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Similarity in the far field of a turbulent round jet

P. Burattini® and R. A. Antonia
Discipline of Mechanical Engineering, University of Newcastle, Newcastle, N.S.W. 2308, Australia

L. Danaila
CORIA, Avenue de I'Université, BP12, 76801 Saint Etienne du Rouvray, France

(Received 2 May 2004; accepted 5 October 2004; published online 20 Decembgr 2004

In this paper, we test the idea of equilibrium similarity, for which all scales evolve in a similar way

in a turbulent round jet, for a prescribed set of initial conditions. Similarity requirements of the mean
momentum and turbulent energy equations are reviewed briefly but the main focus is on the velocity
structure function equation, which represents an energy budget at any particular scale. For similarity
of the structure function equation along the jet axis, it is found that the Taylor micrasdslthe
relevant characteristic length scale. Energy structure functions and spectra, measured at a number of
locations along the axis of the jet, support this finding reasonably well, i.e., they collapse over a
significant range of scales when normalizedoyand the mean turbulent energg’). Since the

Taylor microscale Reynolds numbBy, is approximately constarit=450 along the jet axis, the
structure functions and spectra also collapse approximately when the normalization uses either the
Kolmogorov or integral length scales. Over the dissipative range, the best collapse occurs when
Kolmogorov variables are used. The use(@) and the integral length scale provides the best
collapse at large separations. A measure of the quality of collapse is give®0® American
Institute of Physics[DOI: 10.1063/1.1833414

I. INTRODUCTION general analysis leads to the possibility that a particular type
of flow can have a number of self-preserving states, each
The concept of self-preservation, which in essence asaniquely determined by its initial conditions. The new ele-
sumes that the flow is governed by single length and velocitynent in George’s approach was to determine the relevant
scales, has been of undeniable value for describing the spgimilarity scales from the analysis, instead of prescribing
tial evolution of laminar and turbulent flows. From a math- them arbitrarily from the outset.
ematical viewpoint, reducing the partial differential equa- Georgé applied the new analysis to both the plane wake
tions, which govern the fluid motion, to ordinary differential gng the axisymmetric jet by investigating the similarity re-
equations represents a considerable advantage. The BlaSWrements of the mean momentum and turbulent energy
solution for a laminar boundary layer over a flat plate is dequations. The analysis was also applied to decaying homo-
well known illustration of this. In the case of turbulent flows, geneous isotropic turbuleritand a homogeneous uniform
self-preservation has met with only mixed success, partignear flow? The latter papers investigated the equilibrium
because of the wide range of scales that are present in turbdimijarity of the spectral energy equation: as for the momen-
lent flows and also because the notion of forgetfulness, of;m and mean turbulent energy equations, all terms in the
disentanglement from initial conditions, which is implicit in spectral energy equation are required to evolve in exactly the

the notion of self-preservation, is an oversimplification.Same manner. In each case, the relevant length scale was
There is now a sufficient amount of experimental evidence '9und to be thé Taylor micros’cabewith (V2 (here taken

suggest(see, e.g., Georé)athat initial conditions can influ- 2y 4124 9y,2 /2 L 12
. . . = whereu’ = ndv’ = re th
ence the type of self-preservation that can be achieved |ﬁs<q )=u b"?, whereu’ =(u)"*andu’ = ()™ are the

plane wakese.g., Wygnanski, Champagne, and Marastid :Lns valu?s o;) theksttreaamw?e and rad_lal ve_lt(t)]cny fluct:y:ltm;_ns;
Antonia, Zhou, and Romaﬁpand also round jets. In the € angular brackels denote averaging with respect to ime

latter flow, different values—found in the literature—for the _and the prlmg represents the nras thg chargctenshc velqc-
velocity decay rate in the far field and for the virtual origin 1Y Scale. Satisfactory support for this scaling was provided

point in this direction. George advanced the plausible sugby measured spectra and velocity ;tructure functions in grid
gestion that this influence reflects the link between seiffurbulencé and measured spectra in a constant mean shear

preservation and coherent structures. flow (cf. George and GibsSrand references thergirSince
At a more fundamental level, George argued that thdhis similarity solution should apply to all scales of motion,
previous difficulties, encountered with self-preservation, rethe nonconstancy d®,=Au’/», wherev is the air viscosity
late mainly to the restrictive manner in which the self-@ndA=u’/(dqu/dx)" (for grid turbulenceR, decays withx;
preserving analysis was carried out. He showed that a mor®r @ uniform shear flowR, increases exponentially witk),
is not consistent with Kolmogorov’'s concept of local simi-

¥Telephone:+61 2 4921 8879. Faxi+61 2 4921 6946. Electronic mail: !arity (except possibly ?‘t infinite Re_y_nolds numpere., the
paolo.burattini@newcastle.edu.au idea that the appropriate normalizing parameters for the
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small dissipative scales are the Kolmogorov length seale Il. SIMILARITY OF MEAN MOMENTUM AND
= (1¥"*{e)¥) and velocity scalei = (14 e)¥), where(ey ~ TURBULENT ENERGY EQUATIONS

Is the meaf; energy d|SS|p-at|on rate. A recgnt st@dytoma Self-similarity solutions in the round jet can be sought,
and Orlandi), based on direct numerical simulatiogBNS) in a straightforward manner, through dimensional
box turbulence data, indicated that the high wave ”Umbeérgumenté.l'”AIternativer(see for instance, Ref. 100ne

part of the velocity spectrum collapsed better when normalzan assume a functional dependence for the mean streamwise
ized by » anduy than with\ and(q?)*/%. However, the latter yelocity of the following type:

pair of scales provides a good collapse for the remainder of -
the spectrum and is especially appropriate for calculating the U =Uo(x)f(2), (1)

nonlinear transfer of energy from large to small scales. whereU,(x) is the axial streamwise velocitf/(g“) is the simi-
There are a few self-preserving floweg., Tennekes and larity profile for U, and{=p/(x—X,) is the similarity variable

Lumley8 provide a detailed tabulation of free shear flows(p is the radial coordinaje In this approach, we are assum-

which are self-preservingior which the Reynolds number jng from the outset, that there is just one characteristic
should remain constant with For the plane wake, the mean |ength, viz. the distance from the virtual origin ofUg, Xo.

velocity defect decays as 12 whereas the mean velocity From constancy of the momentum flux, viz.

half-width grows asx’?, so that the Reynolds number, de- "

fined on the basis of these quantities, is constant. For a round f 27rU%pdp = const, (2)
jet, discharging into still ambient surroundings, the mean ve- 0

locity on the axis decays as?, while the half-radius grows
linearly with x. Another such flow is the boundary layer be-

it follows that

tween converging plane waflfor which the free stream ve- Uo(x) ~ (x=x0) ™, 3)
locity decays as! and the boundary layer thickness grows sincepdp=(X—X)2£d{. From the boundary-layer approxima-
asx. tion to the first order, the momentum equations for the jet are

To our knowledge, there has been no previous attempt to
test the similarity of the spectra or velocity structure func-
tions in the above flows, even though the self-preserving P P
forms of the mean velocity and Reynolds stress distributions

. U U 1d(p{uv))
have been well documented for the plane wake and round jet. U— +V—=-~-——"=
Mathieu and Scotf noted, in the specific context of the cir- dx  dp p 9
cular jet, that the smallest scales should form part of thgrom which the following functional forms for the radial ve-
similarity solution, given that the integral length scale shouldlocity and the Reynolds shear stress:
be proportional toy, at least for sufficiently large Reynolds V~ (x=x0)%(0)
numbers. Here, we focus on the circular jet, partly because '
relatively large values oR, can be achieved for moderate o
values of the jet exit diameter and velocity, but also because (o) ~ (x=X%o)*h(¢),

the absence of lateral boundaries should minimize any intefsg, pe obtained, Whe@andﬁ are the similarity profiles for

ference on the largest scales of the flow. the radial mean velocity and Reynolds shear stress.
Similarity of mean momentum and turbulent energy in  Conversely, if the characteristic length scalenist as-

the circular jet is reviewed only briefly in Sec. Il, since it can sumedo be linearly proportional ta& but is supposed instead

be found in many textbooks'> The equilibrium similarity  to be a general function of says,(x),"*°so that the general

of the structure functions is investigated in more detail insimilarity variable is now/=p/ §,(x), the momentum conser-

Sec. lll. After providing relevant experimental detai8ec. vation yieIdsU=[5u(x)]‘1f(§), that is to say

IV) and a basic flow descriptiofBec. V), experimental sup- "

port for the analysis is presented in Sec. VI. We consider Uo(¥) ~ L8001 )

measurements of both energy structure functions and onéwrom the boundary layer equations ahé assumption that

dimensional1D) spectra corresponding to the turbulent en-the mean and turbulent velocities have the same dependence

ergy at several locations along the axis of the jet. The inveson X viz.

tigation is restricted to the region along the axis where the

1apV) N

:O’
oX

influence of the terms involving the pressure—neglected in ~ {w) = 8,(07*h(0), )
the mathematical analysis of Sec. Ill—is deemed negligiblewith §,,(x) ~ 5,(x), it follows that

To our knowledge, no measurements of the pressure related

terms have been published. The DNS results of Boersma — = constant, (6)

al.*?for the round jet do not clarify this point. Recently, DNS

data were reported for a plane jétThe pressure diffusion so thatd, (and 8,,) is linear withx

terms were found to be negligible on the jet axis at the end of  The assumptiod,,(x) ~ 5,(x) can be avoided altogether
the computational domaiabout 12 jet widthg by considering the transport equations for the individual

Downloaded 01 Oct 2008 to 134.148.29.34. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



025101-3 Similarity in the far field of a turbulent round jet Phys. Fluids 17, 025101 (2005)

Reynolds stress components along the axis of théejgt, which the increments are evaluated. The first term in(Eg.
Appendix C in Ref. 1% If a similarity form is assumed for is the generalized third-order structure function, while the
each of the terms in these equations, it can be rigorouslgecond represents the viscous effect. The third and fourth
demonstrated that the length scélghas to increase linearly terms quantify the role of the streamwise inhomogeneity and
along the streamwise direction, for the equations to admit t@f the turbulent energy production, respectively. Finally, the
similarity solutions® (see also Ref. 17 for the plane)iethis  term on the right side of Eq7) is proportional to the energy
development hinges also on the fact that the sum of thelissipation rate and balances the sum of the other terms.
pressure—strain terms in the equations for the Reynolds noHere, we use a homogeneous form of the mean energy dis-
mal stresses is zero for an incompressible flow. sipation rate({€)nom= 3v[{(du/ 9x)2)+2((dv/x)?)], which is
more appropriate  than (e)i,=15{(du/dx)?), since
ll. SIMILARITY OF ENERGY STRUCTURE FUNCTION 2((aul 9x)?) is substantially larger that(dv/dx)?), along the
EQUATION jet axis, as can be seen in Table (Hee also Sec. V for

, . . ) ) further discussion
The far field of the circular jet evolves spatially, in terms In order to examine the conditions under which E)

of mean and fluctuating quantities, according to the criteriajisfies similarity, we need to assume functional forms for
set out in the previous section. As a further step, it is Ofthe terms in this relation. Following Antonizt al 6 we as-
interest to investigate the similarity &ll possible scales '

contributing to the energy, not just the largest ones or those me

associated with the dissipation of energy. This approach, re- {(9)% = QX)f(&), (8)
ferred to as equilibrium similarity by Geordesontrasts with

that which addresses only a localized range of scales, such as {(8u)?) = M(x)e(é), 9
the local similarity concept of Kolmogorc}\?.The evolution

of spectra or second-order structure functions of the velocity  {(év)?) = R(X)h(&), (10
is typically used for this purpose, since both sift out the

distribution of the energy among the different scales. In this - {(su(50)?) = T(X)g(é), (11

section, we investigate the consequences of applying similar—h —r/0 and{ i h istic | h | b
ity to the velocity structure function equation. Experimental/ ereg_—r and{ Is a characteristic length scale, yet to be
corroboration will be presented laté8ecs. VI A and VI B determined. A possible dependence on the initial conditions,
for both structure functions and spectra ’ as explained in Ref. 4, is also plausible, but is not considered

We consider both these quantities since, even thougHere explicitly. Q(x),** M(x), R(x), andT(x) are scales that

they are related—the formal relationship involves a cosineCharaCte”_ze the second-order structure 1;unct|onq,qf,u,
transform, see for instance, Ref. 19—the treatment, in phys@nd the third-order structure functi¢au(q) ), respectively.

cal space, is more amenable to experimental verification. W& "€ lower-case functions represent the shape of the structure
thus avoid having to deal with three-dimensioiaD) en- ~ functions. The separation between functionsxadnd ¢ al-
ergy spectra and energy transfer functions. The evolutiotPWs tr_]e determ|.nat|on of solutions to the transport equation,
equation for the structure functions on the axis of a circulafor Which a relative balance among all of the terms is main-
jet was recently derived from the Navier-Stokes equation&ined as the flow progresses downstream. After substituting
by Danailaet al? It was assumed that local isotropy was E9S- (8)~(11) into Eq. (7), we obtain(after differentiating
satisfied by the turbulent advection, molecular diffusion, andnd rearranging and considering only the variationsxin
pressure diffusion terms and the effect of the large scale in2Nd")

homogeneity was treated in a quasi-isotropic manner. In a 1df(9  UodQ(x)

recent papet,a similar approach, starting with the structure T(X)g(é) + 2VQ(X)Zd_§ 2 g €r,

function equation for grid turbulence in Ref. 21, was applied

to experimental data. For that flow, which is arguably the UgQ(x) dt , dUgM(x) o

. . . . —2_€ 2~ 2_ 2 € F3

simplest one available since there is no mean shear and r dx dx r

hence no turbulent energy production, the experimental veri- UnR 4

fication of the scale-by-scale energy budget is particularly 4 ZQQF’FF‘(E%O o (12)
X T 3 '

satisfactory. There was also quite adequate suppoi &ord
(g®Y? as the appropriate similarity parameters over a signifi
cant range of length scales.

Along the jet axis, the transport equation for the turbu- _ e g2 S
I'y= f(§)d 7)

‘where

lent energy is given 0 2
—{bu 2+2E 2_% r52i 24 10
(u(q) + 2v (809~ . ﬁx<(5q)> s . _f s df(¢) (§>
2~ 3 ’
o €7 d¢ \¢

U 1

r 4
-l fo S0 = (30)d5= 2 (ot ()

/e
S
. . . . . I's f —Ze(f)d(—>,
wheres is a dummy variabler, is the spatial separation over o ¢
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e g2 s which represents the rate at which energy is dissipated over
Iy f h(§)d<‘) small scales, but may also be interpreted as the rate at which
0 the energy is injected at large scales as well as the rate of
Note that the following relation: transfer of the energy down the cascade, from large to small
scales. Note that the scale-by-scale budget(Bgeduces to
9% - rf‘Z% the transport equation fgig?) in the limit of r —c. In the
X dx limit of r—0, it reduces to the transport equation for the

has been used in deriving Ed.2). After separating the terms enstrophy(or the mean energy dissipation ra).

which depend orx from those which depend aof) and mul-

tiplying by (¢/vQ(x)), Eq. (12) becomes IV. EXPERIMENTAL DETAILS

T 5 df(f) Uot? dQ(x) Ty The jet is generated by an open circuit wind tunnel
vQ(X) 9(&) +[2] Q(x) dx | & equipped with a variable speed twelve-blade centrifugal
blower. The tunnel comprises a diffuser, a settling chamber

+ {ﬂ%(g]& - { %M(gz]g and a contraction with an area ratio of 85:1. A flexible con-
vdx | & dx »Q(x) | & nection is inserted between the blower and the rest of the

dU, R(X) s [ 4(Onont? tunnel in order to reduce motor.—indu_ce(_j vibrations.. Several
§M ? = ém screens and a honeycomb are fitted inside the settling cham-

ber to reduce the turbulence level and to straighten the flow.
For equilibrium similarity, all terms within the square brack- The jet exits through a nozzle having a diameler 2R

ets must evolve in the streamwise direction in the same mar=55 mm in a large laboratory room whose temperature re-
ner. Since the second of these is constant, all the others mud@ined fairly constant0.5 °C) throughout every single set

also be constant, viz. of tests. The traversing system allows three degrees of free-

dom in the streamwis&x), lateral(y), and vertical(z) direc-

T const, (13)  tions with a resolution of 1, 0.02, and 0.01 mm, respectively.

4 Hereafter, the results will refer to this coordinate system and
data for the streamwise and lateral radial, p) directions

Ugpt?dQ will be presented—in which the fluctuating velocity compo-

———_ =const, (14 - i

Q dx nents aral andv. The corresponding uppercase quantiti¢s,

andV, are time-averaged values.
de The velocity data were acquired with in-house hot wires
Uo&€:const, (15  and DISA anemometeré55M01 mode). Both single and
X-wire probes were used, the latter with an angle between
the wires of nearly 90° and a lateral separation between the

%Mﬁ: const, (16) wires of approximately 0.8 mm. The hot wires were etched
dx from Pt-10% Rh to a diameter af,=2.5 um and the active
lengthl,, was chosen so as to have an aspect fgiid,, of
dUoR 5 _ const, (17  nearly 200.
dx Q Velocity and angle calibrations were carried gusitu at
the jet exit plane. For the speed calibration of the single wire,
(Ononit? a third-order polynomial law was fitted to the anemometer
—q - const (18 output voltage as a function of the mean velocity. The

X-wire was calibrated at several values of speed and angle in

(where the dependence enhas been dropped for simplic- the ranges of +40fin steps of 10f and 0.9—-17.2 mg, re-
ity). spectively. This set of values was used as a look-up-table

Equation(18) suggests that can be identified with;  (LUT), during data reduction, to estimate the velocity
(hereafter, for simplicity, the exponent 2 if has been through spline interpolations. The LUT method was verified
dropped when it appears as a subsgrighich is defined as to perform better than an effective angle metfdayhich
(g?/{€)nom 2 sinceQ(x) represents the limiting valu@r  assumed a constant sensibility coefficient for the lateral ve-
2(g?)) of ((89)? for large separationsThe relevant length locity. The percentage of drop-outs was always less than
scale which emerges from the above analysis is the Taylat.2%. The exit velocity of the flow was inferred from a Pitot
microscale\,. As has already been found for decaying ho-tube connected to a Furness FCO12 micromanoniéaér
mogeneous isotropic turbulen ffeand the homogeneous scale=20 mmKO, least count=0.048 mmi®). The single
shear flow*°the Taylor microscale appears to be the lengthwire data were used as a check of the X-wire response and
scale relevant to the whole of the energy spectrum. This reldifferences in the mean values of the velocity were always
evance apparently reflects the fact thgtombines informa-  below 2%. The anemometer signals were acquired by means
tion about both large and small scale quantities, and negated a 16-bit AD board into a PC. Errors in the main turbulent
the criticisnf that\, has no direct physical meaning. This is, quantities, given in Table I, were calculated by repeating the
perhaps, not surprising given the rather complex rol¢epf = measurements 30 times aE60D and applying the error
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TABLE I. Uncertainties in several turbulence quantitipsrcentage valugs =~ TABLE Il. Some parameters of the j¢the values of the turbulence Rey-
nolds numbers are averages over the rangs 3% < 90).

U u'? v'? {(aul 9x)?) (vl dx)?) R, Ry
U; Re v R\ Ryq
08 43 3.3 6.9 4.6 5.2 2.7 (ms™d) — m2s — —
35.1 1.3x10° 1.5X10°° 450 363
estimation with 1:20 odd%’ Basic flow parameters are given
in Table Il, while some velocity statistics for several values
of x/D are reported in Table IlI. B. Effect of modifying Taylor's hypothesis

The present hot wire measurements have been done with
a static hot wire, i.e., the time-varying velocity signals were

The X-wire has a finite spatial resolution dictated by acquired with probes at a fixed location. To obtain informa-
both the length of the sensitiyetched part of the wire and tion in terms ofx instead oft, a time-space transformation is
the distance between the two wires. A quite general proceinvoked. This is usually performed via Taylor's hypothesis,
dure for correcting the spatial attenuation of this probe wawiz.
given by Wyngaard? The treatment was developed in spec-
tral space since it is easier to account for the integration
effect on Fourier components of the velocity. To assess thehen the delayr is not too large(in this section the three
attenuation function, the shape of the three-dimensional enselocity components are sometimes indicated with numbered
ergy spectrum of the velocity needs to be assumed. Here, waubscripts In this case, time and space derivatives are re-
have chosen the form used by Martinezal”® and the at- lated by
tenuation function was evaluated in accordance with the pro- =~ __ (19)
cedure of Zhu and Antoni, who extended Wyngaard's Lt 111
original analysi€’ This procedure takes into account the ef-where repeated indices imply summation, a comma indicates
fects of the included angle between the wires, the length oflifferentiation and i=(1,2,3. This approximation—
the wires and the separation between the wires, and assumassuming that) can be replaced by the mean streamwise
the form of a correction function which is applied to the velocity U;—is acceptable for small turbulence intensities,
spectral content of the velocity and, consequently, the energy’ /U, since, in this case, the turbulence can be thought to be
dissipation rate, fou and v. The spectral correction was advected by a constant convection velocity. In the far field of
applied after the velocity data were re-sampled according ta jet, the turbulence intensity is about 25% and such an ap-
the modified Taylor’s hypothesis, which is described in someproximation can lead to large errors, since the velocity fluc-
detail below. Corrections fau” andv’, due to spatial attenu- tuations are high enough to render the concept of uniform
ation, were within 0.7% of the original values, while the translation questionable. Flying-hot-wires are sometimes
values of(du/ dx)'? were corrected upwards from 10% to 2% used to alleviate this problem by introducing an additive
(betweenx/D=30 tox/D=90, respectivelyand the values transport velocity, thus fictitiously reducing the turbulence
(dvldx)'? from 26% to 6%, over the same rangexéD. The  intensity. It is not practical to use flying-hot-wires because of
radial component is, thus, more affected by the spectral athe complications involved in displacing the probe at suffi-
tenuation correction, for the X-probe configuration we usedciently high velocities and performing ensemble averages.

A. Correction for the spatial resolution of the X-wire

u(xt) =u(x-Urnt+ 1),

TABLE IIl. Results for the velocity scales on the jet axis.

x/D U u’ v’ u'fv’ (P) {(aul ox)?) (o] 9x)?) I

— (ms™ (ms™) (ms™? — (m?s7?) (s)x10° (s x10° —

30 7.9 1.8 1.4 1.24 7.1 1.9 3.4 1.8
35 6.7 1.5 1.2 1.21 54 1.2 2.3 1.9
40 5.9 1.3 1.1 1.21 3.9 0.69 1.2 1.8
45 5.2 1.1 0.94 1.21 3.1 0.43 0.7 1.7
50 4.6 1.0 0.82 1.23 2.4 0.26 0.44 1.7
55 4.2 0.92 0.77 1.20 2.0 0.20 0.30 1.6
60 3.8 0.86 0.71 1.22 1.7 0.13 0.21 1.7
65 3.5 0.78 0.65 1.20 14 0.094 0.15 1.6
70 3.2 0.74 0.60 1.24 1.3 0.072 0.12 1.7
75 3.0 0.70 0.57 1.22 1.2 0.056 0.10 1.8
80 2.8 0.67 0.51 1.30 0.97 0.039 0.066 1.7
85 2.6 0.61 0.49 1.26 0.85 0.035 0.057 1.6
90 2.4 0.58 0.46 1.27 0.77 0.026 0.042 1.6
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Velocity spectra in the far field of the jet requires long and 60 ‘ o
continuous velocity signals at a fixed location and the flying-
hot-wire technique is in conflict with these requirements. In

the present work, a modified version of Taylor’s hypothesis, Y
Eq. (19), is used. The time derivative af is approximated i '
by E 3} MTH
|
Uit == Ui 1Ug — Uy, = 20 102_1 104
k m™)
wherej=(1,2,3. With the further assumption that the spa- 10
tial derivatives of the velocity fluctuations in directions 2 and
3 are negligible, we obtain % 000 2000 6000 s000
-1
Upg==Ug Ug = Ugly 1= = Up 2(Ug + Uy), (20) fomo

FIG. 1. Spectrum of the energy dissipation rateuofx, applying Taylor’s
Upe=— U2,1U1 —Ulp = - U2,1(U1 + Ul)v (21) hypoth¢§|s; —, corrected for ;pat|al attepuahon after a}pplymg"l.'aylors hy,-

pothesis; -, corrected for spatial attenuation after applying modified Taylor’s

hypothesigMTH). The inset shows the spectrumwéccording to Taylor’s

Ugy =~ U3,1U1 —UUg 1=~ U3,1(U1 +U;). (22) hypothesis and MTH.

This approach, which is hereafter referred to as modified

Taylor's hypothesis or MTH, differs somewhat from that of srycture functions since a procedure equivalent to that pre-
Lumley”” and Heskestatf, who used a large scale convec- viously outlined for the spectra is not available in physical
tion velocity. We have found that the use of a large scalgypace.
convection velocity resolves in only slight changes in the  Tpe algorithm for applying the MTH is similar to that
high wave number part of the andv spectra, compared to sed by Kahalerrast al?® for assessing the effect the cor-
the use of the instantaneous convection velocity. For eXraction has on the velocity spectrum and pdf. Our results
ample ((au/9x)?) and{(dv/9x)?) are approximately 2% and corroborate their conclusion regarding the major effect, es-
1.4% larger, when the large scale convection velocity is usethecially at small scales, of this correction. The application of
The time-space transformation of velocity derivativesthe correction for spectral attenuation and particularly the
amounts to resamplingunevenly the original (evenly  MTH was verified here to be important for obtaining reliable
spaced byAx=U,At, whereAt is the inverse of the sampling jnformation on the streamwise development of turbulence
frequency velocity signals at the new locations given by  guantities, in particular those based (@, such as\ andR,.

N

X, = > (Uq(t) + ug(t)At, (23) V. BASIC FLOW PARAMETERS
k=1
The jet issues from a round nozzle in a nominally lami-

where N is the number of samples arig=kAt. Here, the nar state with a turbulence intensity of nearly 1.5%, mainly
“new” velocity values atx, were obtained with a locally due to the low-frequency unsteadiness of the fan, and a top-
linear interpolation. This resampling procedure produces sighat velocity profile. The exit velocity i&); =35 ms* which
nals with similar characteristics to laser Doppler velocimetryyields a Reynolds number &a,=1.3x 10°. More details on
(LDV) signals, where the particle arrival times are not evenlythe state of the boundary layer can be found in Ref. 30. In the
spread but approximately follow @oisson probability dis-  far field,x/D = 30, the mean streamwise velocity on the axis,
tribution. The effect on the statistics of the velocity fluctua-U,, decays as shown in Fig. @vhere data from other
tions can be significant, as illustrated in Fig. 1, which showssources,”*'are also included The decay otJ;/U, is almost
kﬁq&u(kl), the 1D energy dissipation rate spectrum based on linear and the least-squares fit to the ddkee residual, viz.
[similar results, not shown here, hold fxﬁ'qﬁv(kl)]. The dis- the sum of the deviations from this fit, is 0)14éased on the
tribution calculated after correcting for the spatial attenuatiorrelation U,—/UO:C‘l(x—xo)/D, gives a virtual originx, of
is also reproduced. The major effects are concentrated dt4D and a value of 6.0 foC. These values are similar to
small scales, where Taylor’s hypothesis considerably overeshose in Ref. 15C=5.8, x,/D=4.4 from LDV measure-
timates the distributiorisee also the inset showing the en- ments andC=5.9, x,/D=2.7 from static hot wire measure-
ergy spectra The spatial attenuation correction acts in thementg for a jet atReg, = 10° issuing with a top-hat velocity
opposite direction, increasing the measured values at higprofile in a nominally laminar state. The decay rate constant
wave numbers, but is of minor importance, compared to thés also close to thatC=6.1) measured with a flying hot wire
effect of MTH. The measured isotropy of the small scalesin Ref. 32 withRg,=1.1x 10*. These values fo€ seem to
(ratio of the energy dissipation rates estimated from the twaonfirm the expectation that the mean velocity measurements
velocity componentsis improved by the application of are not too affected by the technique adopted. The linear
MTH and the spectral attenuation correction. decay rate oﬂJal along the axis is a consequence of the
The structure functions presented in this paper have beegglobal similarity of the round jet, as discussed in Sec. Il.
calculated from velocity signals corrected using the MTH.Similarity of different order statistics is achieved gradually
However, no spatial attenuation correction was applied to thas the flow progresses downstream: while the collapse of
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TABLE IV. Length scales on the jet axis.

x/D 7 N Nq Ly L, Lq Ng/m Lg/N\q
—  (mm)  (mm) mm) (m) (m) (m) — —

30 0.096 4.0 3.7 0.060 0.035 0.043 38 12
35 0.11 4.3 39 0.071 0.042 0.051 37 13
40 0.12 4.9 46 0079 0.047 0.057 37 12
45 0.14 55 52 0.092 0.053 0.065 37 13
50 0.16 6.3 59 0.10 0.060 0.074 37 12
55 0.18 6.6 6.4 0.11 0.067 0.080 37 12
60 0.19 7.7 73 0.12 0.070 0.085 38 12
65 0.21 8.0 78 0.12 0.071 0.086 37 11
70 0.22 8.7 8.2 0.15 0.088 0.11 37 13
75 0.23 9.3 8.6 0.15 0.098 0.11 37 13
80 0.26 10.7 9.7 0.19 0.098 0.13 38 13
85 0.27 10.4 9.8 0.17 0.10 0.12 37 12
90 0.29 11.4 10.8 0.21 0.13 0.15 38 14

Paalr) = {a(X)a(x + 1)) a?(x)).

We have also estimated the integral sdajeassociated with
(g?, defined such that

radial profiles of the streamwise velocity appears as soon as

x/D=8 (Ref. 8, p. 130, the linear decay of the mean velocity

is expected to apply beyondDzZO10 or 302 Turbulence
quantities are reported to be still evolving atD =408

quf'o (UEYUX+ 1)) + 20 (v (x + 1)KGP())dr,  (25)
0

Small differences, from one experimental setup to another, itivherer is the location of the first zero-crossing of the inte-
the coefficients of the decay may be attributed to the effectgrand. The ratiau’/v’, which quantifies the large scale an-

of the initial conditions andRe,.*

isotropy, is 1.25 on average. Hussein, Capp, and Gé&drge

Axial profiles of the streamwise turbulence intensity, and Panchapakesan and Lunifegbtained 1.25 and 1.3, re-

u’/Uq, and the ratios’ /v’ andL,/L, are plotted in Fig. 3,
where

L= j " pealD)r (24)

0

is the integral length scale ef(={u,v}). The upper limit of

spectively. The fact that these ratios are constant beyond
x/D=30 indicates that a relative equilibrium of these
second-order quantities has been achieved on the axis. The
turbulence intensity is close to 25%ompared to 22% in
Ref. 15 and 24% in Ref. 32which accounts for the large
errors associated with the use of Taylor’s hypothéasﬂéhe
average value of ,/L, is close to 1.75, on average, smaller
than the isotropic value of 2. For comparison, the grid turbu-

the integratiom, corresponds to the location of the first zero- lence of Ref. 22, at a distance=42M (M is the grid mesh

crossing of the correlation coefficient,

2.5
2 o
> o o © o
= o 0 o o0 oo
=1 o
>
3 Opooogoodgf?a?d
bnc 1
<
=
0.5
VVVVVVVVVVVVYVY
(50 40 60 80 100

x/D

FIG. 3. Variation along jet axis of rms values afand v, and ratio of
integral length scales associated withand v: V, u'/Uy; O, u'/v’; O,
L. /L,.

size) yields u’/v’=1.17 andL,/L,=2.6, but with much
lower turbulence intensityu’/U=0.025. Detailed tabula-
tions of some of the statistical quantities connected with the
velocity and length scales are given in Tables Il1I-V.

The radial profiles otJ (Fig. 4) collapse approximately,
when normalized by the local half-velocity radi(l®; 5). Sat-
isfactory collapse is also exhibited by the fluctuating inten-
sity profiles, Fig. 5. The normalized distributions (©f) ap-
pear to comply with similarity more satisfactorily than those

TABLE V. Dissipation rate coefficient and related length scales at three
streamwise locations.

x/D Ceio Cerom Ros =@ ehmom  €=U"*/{e)iso
— — — (m) (m) (m)

40 1.65 1.10 0.26 0.72 0.16
60 1.79 1.16 0.43 111 0.24
80 2.02 1.16 0.57 1.47 0.28
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Ref. 8. This constancy is in accord with the circular jet
results of Antoniaet al>*

The mean energy dissipation rate, estimated from isot-
ropy, is given by

FIG. 4. Radial profiles of the streamwise velocity at three axial locatiehs:
x/D=40; >, x/D=60; ¢, x/D=80. Ry is the half-velocity radius.

of (u?). This seems to be due to a reciprocal compensation of (o= 15 <@>2
the fluctuation intensities af andv, leading to a more uni- s '
form distribution of the mean energy.

The statistics of gu/dx) and (dv/dx), Table Ill, can be
used to characterize the behavior of the small scales. As _ 2
noted earlier, these spatial derivatives are inferred from time (€iso = 15v f 0 kadu(kdi,
derivatives, by invoking MTH. The first of these derivatives
is used to define the more conventional Taylor microscalévhere the 1D energy spectral densiy (k) is defined such
N(=u’/(auléx)"), which combines some of the large scalethat
properties, through’, with the characteristics of the smallest %
scales, via the velocity derivative. The variation Bf J du(ky)dk =u’2. (26)
=\u'/v along the jet axis is plotted in Fig. &, is approxi- 0
mately constant, with a mean value of about 450, and nearlyps normalization is global in nature, meaning that it con-

all the values are within the experimental uncertaifyr  sirains the area under to spectrum to a given value, and has
x/D <40, the similarity of the small scales statistics appears, pe applied to the spectrum calculated from a signal of

not to be achieved yet, in agreement with the suggestion i itaple duration to ensure that the velocity variance is esti-
mated correctly(If the original signal is broken up into con-
stant width windows, a common practice for reducing the
04 T T T scatter in the Fourier transform, a significant part of the en-
ergy at low frequencies may be lgsEubsequently, the Kol-
mogorov length and velocity scales are defined hy
=(1¥1{€)iso) M, ux=({e)isor)*, respectively. A homogeneous
expression for the mean energy dissipation rate is

| oarsl{G)AE) e

This departure from local isotropy seems consistent with the
observation by George and Huss&ithat, on the axis of the

. jet, local axisymmetry provided a more reliable estimate of
(e) than local isotropy. Having introducegk),, a more
general definition of the Taylor microscale would g

. . =52 /{nom 28 The corresponding turbulence Rey-
0 0.5 1 1.5 2 nolds number isR,q=((g?/3)*2\4/v, which is also in-
cluded in Fig. 6. The magnitude &, is smaller than that of
FIG. 5. Radial profiles of the streamwise velocity fluctuations intensities atR)" beCZause the energy _d|3$|p§t|on rate estimated using
three axial locations<l, x/D=40; >, x/D=60; &, x/D=80. Rys is the ((9v/ X)) falls short of the isotropic value and, thus, reduces
half-velocity radius. the estimate ofe)nom With respect tde);s,. The scatter in the

or, in spectral form,

[

0.35f :
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FIG. 8. Spectra of the turbulent enerdg®) in the range 35x/D <90
normalized by Kolmogorov scales. The inset reports the compensated spec-
trum (with m=-1.52 in semi-logarithmic scale, after averaging over the
axial stations, highlighting the inertial range power law.

values ofR,q is also reduced to 2.7%, and now all the points

for x/D =35 have the same value, to within the experimentaimore regular that the integrand. Because of the integral in
uncertainty. The reduced scatter Ry, reflects also the Eq. (28), the scaling range in the physical space should be
higher uniformity inx of (g% compared tqu?). narrower than in the spectral domdft’ We prefer to
Even though in this paper we focus on the axial develpresent both spectra and structure functions, primarily to
opment of the flow, it is interesting to have a brief look at thecrosscheck our conclusions, but also because of the likely

radial profiles of some quantities. Estimatestofiefined as
(nom! (P)%2, and the half-velocity radiuR, s are evaluated
for three axial stationgx/D=[40,60,8Q), Table V. The
nondimensional coefficien€, —R05<e)hom/<q2>3’2 is ap-
proximately constant unlik€, =R, «€)iso/u’3, which sub-
stantially increases witk. There is little doubt that the use of
(€)nom leads to an improvement in the similarity of radial
profiles of the energy dissipation rate, Fig. 7.

differences between these two quantities, which could lead to
possibly different interpretations. For example, electronic
noise contamination is more evident in the high wave num-
ber portion of the spectrum than at small separations in the
structure functions.

Differences between spectra and structure functions may
also arise because of different types of normalization they
are subjected to. The power spectrum satisfies an integral

The departure from isotropy of the small scales can beonstraint[Eqg. (26) for u and a corresponding one fai,

quantified by the ratid ={(dv/x)%)/{(ul 9x)?), Table Il
the average value dfis 1.7, in the range 38x/D<90. In
comparison, for grid turbulencé, is typically 1.8, slightly
closer to the isotropic value of 2. Champag}ﬁe/vho also
applied corrections for Taylor’'s hypothesis in high turbu-
lence intensity, reported a value lobf 1.6 atx/D=70 for a
round jet withR, =626.

VI. ENERGY SPECTRA AND STRUCTURE
FUNCTIONS

Having examined the analytical conditions for similarity

of the energy structure functions in Sec. Ill, we now proceed  |lim
to the experimental verification of these conditions in the

far-field of the jet. The relation betweet, (k;) and{(du)?),
viz.
(W% =2 f du(kp)[1 - cogkyr)]dk,, (28)
0

allows {(du)?) to be inferred frome, (k;). The transforma-

tion from the spectrum to the structure function involves an
integration and should, therefore, produce an output which is

Downloaded 01 Oct 2008 to 134.148.29.34. Redistribution subject to AIP

while the structure functions converge to logpbintwise
limits, at large separations, e.g.,

: <(6U)2> 2w 2
mTe T SR (29
((00)?) 20 2 )
im ul%( - ul%( :151’2011_2> N 0
<(50|)2> Au?) 2% 2 <1+ <v2>>
o UK Uﬁ ui _151/2 < 2>
(31)

In the far field of the jet, these limiting values should not
depend orx, sinceR, (or R,y and the ratio(v?)/(u?) are
constant(e.g., Figs. 3 and)6

A. Spectra
Figures 8—10 display the distributions of
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FIG. 9. Spectra of the turbulent energy’) normalized by the Taylor mi- FIG. 10. Spectra of the turbulent enerfn?) normalized byl and{q?.
croscale\y and the turbulent energy?®). The inset shows the distribution of

<qunormalized such that the area under the curve represents the mean energy

(g

corrected for this noise because of the subjectivity involved
in this procedurg.The level of collapse of the spectra was
dq(k) = dy(ky) + 26, (ky), quantified directly by calculating the dispersigniz. the
normalized using three main types of normalizatiqias rms)_of t_he spectral values at every wave number. The dis-
summarized in Table \Jl One of these is based on the Kol- Persion is defined as
mogorov scales anduy. The other two use the rms velocity

(Y2 (a={u,v,q}) and either the Taylor microscale or s [;bg(i)]' (32)
the integral length scale, [defined as in Eqg24) and(25)]. sP ?&q(T() '

The interest of using,, (or ((50)?)), hinges on the analogy
between the energy and the scalar structure funcffoms, Here, the tilde denotes normalization according to any of the
pointed out in Ref. 20 in the context of the scale-by-scalechosen parametric pairs and the overbar the average of the
budget for the circular jet. spectral density datéat the same wave numbefor all the

In general, from these figures, it appears ttle col- locations on the jet axi€n the range 35 x/D < 90). Values
lapse is adequate over the wave number range, for eachbf ogp are shown in Fig. 11, where the abscissa represents
choice of scaling parameters pajras might have been ex- the wave number divided by the maximum measured wave
pected from the constancy &,. The relatively wide range number, which corresponds quite closely to the Kolmogorov
of spatial locations used here, 8%/D < 90, reinforces this scale, at all the axial locations. Even though the curves are
conclusion. However, a close look at the spectra revealfttery (the spectra exhibit intrinsic scatjeit appears that at
some systematic trends. When the integral length scale isw wave numbers—corresponding to values of the length
used, Fig. 10, the spectra appear to come together moszale around —the dispersion is generally lowest when the
closely at relatively small wave numbers. With the Kolmog- normalization is based dn, whereas, at high wave numbers,
orov normalization(Fig. 8), this tendency holds at relatively the Kolmogorov-based scaling yields the lowest values of
large wave numbers. The normalization based\gnand  osp When the scaling is based og, the dispersion falls
(a?), Fig. 9, appears to provide a satisfactorily collapse forroughly between the two previous estimates, but a precise
nearly all wave numbergNote that, at very large wave num- wave number, for which either tHg,-based or Kolmogorov-
bers, the spectral density begins to increase. This upturn i3ased normalization is more pertinent, is not clearly discern-
clearly not physical and is due to electronic noise, which igble. In addition, it is also apparent that the dispersion in-
unavoidable in this type of experiment. Spectra were notreases at large wave numbers, regardless of the choice of

TABLE VI. Scales for the normalization of spectra and structure functicesults for pairs in squared brackets
have not been shown hegre

Spectra Structure functions
Length scales B, *=¢y +=((60)?) +=((69)»)
7 [k7, / mug] kn, » 1 mug [r/ 7, *1ug] rlm,lug
A [kn, e /Na'?] [k\, */IN02)] [rIN,*/a'?] [r/N, s {g?)]
Aq [Khg, */Nqa'?] KNg, o /N(0?) [r/Ng. */a'?] rINg, = 1{0?)
Ly.L, [KL,, */La'?] — [r/L,, */a'? —
Lq [KLg, */Lg(q®)] KLg, */Le(0? [r/Lg, */{g®] r/Lg, */{c?
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FIG. 12. Structure functions of, v, and q normalized by Kolmogorov

) ) . ) scales. Arrows against the two ordinates indicate limiting values, averaged
FIG. 11. Relative dispersiofusp defined by Eq(32)] of the spectra at  gyer the axial locations in the range €%/D <90, according to Egs.
differentx locations as a function df,. The three curves correspond to the (29) (31).

three different normalizations used in Fig. 8—-10. Normalization based on:
—, integral length scale an{y?); -——, Taylor microscale an¢y?); ---,
Kolmogorov scalesk;,,, corresponds to the largest wave number for which
the spectra have been calculated. and Orlandi found that for sufficiently larg&, normalization
based onux and 7 provided a better collapse d(k) and
T(k)—the 3D energy spectrum and nonlinear energy transfer
scaling parameters. This seems to be caused by the contribfinction, respectively—than a normalization basedah'/?
tion from electronic noise. andX.

The compensated distribution af, (inset of Fig. §
highlights that there is a significant range of scales where thB. Structure functions
spectrum follows a power law. Over this range, a least
squares fit to the spectrum yields a slopensf-1.52, com-
pared to the prediction of -1.67 of KoImogoFBvand

Structure functions ofy?, normalized according to the
parametric groupings set out in Table VI, are represented in
9 s o '~ Figs. 12-14. Previous comments on the relative behaviors of
Obukhov; the difference being likely produced by the finite yhe pectra for the three types of normalization considered,
value of R,."" " Such anad hoccompensation of the spec- 454 apply in general to the structure functions. These curves
trum does not highlight the spectral “oump” at the high-wave, e however, smoother, compared to the spectra, hence the
number end of the scaling rang although this feature giscrepancies between different normalizations are less am-
woultg/?t’)ecome noticeable when the spectrum is multiplied byyiqous. From these figures it can be inferred that the Taylor-
(kym)>". ) o ) ‘based normalization performs adequately for almost all sepa-
The inset in Fig. 9 shows that the most energetic scale igatjons. Nonetheless, at small separatiopsand  provide a
located atkhq=0.05. This provides an estimate of the inte- heier quality of collapse of the structure functions. Finally,
gral length scale, which is indeed nearly 20 times larger thaghen the integral length scale, and (@®)Y? are used, the
\q (see Table Y. By comparison, for active grid turbu'ﬁgce collapse at large separations appears to be improved. In order
at R, =262, the peak in the energy spectrum ikat0.1,""  ; quantify this improvement, we estimate once more the
which corresponds to an integral scale of 0.1(see their dispersion, defined, analogously to E®2), as the root-

Table I), while the Taylor microscale is-16 times smaller. . squarerms) value of((5g)?) (at every value of ) for
The larger separation betwergandL in the jet reflects the

higher Reynolds number, since one expdcts to be pro-
portional toR, (if local isotropy is assumed

Georgé'4 showed that, for decaying homogeneous and
isotropic turbulence) and(g?)'? are scales which allow the
spectral energy equation to admit to similarity. Support for 10° b
this was provided by grid turbulence measurements of
Comte-Bellot and Corrsiff: The grid turbulence data of An-
toniaet al® also provided support for and(g?)*/2. However,
these authors also found that the Kolmogorov variables
and 7 collapsed the high wave number partdf satisfacto-
rily, at least as well as a-based normalization. As there was
no attempt to quantify the degree of collapse, it was not
possible to assess unambiguously the relative merits of these 107
two normalizations at largé;; the difficulty was possibly 107
compounded by the insufficient spatial resolution of the hot

wires. Recently, USin_g well reSOIVeq DNS (;iata for low ReY_'FIG. 13. Structure functions of the mean energy normalized by the Taylor
nolds number decaying turbulence in a periodic box, Antonianicroscalex, and the turbulent energig?).
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is close toAq. It would seem that the Taylor microscale cor-
responds to the scale where the large and small scales nor-
malizations exchange roles in terms of collapsing the struc-
ture functions. This feature could be taken into account in
devising an empirical parametric model of the structure func-
L tions.
] ] The limiting values of((8a)?)/uZ, calculated assuming
local isotropy in Eqs(29) and(30), are reported in Fig. 12,
102 ] as indicated by the open arrows. The values are 22a éord
147 forv, approximately 5% lower than the measured values
(233 for u and 155 forv). In comparison, for two-

> = . dimensional wakes behind cylinders, the limit fodisplays
10 ,1/2 0’ the same level of accuracy, while that ferhas a marked

! dependence on the type of wake generatdhe limit of

FIG. 14. Structure functions of the mean energy normalized by the integra((éq)zﬂui, as estimated using E@31), is also reported in
length scaleq and the turbulent energy?). the same figure: Its value is 522, viz. nearly 4% smaller than
the average measured val(&4).

imiti 2
all the values ofx/D, normalized by the mean valuedi- The approach towards the limiting values (65a)®) as

cated by the overbaof ((59)?) over different axial stations, [ IS achieved in a monotonic manner, i.e., there is no
ie marked periodicity in the flow and the role of the large co-

herent structures may be very limited from an energy view-
_ K037 (33 point. An opposite trend was observed in the cylinder wakes
SFT(69)?) examined by Antoni&t al;? there, the structure functions of
, N ) i the lateral velocity component exhibited a clear overshoot
The re;ult is plotted in Fig. 15 in .terms of t.he Sepaf?‘“on before returning to their limiting valuéaccordingly, there
normalized by the largest separation used in calculating thﬁ/as a distinct peak in the spectrunThis behavior reflects

structure functions. As was observed for the spectra, thg,, persisting action of the vortices shed by the wake gen-
smallest values ofrs at smallr correspond to the Kolmog- erators. Speculatively, for the 2D wake, for whiRh is also

orov normalization. At large separat;olr/tzss,F is smallest for o, rant along, the similarity of structure functions and
the normalization based o, and(g*) K The differences spectra may be less satisfactory than for the(fieis point
between the three curves fogg are relatively Igrger'at small needs to be investigated in a future resear€ioherent struc-

r than larger. In the latter case, the undulationsd@e are  yre5 in the far field of the jet have been investigated by
apparently linked to the variations in the limiting values— aans of phase averaging by Tso and Hud&4iat the en-
Egs. (29~31—which reflect the finite duration of the ve- ¢qy content of the most probable helical structures remains
locity records. A Taylor-based normalization providesa@h  itficylt to assess directfff The success of the scaling of the

equate overall collapsesince the corresponding values Of gicryre functions and spectra found here is compatible with
ogr lie between those for the other two normalizations for picture where the coherent structures do not play a domi-

log(r)/log(rma,) =0.7, attaining comparable values to the in- nant yole. A connection between the scaling of one-point sta-
tegral normalization for larger separations. Interes_tlngly, th8istics and the organization of the flow has been recently
crossover between thg-based and.-based normalizations iy estigated in Ref. 47 where it was shown that the collapse

of the momentsgup to order thregof velocity fluctuations in
a shear layer is improved when the coherent structures are
inhibited.

7R
s

107

VII. CONCLUSIONS

Traditional arguments indicate that mean velocity and
Reynolds stress profiles in a round jet should exhibit a self-
similar behavior. However, the influence of the initial condi-
tions or Reynolds number on this similarity state cannot be
ruled out, as indicated by Georgédany analyses of single
AV point statistical moment§.e., those related by the Reynolds
0 02 03 o5 o3 ] avergged.equaﬁom:.have been reported for the round jet in
log(r)/log(r,__) previous investigations. We have preferred to focus on the

two-point statistics—that is, involving the difference of the
FIG. 15. Relative dispersiofus, defined by Eq(33)] for the structure  velocity at points separated in time, converted to a spatial
funcuon; normah;ed in three different Way hax corresponds to the largest eparation via Taylor’s hypothesis—and have applied a simi-
separation for which the structure functions have been calculated. NormaF . . .
ization based on: —, integral scale; -——, Taylor scale; Kolmogoroy larity analysis to the transport equation for structure func-
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