy dis-
sipation rate(kelhom;3nfks]u/]xd2l+2ks]v /]xd2lg, which is
more appropriate than keliso;15nks]u/]xd2l, since
2ks]u/]xd2l is substantially larger thanks]v /]xd2l, along the
jet axis, as can be seen in Table III(see also Sec. V for
further discussion).

In order to examine the conditions under which Eq.(7)
satisfies similarity, we need to assume functional forms for
the terms in this relation. Following Antoniaet al.,6 we as-
sume

ksdqd2l = Qsxdfsjd, s8d

ksdud2l = Msxdesjd, s9d

ksdvd2l = Rsxdhsjd, s10d

− kdusdqd2l = Tsxdgsjd, s11d

wherej=r /, and, is a characteristic length scale, yet to be
determined. A possible dependence on the initial conditions,
as explained in Ref. 4, is also plausible, but is not considered
here explicitly.Qsxd,49 Msxd, Rsxd, andTsxd are scales that
characterize the second-order structure functions ofq,u,v,
and the third-order structure functionkdusdqd2l, respectively.
The lower-case functions represent the shape of the structure
functions. The separation between functions ofx and j al-
lows the determination of solutions to the transport equation,
for which a relative balance among all of the terms is main-
tained as the flow progresses downstream. After substituting
Eqs. (8)–(11) into Eq. (7), we obtain(after differentiating
and rearranging and considering only the variations inx
and r)

Tsxdgsjd + 2nQsxd
1

,

dfsjd
dj

−
U0

r2

dQsxd
dx

,3G1

+
U0Qsxd

r2

d,

dx
,2G2 − 2

dU0

dx

Msxd
r2 ,3G3

+ 2
]U0

]x

Rsxd
r2 ,3G4 =

4

3
kelhomr , s12d

where

G1 =E
0

r/, s2

,2 fsjddS s

,
D ,

G2 =E
0

r/, s3

,3

dfsjd
dj

dS s

,
D ,

G3 =E
0

r/, s2

,2esjddS s

,
D ,
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G4 =E
0

r/, s2

,2hsjddS s

,
D .

Note that the following relation:

]j

]x
= − r,−2d,

dx

has been used in deriving Eq.(12). After separating the terms
which depend onx from those which depend onj, and mul-
tiplying by s, /nQsxdd, Eq. (12) becomes

F Tsxd,
nQsxdGgsjd + f2g

dfsjd
dj

− F U0,2

nQsxd
dQsxd

dx
GG1

j2

+ FU0

n

d,

dx
,GG2

j2 − F2
dU0

dx

Msxd
nQsxd

,2GG3

j2

+ F2
dU0

dx

Rsxd
nQsxd

,2GG4

j2 = F4

3

kelhom,2

nQsxd Gj.

For equilibrium similarity, all terms within the square brack-
ets must evolve in the streamwise direction in the same man-
ner. Since the second of these is constant, all the others must
also be constant, viz.

T,

nQ
= const, s13d

U0,2

Q

dQ

dx
= const, s14d

U0
d,

dx
, = const, s15d

dU0

dx

M

Q
,2 = const, s16d

dU0

dx

R

Q
,2 = const, s17d

kelhom,2

Q
= const s18d

(where the dependence onx has been dropped for simplic-
ity).

Equation(18) suggests that, can be identified withlq

(hereafter, for simplicity, the exponent 2 inq2 has been
dropped when it appears as a subscript), which is defined as
skq2l / kelhomd1/2, sinceQsxd represents the limiting value(or
2kq2l) of ksdqd2l for large separations.The relevant length
scale which emerges from the above analysis is the Taylor
microscalelq. As has already been found for decaying ho-
mogeneous isotropic turbulence4,6 and the homogeneous
shear flow,5,20 the Taylor microscale appears to be the length
scale relevant to the whole of the energy spectrum. This rel-
evance apparently reflects the fact thatlq combines informa-
tion about both large and small scale quantities, and negates
the criticism8 thatlq has no direct physical meaning. This is,
perhaps, not surprising given the rather complex role ofkel,

which represents the rate at which energy is dissipated over
small scales, but may also be interpreted as the rate at which
the energy is injected at large scales as well as the rate of
transfer of the energy down the cascade, from large to small
scales. Note that the scale-by-scale budget Eq.(7) reduces to
the transport equation forkq2l in the limit of r →`. In the
limit of r →0, it reduces to the transport equation for the
enstrophy(or the mean energy dissipation ratekel).

IV. EXPERIMENTAL DETAILS

The jet is generated by an open circuit wind tunnel
equipped with a variable speed twelve-blade centrifugal
blower. The tunnel comprises a diffuser, a settling chamber
and a contraction with an area ratio of 85:1. A flexible con-
nection is inserted between the blower and the rest of the
tunnel in order to reduce motor-induced vibrations. Several
screens and a honeycomb are fitted inside the settling cham-
ber to reduce the turbulence level and to straighten the flow.
The jet exits through a nozzle having a diameterD=2R
=55 mm in a large laboratory room whose temperature re-
mained fairly constants±0.5 °Cd throughout every single set
of tests. The traversing system allows three degrees of free-
dom in the streamwisesxd, lateralsyd, and verticalszd direc-
tions with a resolution of 1, 0.02, and 0.01 mm, respectively.
Hereafter, the results will refer to this coordinate system and
data for the streamwise and lateral(or radial, r) directions
will be presented—in which the fluctuating velocity compo-
nents areu andv. The corresponding uppercase quantities,U
andV, are time-averaged values.

The velocity data were acquired with in-house hot wires
and DISA anemometers(55M01 model). Both single and
X-wire probes were used, the latter with an angle between
the wires of nearly 90° and a lateral separation between the
wires of approximately 0.8 mm. The hot wires were etched
from Pt-10% Rh to a diameter ofdw=2.5 mm and the active
length lw was chosen so as to have an aspect ratiolw/dw of
nearly 200.

Velocity and angle calibrations were carried outin situ at
the jet exit plane. For the speed calibration of the single wire,
a third-order polynomial law was fitted to the anemometer
output voltage as a function of the mean velocity. The
X-wire was calibrated at several values of speed and angle in
the ranges of ±40°(in steps of 10°) and 0.9–17.2 ms−1, re-
spectively. This set of values was used as a look-up-table
(LUT), during data reduction, to estimate the velocity
through spline interpolations. The LUT method was verified
to perform better than an effective angle method,22 which
assumed a constant sensibility coefficient for the lateral ve-
locity. The percentage of drop-outs was always less than
1.2%. The exit velocity of the flow was inferred from a Pitot
tube connected to a Furness FCO12 micromanometer(full
scale=20 mmH2O, least count=0.048 mmH2O). The single
wire data were used as a check of the X-wire response and
differences in the mean values of the velocity were always
below 2%. The anemometer signals were acquired by means
of a 16-bit AD board into a PC. Errors in the main turbulent
quantities, given in Table I, were calculated by repeating the
measurements 30 times atx=60D and applying the error
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estimation with 1:20 odds.23 Basic flow parameters are given
in Table II, while some velocity statistics for several values
of x/D are reported in Table III.

A. Correction for the spatial resolution of the X-wire

The X-wire has a finite spatial resolution dictated by
both the length of the sensitive(etched) part of the wire and
the distance between the two wires. A quite general proce-
dure for correcting the spatial attenuation of this probe was
given by Wyngaard.24 The treatment was developed in spec-
tral space since it is easier to account for the integration
effect on Fourier components of the velocity. To assess the
attenuation function, the shape of the three-dimensional en-
ergy spectrum of the velocity needs to be assumed. Here, we
have chosen the form used by Martinezet al.25 and the at-
tenuation function was evaluated in accordance with the pro-
cedure of Zhu and Antonia,26 who extended Wyngaard’s
original analysis.24 This procedure takes into account the ef-
fects of the included angle between the wires, the length of
the wires and the separation between the wires, and assumes
the form of a correction function which is applied to the
spectral content of the velocity and, consequently, the energy
dissipation rate, foru and v. The spectral correction was
applied after the velocity data were re-sampled according to
the modified Taylor’s hypothesis, which is described in some
detail below. Corrections foru8 andv8, due to spatial attenu-
ation, were within 0.7% of the original values, while the
values ofs]u/]xd82 were corrected upwards from 10% to 2%
(betweenx/D=30 to x/D=90, respectively) and the values
s]v /]xd82 from 26% to 6%, over the same range ofx/D. The
radial component is, thus, more affected by the spectral at-
tenuation correction, for the X-probe configuration we used.

B. Effect of modifying Taylor’s hypothesis

The present hot wire measurements have been done with
a static hot wire, i.e., the time-varying velocity signals were
acquired with probes at a fixed location. To obtain informa-
tion in terms ofx instead oft, a time-space transformation is
invoked. This is usually performed via Taylor’s hypothesis,
viz.

uisx,td = uisx − Ut,t + td,

when the delayt is not too large(in this section the three
velocity components are sometimes indicated with numbered
subscripts). In this case, time and space derivatives are re-
lated by

ui,t = − ui,1U1, s19d

where repeated indices imply summation, a comma indicates
differentiation and i =s1,2,3d. This approximation—
assuming thatU can be replaced by the mean streamwise
velocity U1—is acceptable for small turbulence intensities,
ui8 /U, since, in this case, the turbulence can be thought to be
advected by a constant convection velocity. In the far field of
a jet, the turbulence intensity is about 25% and such an ap-
proximation can lead to large errors, since the velocity fluc-
tuations are high enough to render the concept of uniform
translation questionable. Flying-hot-wires are sometimes
used to alleviate this problem by introducing an additive
transport velocity, thus fictitiously reducing the turbulence
intensity. It is not practical to use flying-hot-wires because of
the complications involved in displacing the probe at suffi-
ciently high velocities and performing ensemble averages.

TABLE I. Uncertainties in several turbulence quantities(percentage values).

U u82 v82 ks]u/]xd2l ks]v /]xd2l Rl Rlq

0.8 4.3 3.3 6.9 4.6 5.2 2.7

TABLE II. Some parameters of the jet(the values of the turbulence Rey-
nolds numbers are averages over the range 35øx/Dø90).

Uj

sms−1d
ReD

—
n

m2s−1
Rl

—
Rlq

—

35.1 1.33105 1.5310−5 450 363

TABLE III. Results for the velocity scales on the jet axis.

x/D
—

U0

sms−1d
u8

sms−1d
v8

sms−1d
u8 /v8

—
kq2l

sm2s−2d
ks]u/]xd2l

ss−2d310−5
ks]v /]xd2l
ss−2d310−5

I
—

30 7.9 1.8 1.4 1.24 7.1 1.9 3.4 1.8

35 6.7 1.5 1.2 1.21 5.4 1.2 2.3 1.9

40 5.9 1.3 1.1 1.21 3.9 0.69 1.2 1.8

45 5.2 1.1 0.94 1.21 3.1 0.43 0.7 1.7

50 4.6 1.0 0.82 1.23 2.4 0.26 0.44 1.7

55 4.2 0.92 0.77 1.20 2.0 0.20 0.30 1.6

60 3.8 0.86 0.71 1.22 1.7 0.13 0.21 1.7

65 3.5 0.78 0.65 1.20 1.4 0.094 0.15 1.6

70 3.2 0.74 0.60 1.24 1.3 0.072 0.12 1.7

75 3.0 0.70 0.57 1.22 1.2 0.056 0.10 1.8

80 2.8 0.67 0.51 1.30 0.97 0.039 0.066 1.7

85 2.6 0.61 0.49 1.26 0.85 0.035 0.057 1.6

90 2.4 0.58 0.46 1.27 0.77 0.026 0.042 1.6
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Velocity spectra in the far field of the jet requires long and
continuous velocity signals at a fixed location and the flying-
hot-wire technique is in conflict with these requirements. In
the present work, a modified version of Taylor’s hypothesis,
Eq. (19), is used. The time derivative ofui is approximated
by

ui,t = − ui,1U1 − ujui,j ,

where j =s1,2,3d. With the further assumption that the spa-
tial derivatives of the velocity fluctuations in directions 2 and
3 are negligible, we obtain

u1,t = − u1,1U1 − u1u1,1= − u1,1sU1 + u1d, s20d

u2,t = − u2,1U1 − u1u2,1= − u2,1sU1 + u1d, s21d

u3,t = − u3,1U1 − u1u3,1= − u3,1sU1 + u1d. s22d

This approach, which is hereafter referred to as modified
Taylor’s hypothesis or MTH, differs somewhat from that of
Lumley27 and Heskestad,28 who used a large scale convec-
tion velocity. We have found that the use of a large scale
convection velocity resolves in only slight changes in the
high wave number part of theu andv spectra, compared to
the use of the instantaneous convection velocity. For ex-
ample,ks]u/]xd2l and ks]v /]xd2l are approximately 2% and
1.4% larger, when the large scale convection velocity is used.

The time–space transformation of velocity derivatives
amounts to resampling(unevenly) the original (evenly
spaced byDx=U1Dt, whereDt is the inverse of the sampling
frequency) velocity signals at the new locations given by

xk8 = o
k=1

N

sU1stkd + u1stkddDt, s23d

where N is the number of samples andtk=kDt. Here, the
“new” velocity values atxk8 were obtained with a locally
linear interpolation. This resampling procedure produces sig-
nals with similar characteristics to laser Doppler velocimetry
(LDV ) signals, where the particle arrival times are not evenly
spread but approximately follow a(Poisson) probability dis-
tribution. The effect on the statistics of the velocity fluctua-
tions can be significant, as illustrated in Fig. 1, which shows
k1

2fusk1d, the 1D energy dissipation rate spectrum based onu
[similar results, not shown here, hold fork1

2fvsk1d]. The dis-
tribution calculated after correcting for the spatial attenuation
is also reproduced. The major effects are concentrated at
small scales, where Taylor’s hypothesis considerably overes-
timates the distribution(see also the inset showing the en-
ergy spectra). The spatial attenuation correction acts in the
opposite direction, increasing the measured values at high
wave numbers, but is of minor importance, compared to the
effect of MTH. The measured isotropy of the small scales
(ratio of the energy dissipation rates estimated from the two
velocity components) is improved by the application of
MTH and the spectral attenuation correction.

The structure functions presented in this paper have been
calculated from velocity signals corrected using the MTH.
However, no spatial attenuation correction was applied to the

structure functions since a procedure equivalent to that pre-
viously outlined for the spectra is not available in physical
space.

The algorithm for applying the MTH is similar to that
used by Kahalerraset al.29 for assessing the effect the cor-
rection has on the velocity spectrum and pdf. Our results
corroborate their conclusion regarding the major effect, es-
pecially at small scales, of this correction. The application of
the correction for spectral attenuation and particularly the
MTH was verified here to be important for obtaining reliable
information on the streamwise development of turbulence
quantities, in particular those based onkel, such asl andRl.

V. BASIC FLOW PARAMETERS

The jet issues from a round nozzle in a nominally lami-
nar state with a turbulence intensity of nearly 1.5%, mainly
due to the low-frequency unsteadiness of the fan, and a top-
hat velocity profile. The exit velocity isUj .35 ms−1 which
yields a Reynolds number ofReD=1.33105. More details on
the state of the boundary layer can be found in Ref. 30. In the
far field,x/Dù30, the mean streamwise velocity on the axis,
U0, decays as shown in Fig. 2(where data from other
sources,15,31are also included). The decay ofUj /U0 is almost
linear and the least-squares fit to the data(the residual, viz.
the sum of the deviations from this fit, is 0.14), based on the
relation Uj /U0=C−1sx−x0d /D, gives a virtual originx0 of
4.4D and a value of 6.0 forC. These values are similar to
those in Ref. 15(C=5.8, x0/D=4.4 from LDV measure-
ments andC=5.9, x0/D=2.7 from static hot wire measure-
ments) for a jet atReD.105 issuing with a top-hat velocity
profile in a nominally laminar state. The decay rate constant
is also close to thatsC=6.1d measured with a flying hot wire
in Ref. 32 withReD.1.13104. These values forC seem to
confirm the expectation that the mean velocity measurements
are not too affected by the technique adopted. The linear
decay rate ofU0

−1 along the axis is a consequence of the
global similarity of the round jet, as discussed in Sec. II.
Similarity of different order statistics is achieved gradually
as the flow progresses downstream: while the collapse of

FIG. 1. Spectrum of the energy dissipation rate ofu: 3, applying Taylor’s
hypothesis; —, corrected for spatial attenuation after applying Taylor’s hy-
pothesis; ·, corrected for spatial attenuation after applying modified Taylor’s
hypothesis(MTH). The inset shows the spectrum ofu according to Taylor’s
hypothesis and MTH.
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radial profiles of the streamwise velocity appears as soon as
x/D=8 (Ref. 8, p. 130), the linear decay of the mean velocity
is expected to apply beyondx/D.2010 or 30.19 Turbulence
quantities are reported to be still evolving atx/D.40.8

Small differences, from one experimental setup to another, in
the coefficients of the decay may be attributed to the effects
of the initial conditions andReD.1

Axial profiles of the streamwise turbulence intensity,
u8 /U0, and the ratiosu8 /v8 andLu/Lv are plotted in Fig. 3,
where

La =E
0

r0

raasrddr s24d

is the integral length scale ofas;hu,vjd. The upper limit of
the integrationr0 corresponds to the location of the first zero-
crossing of the correlation coefficient,

raasrd = kasxdasx + rdl/ka2sxdl.

We have also estimated the integral scaleLq associated with
kq2l, defined such that

Lq =E
0

r0

skusxdusx + rdl + 2vsxdvsx + rdd/kq2sxdldr , s25d

wherer0 is the location of the first zero-crossing of the inte-
grand. The ratiou8 /v8, which quantifies the large scale an-
isotropy, is 1.25 on average. Hussein, Capp, and George15

and Panchapakesan and Lumley32 obtained 1.25 and 1.3, re-
spectively. The fact that these ratios are constant beyond
x/D=30 indicates that a relative equilibrium of these
second-order quantities has been achieved on the axis. The
turbulence intensity is close to 25%(compared to 22% in
Ref. 15 and 24% in Ref. 32), which accounts for the large
errors associated with the use of Taylor’s hypothesis.28 The
average value ofLu/Lv is close to 1.75, on average, smaller
than the isotropic value of 2. For comparison, the grid turbu-
lence of Ref. 22, at a distancex=42M (M is the grid mesh
size) yields u8 /v8.1.17 andLu/Lv.2.6, but with much
lower turbulence intensitysu8 /U.0.025d. Detailed tabula-
tions of some of the statistical quantities connected with the
velocity and length scales are given in Tables III–V.

The radial profiles ofU (Fig. 4) collapse approximately,
when normalized by the local half-velocity radiussR0.5d. Sat-
isfactory collapse is also exhibited by the fluctuating inten-
sity profiles, Fig. 5. The normalized distributions ofkq2l ap-
pear to comply with similarity more satisfactorily than those

TABLE IV. Length scales on the jet axis.

x/D
—

h
(mm)

l
(mm)

lq

(mm)
Lu

(m)
Lv

(m)
Lq

(m)
lq/h
—

Lq/lq

—

30 0.096 4.0 3.7 0.060 0.035 0.043 38 12

35 0.11 4.3 3.9 0.071 0.042 0.051 37 13

40 0.12 4.9 4.6 0.079 0.047 0.057 37 12

45 0.14 5.5 5.2 0.092 0.053 0.065 37 13

50 0.16 6.3 5.9 0.10 0.060 0.074 37 12

55 0.18 6.6 6.4 0.11 0.067 0.080 37 12

60 0.19 7.7 7.3 0.12 0.070 0.085 38 12

65 0.21 8.0 7.8 0.12 0.071 0.086 37 11

70 0.22 8.7 8.2 0.15 0.088 0.11 37 13

75 0.23 9.3 8.6 0.15 0.098 0.11 37 13

80 0.26 10.7 9.7 0.19 0.098 0.13 38 13

85 0.27 10.4 9.8 0.17 0.10 0.12 37 12

90 0.29 11.4 10.8 0.21 0.13 0.15 38 14

TABLE V. Dissipation rate coefficient and related length scales at three
streamwise locations.

x/D
—

C«iso
—

C«hom
—

R0.5

(m)
,=kq2l3/2/ k«lhom

(m)
,=u83/ k«liso

(m)

40 1.65 1.10 0.26 0.72 0.16

60 1.79 1.16 0.43 1.11 0.24

80 2.02 1.16 0.57 1.47 0.28

FIG. 2. Variation of the mean streamwise velocity on the jet axis:P, Present
dataReD=1.33105; solid line: least squares fit to present data;3, static hot
wire (Ref. 31), ReD.105; 1, flying hot wire (Ref. 15), ReD.105; p, static
hot wire (Ref. 15), ReD.105; x, LDA (Ref. 15), ReD.105.

FIG. 3. Variation along jet axis of rms values ofu and v, and ratio of
integral length scales associated withu and v: ,, u8 /U0; h, u8 /v8; s,
Lu/Lv.
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of ku2l. This seems to be due to a reciprocal compensation of
the fluctuation intensities ofu andv, leading to a more uni-
form distribution of the mean energy.

The statistics ofs]u/]xd and s]v /]xd, Table III, can be
used to characterize the behavior of the small scales. As
noted earlier, these spatial derivatives are inferred from time
derivatives, by invoking MTH. The first of these derivatives
is used to define the more conventional Taylor microscale
ls;u8 / s]u/]xd8d, which combines some of the large scale
properties, throughu8, with the characteristics of the smallest
scales, via the velocity derivative. The variation ofRl

=lu8 /n along the jet axis is plotted in Fig. 6.Rl is approxi-
mately constant, with a mean value of about 450, and nearly
all the values are within the experimental uncertainty(for
x/D,40, the similarity of the small scales statistics appears
not to be achieved yet, in agreement with the suggestion in

Ref. 8). This constancy is in accord with the circular jet
results of Antoniaet al.33

The mean energy dissipation rate, estimated from isot-
ropy, is given by

keliso = 15nKS ]u

]x
D2L ,

or, in spectral form,

keliso = 15nE
0

`

k1
2fusk1ddk1,

where the 1D energy spectral densityfu sk1d is defined such
that

E
0

`

fusk1ddk1 = u82. s26d

This normalization is global in nature, meaning that it con-
strains the area under to spectrum to a given value, and has
to be applied to the spectrum calculated from a signal of
suitable duration to ensure that the velocity variance is esti-
mated correctly.(If the original signal is broken up into con-
stant width windows, a common practice for reducing the
scatter in the Fourier transform, a significant part of the en-
ergy at low frequencies may be lost.) Subsequently, the Kol-
mogorov length and velocity scales are defined byh
=sn3/ kelisod1/4, uK=skelisond1/4, respectively. A homogeneous
expression for the mean energy dissipation rate is

kelhom= 3nFKS ]u

]x
D2L + 2KS ]v

]x
D2LG . s27d

This departure from local isotropy seems consistent with the
observation by George and Hussein34 that, on the axis of the
jet, local axisymmetry provided a more reliable estimate of
kel than local isotropy. Having introducedkelhom, a more
general definition of the Taylor microscale would belq

=s5nkq2l / kelhomd1/2.6 The corresponding turbulence Rey-
nolds number isRlq;skq2l /3d1/2lq/n, which is also in-
cluded in Fig. 6. The magnitude ofRlq is smaller than that of
Rl, because the energy dissipation rate estimated using
ks]v /]xd2l falls short of the isotropic value and, thus, reduces
the estimate ofkelhom with respect tokeliso. The scatter in the

FIG. 4. Radial profiles of the streamwise velocity at three axial locations:v,
x/D=40; x, x/D=60; L, x/D=80. R0.5 is the half-velocity radius.

FIG. 5. Radial profiles of the streamwise velocity fluctuations intensities at
three axial locations:v, x/D=40; x, x/D=60; L, x/D=80. R0.5 is the
half-velocity radius.

FIG. 6. Axial distribution ofRl (s) andRlq (h) with error bars. Horizontal
lines represent average values over the range 35øx/Dø90.
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values ofRlq is also reduced to 2.7%, and now all the points
for x/Dù35 have the same value, to within the experimental
uncertainty. The reduced scatter inRlq reflects also the
higher uniformity inx of kq2l compared toku2l.

Even though in this paper we focus on the axial devel-
opment of the flow, it is interesting to have a brief look at the
radial profiles of some quantities. Estimates of,, defined as
kelhom/ kq2l3/2, and the half-velocity radiusR0.5 are evaluated
for three axial stationssx/D=f40,60,80gd, Table V. The
nondimensional coefficientCehom

;R0.5kelhom/ kq2l3/2 is ap-
proximately constant unlikeCeiso

;R0.5keliso/u83, which sub-
stantially increases withx. There is little doubt that the use of
kelhom leads to an improvement in the similarity of radial
profiles of the energy dissipation rate, Fig. 7.

The departure from isotropy of the small scales can be
quantified by the ratioI =ks]v /]xd2l / ks]u/]xd2l, Table III:
the average value ofI is 1.7, in the range 35øx/Dø90. In
comparison, for grid turbulence,I is typically 1.8, slightly
closer to the isotropic value of 2. Champagne,35 who also
applied corrections for Taylor’s hypothesis in high turbu-
lence intensity, reported a value ofI of 1.6 atx/D=70 for a
round jet withRl=626.

VI. ENERGY SPECTRA AND STRUCTURE
FUNCTIONS

Having examined the analytical conditions for similarity
of the energy structure functions in Sec. III, we now proceed
to the experimental verification of these conditions in the
far-field of the jet. The relation betweenfu sk1d andksdud2l,
viz.

ksdud2l = 2E
0

`

fusk1df1 − cossk1rdgdk1, s28d

allows ksdud2l to be inferred fromfu sk1d. The transforma-
tion from the spectrum to the structure function involves an
integration and should, therefore, produce an output which is

more regular that the integrand. Because of the integral in
Eq. (28), the scaling range in the physical space should be
narrower than in the spectral domain.36,37 We prefer to
present both spectra and structure functions, primarily to
crosscheck our conclusions, but also because of the likely
differences between these two quantities, which could lead to
possibly different interpretations. For example, electronic
noise contamination is more evident in the high wave num-
ber portion of the spectrum than at small separations in the
structure functions.

Differences between spectra and structure functions may
also arise because of different types of normalization they
are subjected to. The power spectrum satisfies an integral
constraint[Eq. (26) for u and a corresponding one forv],
while the structure functions converge to local(pointwise)
limits, at large separations, e.g.,

lim
r→`

ksdud2l
uK

2 =
2ku2l
uK

2 =
2

151/2Rl, s29d

lim
r→`

ksdvd2l
uK

2 =
2kv2l

uK
2 =

2

151/2

kv2l
ku2l

Rl, s30d

lim
r→`

ksdqd2l
uK

2 =
2ku2l
uK

2 + 2
2kv2l

uK
2 =

2

151/2S1 + 2
kv2l
ku2l

DRl.

s31d

In the far field of the jet, these limiting values should not
depend onx, sinceRl (or Rlq) and the ratiokv2l / ku2l are
constant(e.g., Figs. 3 and 6).

A. Spectra

Figures 8–10 display the distributions of

FIG. 7. Radial variation ofCehom
s;3R0.5kelhom/ kq2l3/2d, filled symbols, and

sCeiso
;R0.5keliso/u83d, empty symbols:v, b x/D=40; x, c, x/D=60; L,

l, x/D=80. In these definitions the axial values of thekq2l andu82 were
used, respectively.

FIG. 8. Spectra of the turbulent energykq2l in the range 35øx/Dø90
normalized by Kolmogorov scales. The inset reports the compensated spec-
trum (with m=−1.52) in semi-logarithmic scale, after averaging over the
axial stations, highlighting the inertial range power law.
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fqsk1d ; fusk1d + 2fvsk1d,

normalized using three main types of normalizations(as
summarized in Table VI). One of these is based on the Kol-
mogorov scalesh anduK. The other two use the rms velocity
ka2l1/2 sa;hu,v ,qjd and either the Taylor microscalel or
the integral length scaleLa [defined as in Eqs.(24) and(25)].
The interest of usingfq, (or ksdqd2l), hinges on the analogy
between the energy and the scalar structure functions,38 as
pointed out in Ref. 20 in the context of the scale-by-scale
budget for the circular jet.

In general, from these figures, it appears thatthe col-
lapse is adequate over the wave number range, for each
choice of scaling parameters pairs, as might have been ex-
pected from the constancy ofRl. The relatively wide range
of spatial locations used here, 35øx/Dø90, reinforces this
conclusion. However, a close look at the spectra reveals
some systematic trends. When the integral length scale is
used, Fig. 10, the spectra appear to come together more
closely at relatively small wave numbers. With the Kolmog-
orov normalization(Fig. 8), this tendency holds at relatively
large wave numbers. The normalization based onlq and
ka2l, Fig. 9, appears to provide a satisfactorily collapse for
nearly all wave numbers.(Note that, at very large wave num-
bers, the spectral density begins to increase. This upturn is
clearly not physical and is due to electronic noise, which is
unavoidable in this type of experiment. Spectra were not

corrected for this noise because of the subjectivity involved
in this procedure.) The level of collapse of the spectra was
quantified directly by calculating the dispersion(viz. the
rms) of the spectral values at every wave number. The dis-
persion is defined as

sSP=
ff̃qsk̃dg8

f̃qsk̃d
. s32d

Here, the tilde denotes normalization according to any of the
chosen parametric pairs and the overbar the average of the
spectral density data(at the same wave number) for all the
locations on the jet axis(in the range 35øx/Dø90). Values
of sSP are shown in Fig. 11, where the abscissa represents
the wave number divided by the maximum measured wave
number, which corresponds quite closely to the Kolmogorov
scale, at all the axial locations. Even though the curves are
jittery (the spectra exhibit intrinsic scatter), it appears that at
low wave numbers—corresponding to values of the length
scale aroundLq—the dispersion is generally lowest when the
normalization is based onLq whereas, at high wave numbers,
the Kolmogorov-based scaling yields the lowest values of
sSP. When the scaling is based onlq, the dispersion falls
roughly between the two previous estimates, but a precise
wave number, for which either theLq-based or Kolmogorov-
based normalization is more pertinent, is not clearly discern-
ible. In addition, it is also apparent that the dispersion in-
creases at large wave numbers, regardless of the choice of

FIG. 10. Spectra of the turbulent energykq2l normalized byLq and kq2l.FIG. 9. Spectra of the turbulent energykq2l normalized by the Taylor mi-
croscalelq and the turbulent energykq2l. The inset shows the distribution of
fq normalized such that the area under the curve represents the mean energy
kq2l.

TABLE VI. Scales for the normalization of spectra and structure functions(results for pairs in squared brackets
have not been shown here).

Spectra Structure functions

Length scales •=fa •=fq •=ksdad2l •=ksdqd2l

h fkh , • /huK
2g kh , • /huK

2 fr /h , • /uK
2g r /h , • /uK

2

l fkl , • /la82g fkl , • /lkq2lg fr /l , • /a82g fr /l , • /kq2lg
lq fklq, • /lqa82g klq, • /lqkq2l fr /lq, • /a82g r /lq, • /kq2l
Lu,Lv fkLa , • /Laa82g — fr /La , • /a82g —

Lq fkLq, • /Lqkq2lg kLq, • /Lqkq2l fr /Lq, • /kq2lg r /Lq, • /kq2l
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scaling parameters. This seems to be caused by the contribu-
tion from electronic noise.

The compensated distribution offq (inset of Fig. 8)
highlights that there is a significant range of scales where the
spectrum follows a power law. Over this range, a least
squares fit to the spectrum yields a slope ofm=−1.52, com-
pared to the prediction of −1.67 of Kolmogorov18 and
Obukhov,39 the difference being likely produced by the finite
value ofRl.40–42 Such anad hoccompensation of the spec-
trum does not highlight the spectral “bump” at the high-wave
number end of the scaling range,43 although this feature
would become noticeable when the spectrum is multiplied by
sk1hd5/3.

The inset in Fig. 9 shows that the most energetic scale is
located atklq.0.05. This provides an estimate of the inte-
gral length scale, which is indeed nearly 20 times larger than
lq (see Table IV). By comparison, for active grid turbulence
at Rl.262, the peak in the energy spectrum is atk.0.1,40

which corresponds to an integral scale of 0.1 m(see their
Table I), while the Taylor microscale is.16 times smaller.
The larger separation betweenlq andLq in the jet reflects the
higher Reynolds number, since one expectsL /l to be pro-
portional toRl (if local isotropy is assumed).

George1,4 showed that, for decaying homogeneous and
isotropic turbulence,l andkq2l1/2 are scales which allow the
spectral energy equation to admit to similarity. Support for
this was provided by grid turbulence measurements of
Comte-Bellot and Corrsin.44 The grid turbulence data of An-
toniaet al.6 also provided support forl andkq2l1/2. However,
these authors also found that the Kolmogorov variablesuK

andh collapsed the high wave number part offq satisfacto-
rily, at least as well as al-based normalization. As there was
no attempt to quantify the degree of collapse, it was not
possible to assess unambiguously the relative merits of these
two normalizations at largek1; the difficulty was possibly
compounded by the insufficient spatial resolution of the hot
wires. Recently, using well resolved DNS data for low Rey-
nolds number decaying turbulence in a periodic box, Antonia

and Orlandi7 found that for sufficiently largek, normalization
based onuK and h provided a better collapse ofEskd and
Tskd—the 3D energy spectrum and nonlinear energy transfer
function, respectively—than a normalization based onkq2l1/2

andl.

B. Structure functions

Structure functions ofq2, normalized according to the
parametric groupings set out in Table VI, are represented in
Figs. 12–14. Previous comments on the relative behaviors of
the spectra for the three types of normalization considered,
also apply in general to the structure functions. These curves
are, however, smoother, compared to the spectra, hence the
discrepancies between different normalizations are less am-
biguous. From these figures it can be inferred that the Taylor-
based normalization performs adequately for almost all sepa-
rations. Nonetheless, at small separations,uK andh provide a
better quality of collapse of the structure functions. Finally,
when the integral length scaleLq and kq2l1/2 are used, the
collapse at large separations appears to be improved. In order
to quantify this improvement, we estimate once more the
dispersion, defined, analogously to Eq.(32), as the root-
mean squared(rms) value ofksdqd2l (at every value ofr) for

FIG. 12. Structure functions ofu, v, and q normalized by Kolmogorov
scales. Arrows against the two ordinates indicate limiting values, averaged
over the axial locations in the range 35øx/Dø90, according to Eqs.
(29)–(31).

FIG. 13. Structure functions of the mean energy normalized by the Taylor
microscalelq and the turbulent energykq2l.

FIG. 11. Relative dispersion[sSP, defined by Eq.(32)] of the spectra at
different x locations as a function ofk1. The three curves correspond to the
three different normalizations used in Fig. 8–10. Normalization based on:
—, integral length scale andkq2l; ·–·–, Taylor microscale andkq2l; ¯,
Kolmogorov scales.kmax corresponds to the largest wave number for which
the spectra have been calculated.
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all the values ofx/D, normalized by the mean value(indi-
cated by the overbar) of ksdqd2l over different axial stations,
i.e.,

sSF=
fksdqd2lg8

ksdqd2l
. s33d

The result is plotted in Fig. 15 in terms of the separationr
normalized by the largest separation used in calculating the
structure functions. As was observed for the spectra, the
smallest values ofsSF at smallr correspond to the Kolmog-
orov normalization. At large separations,sSF is smallest for
the normalization based onLq and kq2l1/2. The differences
between the three curves forsSF are relatively larger at small
r than larger. In the latter case, the undulations insSF are
apparently linked to the variations in the limiting values—
Eqs. (29)–(31)—which reflect the finite duration of the ve-
locity records. A Taylor-based normalization provides anad-
equate overall collapse, since the corresponding values of
sSF lie between those for the other two normalizations for
logsrd / logsrmaxd&0.7, attaining comparable values to the in-
tegral normalization for larger separations. Interestingly, the
crossover between theh-based andLq-based normalizations

is close tolq. It would seem that the Taylor microscale cor-
responds to the scale where the large and small scales nor-
malizations exchange roles in terms of collapsing the struc-
ture functions. This feature could be taken into account in
devising an empirical parametric model of the structure func-
tions.

The limiting values ofksdad2l /uK
2, calculated assuming

local isotropy in Eqs.(29) and (30), are reported in Fig. 12,
as indicated by the open arrows. The values are 222 foru and
147 forv, approximately 5% lower than the measured values
(233 for u and 155 for v). In comparison, for two-
dimensional wakes behind cylinders, the limit foru displays
the same level of accuracy, while that forv has a marked
dependence on the type of wake generator.3 The limit of
ksdqd2l /uK

2, as estimated using Eq.(31), is also reported in
the same figure: Its value is 522, viz. nearly 4% smaller than
the average measured value(544).

The approach towards the limiting values ofksdad2l as
r →` is achieved in a monotonic manner, i.e., there is no
marked periodicity in the flow and the role of the large co-
herent structures may be very limited from an energy view-
point. An opposite trend was observed in the cylinder wakes
examined by Antoniaet al.;3 there, the structure functions of
the lateral velocity component exhibited a clear overshoot
before returning to their limiting value(accordingly, there
was a distinct peak in the spectrum). This behavior reflects
the persisting action of the vortices shed by the wake gen-
erators. Speculatively, for the 2D wake, for whichRl is also
constant alongx, the similarity of structure functions and
spectra may be less satisfactory than for the jet(this point
needs to be investigated in a future research). Coherent struc-
tures in the far field of the jet have been investigated by
means of phase averaging by Tso and Hussain45 but the en-
ergy content of the most probable helical structures remains
difficult to assess directly.46 The success of the scaling of the
structure functions and spectra found here is compatible with
a picture where the coherent structures do not play a domi-
nant role. A connection between the scaling of one-point sta-
tistics and the organization of the flow has been recently
investigated in Ref. 47 where it was shown that the collapse
of the moments(up to order three) of velocity fluctuations in
a shear layer is improved when the coherent structures are
inhibited.

VII. CONCLUSIONS

Traditional arguments indicate that mean velocity and
Reynolds stress profiles in a round jet should exhibit a self-
similar behavior. However, the influence of the initial condi-
tions or Reynolds number on this similarity state cannot be
ruled out, as indicated by George.1 Many analyses of single
point statistical moments(i.e., those related by the Reynolds
averaged equations) have been reported for the round jet in
previous investigations. We have preferred to focus on the
two-point statistics—that is, involving the difference of the
velocity at points separated in time, converted to a spatial
separation via Taylor’s hypothesis—and have applied a simi-
larity analysis to the transport equation for structure func-
tions. This analysis indicates that the Taylor microscalel is

FIG. 14. Structure functions of the mean energy normalized by the integral
length scaleLq and the turbulent energykq2l.

FIG. 15. Relative dispersion[sSF, defined by Eq.(33)] for the structure
functions normalized in three different ways.rmax corresponds to the largest
separation for which the structure functions have been calculated. Normal-
ization based on: —, integral scale; ·–·–, Taylor scale;¯, Kolmogorov
scale.
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the relevant length scale. However, since the turbulence Rey-
nolds number remains constant withx, the Kolmogorov mi-
croscaleh, the Taylor microscalel and the integral length
scaleL should develop withx proportionately to each other.
The constancy ofRl suggests that the degree with which
structure functions and spectra comply with similarity should
be equally satisfactory, regardless of the choice of scaling
parameters. From an analytical point of view, the round jet
should exhibit similarity across the complete range of length
scales.

The existence of equilibrium similarity has not been rig-
orously demonstrated. It has only been assumed, as for the
Blasius solution of a laminar boundary layer. A formal justi-
fication of the present solution is not apparent. Experimental
corroboration of the similarity analysis is thus of fundamen-
tal importance. Experimental data in the far field of the jet
s35øx/Dø90d, after correcting for the effects of spatial at-
tenuation of the X-wire and/or Taylor’s hypothesis, support
the conclusion that the three types of normalization collapse
the spectra and structure functions reasonably well. The
l-based scaling is satisfactory over nearly the whole range of
scales, although, at length scales of the order ofh and L,
Kolmogorov-based and integral-based normalizations are su-
perior in the sense that the corresponding collapses in these
ranges exhibit smaller dispersions. An intuitive explanation
for the adequate overall performance of thel-based scaling
may be linked to the definition of this scale; it combines
information from large scales(via kq2l) and small scales
(through the dissipation rate). It is conceivable, although dif-
ficult to verify experimentally, that in the limit of very large
Reynolds numbers and with adequately resolved measure-
ments of the smallest and largest scales, the three scalings
will yield an equally good collapse of the spectra and struc-
ture functions. Further verification of these ideas is more
likely to occur for a jet flow, compared to(static) grid turbu-
lence, because of the relatively high values ofRl that can be
achieved and the absence of boundaries.(Active grids can
achieve comparable or larger values ofRl, somehow at the
expense of the large scale inhomogeneity, due to the forcing
that is applied to the flow.) A natural outcome of the rel-
evance of the Taylor-based normalization would be the de-
velopment of a general parametric model for the structure
function or the spectrum. At present, many of the models
commonly used to describe the spectrum(or structure func-
tion) are parametrized on the values of these functions at
small and large separations(e.g., Ref. 48 and references
therein). The slope in the inertial range is then considered
separately, possibly as a function of the Reynolds number. A
unifying approach, which requires less experimentally tun-
able parameters and hinges on the Taylor microscale, will be
attempted in the future with the aim of obtaining a more
general model.

ACKNOWLEDGMENTS

The support of the Australian Research Council is grate-
fully acknowledged. We also much appreciated the contribu-
tions by Dr. G. Xu to an earlier set of experiments carried out
in the same flow.

1W. K. George, “The self-preservation of turbulent flows and its relation to
initial conditions and coherent structures,” inAdvances in Turbulence,
edited by W. K. George and R. Arndt(Springer, Berlin, 1989), pp. 39–74.

2I. Wygnanski, F. Champagne, and B. Marasli, “On the large-scale struc-
tures in two-dimensional, small-deficit, turbulent wakes,” J. Fluid Mech.
168, 31 (1986).

3R. A. Antonia, T. Zhou, and G. P. Romano, “Small-scale turbulence char-
acteristics of two-dimensional bluff body wakes,” J. Fluid Mech.459, 67
(2002).

4W. K. George, “The decay of homogeneous isotropic turbulence,” Phys.
Fluids A 4, 1492(1992).

5W. K. George and M. M. Gibson, “The self-preservation of homogeneous
shear flow turbulence,” Exp. Fluids13, 229 (1992).

6R. A. Antonia, R. J. Smalley, T. Zhou, F. Anselmet, and L. Danaila,
“Similarity of energy structure functions in decaying homogeneous isotro-
pic turbulence,” J. Fluid Mech.487, 245 (2003).

7R. A. Antonia and P. Orlandi, “Similarity of decaying isotropic turbulence
with a passive scalar,” J. Fluid Mech.505, 123 (2004).

8H. Tennekes and J. L. Lumley,A First Course in Turbulence(MIT Press,
Cambridge, MA, 1972).

9J. C. Rotta, “Turbulent boundary layers in incompressible flow,” in
Progress in Aeronautical Sciences, edited by A. Ferri, D. Kchemann, and
L. H. G. Sterne(Pergamon, New York, 1962), Vol. 2, pp. 1–220.

10J. Mathieu and J. Scott,An Introduction to Turbulent Flow(Cambridge
University Press, Cambridge, 2000).

11D. J. Tritton,Physical Fluid Dynamics, 2nd ed.(Oxford University Press,
Oxford, 1988).

12B. J. Boersma, G. Brethouwer, and F. T. M. Nieuwstadt, “A numerical
investigation on the effect of the inflow conditions on the self-similar
region of a round jet,” Phys. Fluids10, 899 (1998).

13S. A. Stanley, S. Sarkar, and J. P. Mellado, “A study of the flow-field
evolution and mixing in a planar turbulent jet using direct numerical simu-
lation,” J. Fluid Mech.450, 377 (2002).

14A. S. Monin and A. M. Yaglom,Statistical Fluid Mechanics: Mechanics
of Turbulence(MIT Press, Cambridge, MA, 1971), Vol. 1.

15H. J. Hussein, S. P. Capp, and W. K. George, “Velocity measurements in a
high-Reynolds-number, momentum-conserving, axisymmetric, turbulent
jet,” J. Fluid Mech. 258, 31 (1994).

16D. Ewing and W. K. George, “Similarity analysis of the two-point velocity
correlation tensor in a turbulent axisymmetric jet,” inTurbulence, Heat
and Mass Transfer 1, edited by K. Hanjalić and J. C. F. Pereira(Begell,
New York, 1995), pp. 49–56.

17W. K. George, “Some new ideas for similarity of turbulent shear flows,” in
Turbulence, Heat and Mass Transfer 1, edited by K. Hanjalić and J. C. F.
Pereira(Begell, New York, 1995), pp. 1 13–24.

18A. N. Kolmogorov, “Local structure of turbulence in an incompressible
fluid for very large Reynolds numbers,” Dokl. Akad. Nauk SSSR30, 299
(1941).

19S. B. Pope,Turbulent Flows(Cambridge University Press, Cambridge,
2000).

20L. Danaila, R. A. Antonia, and P. Burattini, “Progress in studying small-
scale turbulence using ‘exact’ two-point equations,” New J. Phys.6, 1
(2004).

21L. Danaila, F. Anselmet, T. Zhou, and R. A. Antonia, “A generalization of
Yaglom’s equation which accounts for the large-scale forcing in heated
decaying turbulence,” J. Fluid Mech.391, 359 (1999).

22P. Burattini and R. A. Antonia, “The effect of different X-wire calibration
schemes on some turbulence statistics,” Exp. Fluids(to be published).

23R. J. Moffat, “Describing the uncertainties in experimental results,” Exp.
Therm. Fluid Sci.1, 3 (1988).

24J. C. Wyngaard, “Measurement of small-scale turbulence structure with
hot-wires,” J. Sci. Instrum.1, 1105(1968).

25D. O. Martinez, S. Chen, G. D. Doolen, L.-P. Wang, and Y. Zhou, “Energy
spectrum in the dissipation range of fluid turbulence,” J. Plasma Phys.57,
195 (1997).

26Y. Zhu and R. A. Antonia, “Effect of wire separation on X-probe mea-
surements in a turbulent flow,” J. Fluid Mech.287, 199 (1995).

27J. L. Lumley, “Interpretation of time spectra measured in high-intensity
shear flows,” Phys. Fluids8, 1056(1965).

28G. Heskestad, “A generalized Taylor hypothesis with application for high
Reynolds number turbulent shear flows,” J. Appl. Mech.32, 735 (1965).

29H. Kahalerras, Y. Malcot, Y. Gagne, and B. Castaing, “Intermittency and
Reynolds number,” Phys. Fluids10, 910 (1998).

30P. Burattini, R. Antonia, S. Rajagopalan, and M. Stephens, “Effect of

025101-13 Similarity in the far field of a turbulent round jet Phys. Fluids 17, 025101 (2005)

Downloaded 01 Oct 2008 to 134.148.29.34. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



initial conditions on the near-field development of a round jet,” Exp. Flu-
ids 37, 56 (2004).

31I. Wygnanski and H. E. Fiedler, “Some measurements in the self-
preserving jet,” J. Fluid Mech.38, 577 (1969).

32N. R. Panchapakesan and J. L. Lumley, “Turbulence measurements in
axisymmetric jets of air and helium. Part 1. Air jet,” J. Fluid Mech.246,
197 (1993).

33R. A. Antonia, B. R. Satyaprakash, and A. K. M. F. Hussain, “Measure-
ments of dissipation rate and some other characteristics of turbulent plane
and circular jets,” Phys. Fluids23, 695 (1980).

34W. K. George and H. J. Hussein, “Locally axisymmetric turbulence,” J.
Fluid Mech. 233, 1 (1991).

35F. H. Champagne, “The fine-scale structure of the turbulent velocity field,”
J. Fluid Mech. 86, 67 (1978).

36T. Y. Hou, X.-H. Wu, S. Chen, and Y. Zhou, “Effect of finite computa-
tional domain on turbulence scaling law in both physical and spectral
spaces,” Phys. Rev. E58, 5841(1998).

37R. A. Antonia and R. J. Smalley, “Anomalous scaling of velocity and
temperature structure functions,” Phys. Rev. E63, 025301(2001).

38R. A. Antonia, M. Ould-Rouis, F. Anselmet, and Y. Zhu, “Analogy be-
tween predictions of Kolmogorov and Yaglom,” J. Fluid Mech.332, 395
(1997).

39A. M. Obukhov, “Structure of temperature field in turbulent flows,” Izv.
Akad. Nauk SSSR, Ser. Geogr. Geofiz.13, 58 (1949).

40L. Mydlarski and Z. Warhaft, “On the onset of high-Reynolds-number

grid-generated wind tunnel turbulence,” J. Fluid Mech.320, 331 (1996).
41S. Gamard and W. K. George, “Reynolds number dependence of energy

spectra in the overlap region of isotropic turbulence,” Flow, Turbul.
Combust.63, 443 (1999).

42B. R. Pearson and R. A. Antonia, “Reynolds-number dependence of tur-
bulent velocity and pressure increments,” J. Fluid Mech.444, 343(2001).

43M. Coantic and J.-J. Lasserre, “On pre-dissipative ‘bumps’ and a
Reynolds-number-dependent spectral parameterization of turbulence,”
Eur. J. Mech. B/Fluids18, 1027(1999).

44G. Comte-Bellot and S. Corrsin, “Simple Eulerian time correlation of full-
and narrow-band velocity signals in grid-generated, ‘isotropic’ turbu-
lence,” J. Fluid Mech.48, 273 (1971).

45J. Tso and F. Hussain, “Organized motions in a fully developed turbulent
axisymmetric jet,” J. Fluid Mech.203, 425 (1989).

46H. E. Fiedler, “Coherent structures,” inProceedings of the First European
Turbulence Conference, edited by G. Comte-Bellot and J. Mathieu
(Springer-Verlag, Berlin, 1987), pp. 320–336.

47P. Burattini and L. Djenidi, “Velocity and passive scalar characteristics in
a round jet with grids at the nozzle exit,” Flow, Turbul. Combust.72, 199
(2004).

48G. P. Romano and R. A. Antonia, “Longitudinal and transverse structure
functions in a turbulent round jet: Effect of initial conditions and Reynolds
number,” J. Fluid Mech.436, 231 (2001).

49Qsxdfsjd;Msxdesjd+2Rsxdhsjd.

025101-14 Burattini, Antonia, and Danaila Phys. Fluids 17, 025101 (2005)

Downloaded 01 Oct 2008 to 134.148.29.34. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp


