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Abstract. In this paper Manning random alloy model has been extended to the binary 

nonstoichiometric intermetallic compound of the B2 structure. Two sub-lattices, that are 

dynamically independent in six-jump cycle (6JC) mechanism, are coupled together by taking into 

consideration the vacancy motion as a sequence of nearest neighbour jumps in random directions. 

The linear response expressions for the phenomenological transport coefficients are evaluated 

making use of the kinetic equation approach. The expressions for collective correlation factors are 

derived in terms of the equilibrium partial atomic concentrations and jump frequencies. Results are 

compared with Monte Carlo simulation results using the four-frequency model. 

 

Introduction 

Much of the interest in collective correlation factors has centered on the random alloy model 

because Manning [1] has provided far-reaching formalism for correlation effects which can also be 

made to give accurate expressions for the collective correlation factors [2]. The Manning relations 

are of special significance since they provide relationships between the phenomenological 

coefficients of non-equilibrium thermodynamics and the tracer diffusion coefficients, or, 

equivalently, relations between the collective correlation factors and the tracer correlation factors. 

Apart from the Manning formalism, there have been various other expressions derived for collective 

correlation factors. Sato, Ishikawa and Kikuchi [3] derived expressions for the collective correlation 

factors within the framework of the path probability method [4]. Qin and Murch [5] used a diffusion 

of probability approach for calculating the collective correlation factors using the cosine expansions 

of the collective correlation factors. Wang and Akbar [6] calculated phenomenological coefficients 

Lij in the Ising alloy model taking B1 and B2 structures using the original path probability method 

of Sato [4]. Qin and Allnatt [7] have also used a matrix method for the calculation of the collective 

correlation factors via the collective cosines. In another approach Belova and Murch [8, 9] 

generalized the Manning [1] formulation to two or more sub-lattices of different compositions. The 

results when compared with simulated values were only in fair agreement. Belova and Murch [10, 

11] then used the 6JC mechanism, first introduced by Elcock and McCombie [12] in the limit of 

perfect order, to calculate the phenomenological coefficients and the collective correlation factors. 

The results obtained with effective jump frequencies taken from Arita et al. [13] were found to be in 

very good agreement with simulation data at stoichiometry and in the asymptotic limit ( )0T → . 

The 6JC mechanism, however, weakens when disorder is introduced either by temperature increase 

or by non-stoichiometry. 
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In the present paper, we have extended the random alloy model developed for tracer 

diffusion [14] to the calculation of phenomenological coefficients and collective correlation factors 

in a binary AB intermetallic compound taking the B2 structure. On account of non-stoichiometry, 

disorder arises by the presence of antistructural atoms on the host sub-lattices of A and B atoms. If 

we assume that initially a vacancy is on one of the sub-lattices (and perfect order conditions) then it 

will exchange its position with atoms on the other sub-lattice, resulting in an antistructural atom on 

the first sub-lattice. Hence, soon an ordered structure will result in a highly disordered one. The 

dynamics can be followed by the introduction of four frequencies [8]. Although the algebraic 

structure of the present calculations is similar to that of the tracer, the level of approximation is 

different. The expressions for the collective correlation factors are derived for both atomic 

components at small deviations from stoichiometry. The results are compared with Monte Carlo 

simulation data obtained with the four-frequency model, reduced to only two independent 

frequencies. 

 

Transport Coefficients 

We consider the B2-type AB intermetallic compound where 1 constitutes the home sub-

lattice of B atoms and 2 is the home sub-lattice of A atoms. We assume that all sites of a given sub-

lattice are energetically equivalent. There will be four frequencies with two different types of 

vacancies [8]; V1 = vacancy on sublattice-1 only and V2 = vacancy on sublattice-2 only. The four 

frequencies are 
21

AA
WW

1

→
≡ , the atom-vacancy exchange frequency when A atom is on 

sublattice-1 and vacancy on sublattice-2. Similarly, we define 
12

AA WW
2

→≡ , 
21

BB WW
1

→≡  and 

12

BB
WW

2

→
≡ . 

 In a two-sublattice system, the phenomenological transport coefficients Lij (i, j = A, B) can 

be expressed as [15] 

  

∑=
βα,

jiij βα
LL          (1) 

where α  and β denote the sub-lattices 1 and 2. We now use a linear response approach [16] for the 

phenomenological coefficients 
βα jiL  and divide them into uncorrelated and correlated parts. The 

uncorrelated part (0)

ijL  can be obtained as:  
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where we have used the detailed balance condition:   

  
11222i iiViiV WCCWCC =         (3) 

Here N is the number of sites per unit volume, Z is the co-ordination number in bcc lattice, s is the 

nearest neighbour jump distance, ijδ  is the Kronecker delta function and kB and T have their usual 

meanings.  

Further, the correlated parts of the phenomenological coefficients can be expressed as 
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Here β≠βα≠α ',' and . The φ  functions are defined as 
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The function Ψ  is the conditional probability of finding, at time t, the vacancy at site λ  on the 

sublattice-α′  and atom of species i at its nearest-neighbour site ( )sλ−  on the other sublattice-α 

when initially the vacancy was at any site λ 0 on sublattice-β′  and the atom of species j was at its 

nearest-neighbour site ( )0sλ 0 −  on sublattice-β .  

In the above we find that there are four kinds of φ  functions for two values of i and j. Again 

each φ  function will be of four kinds for different values of α  and β . The number of these 

unknown φ  functions can be reduced if we note that the nearest neighbour of a vacancy can be 

occupied by either A or B atoms, the total occupancy probability of which is unity. Thus the 

occupancy probability of A atoms in the definitions of Ψ  functions can be expressed in terms of B 

atoms only. Substituting this into Equation 4 one finds that the terms involving φ functions that are 

independent of s or s0 or both vanish [17]. The final expression for the correlated part then becomes: 
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Now using the definition of Fourier transform: 
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Equation (6) can be expressed as 
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Here we have defined 
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and used the symmetry of the integral to fix a particular value of s0 , say  )ˆˆˆ(
2

a
0 zyxs ++= . 

The collective correlation factors can be expressed as:  
( )

( )0
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The superscript in f will be omitted when i=j. 

 

Kinetic Equations 

The kinetic equation for ( )rλλ, −Ψ
21BV , the probability of finding a vacancy at time t at site 

λ  on sublattice-1 and the  atom of B kind at site ( )rλ −  on sublattice-2 when the system was in a 

given initial state, can be written as: 

( )
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≠

22121221 pBVppBVp
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                      (11) 

Here p=A, B and ( )rθ  is a step function, which is unity when r = s and zero otherwise. The kinetic 

equation relates the n-site probability function to the (n+1)-site probability functions, leading to a 

hierarchy of rate equations; the classification here is chosen according to the number of lattice sites, 

the occupancy of which is specified at time t. The problem is of finding workable and useful ways 

of truncating this hierarchy. In the present paper, we first expand the probability functions in terms 
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of the fluctuations of the atomic site occupancy variables (but not of the vacancy) about their mean 

values. Then we use the simplest decoupling approximation [18,19] and terminate the hierarchy by 

neglecting all terms of second order in these fluctuations. Further, we add and subtract terms with 

rr ='  in the summation over 'r . Then, by integrating with respect to t and taking the sum over λ on 

both sides of Equation 11, we soon have: 

 ( ) ( ) ( ) ( ) ( )[ ]r-rrrλ,λ
2121221 BVV2BV1
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BV φWWφWθ0t;Ψ −−==−−∑  

                      ( ) ( ) ( )[ ]rr'rr'
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φWφWθ −−+∑            (12) 

Here  

llill BBAAV WCWCW +=    ; l=1,2               (13a) 

is the vacancy escape frequency from the l
th 

 sub-lattice and 

 
llll ABBAl WCWCW +=   ; l=1,2               (13b) 

 
llll ABBAl WCWCW

′′
+= ; ll ≠′                (13c) 

Now multiplying both sides of Equation 12 by iK.r
e  and taking the sum over r, we get 
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Here, we have defined: 

 ( ) ( )0t;Ψe0t,φ~
2121 BV

r

i

BV
=== ∑∑ λ,λ-rK

λ

K.r               (15a) 

 ( ) ( ) K.s

sr

K.r
rK

ii eθeθ
~

∑∑ ==                             (15b) 

 Similarly, we can write the kinetic equation for the probability function ( )rλ,λBV −Ψ
12

 and 

proceed as above. The resulting equation in fact can be obtained from Equation 14a by 

interchanging of 1 and 2. We shall denote this equation as Equation 14b. From these two equations 

an appropriate generating function can be obtained if we first add Equations 14a and 14b and then 

subtract Equation 14b from Equation 14a. This results in two coupled integral equations for the 

unknown functions 
1221 BVBV and φφ . As shown earlier by Chaturvedi and Allnatt [17] for the 

dumbbell mechanism, instead of solving the integral equation it is much more convenient to solve 

directly for the U functions, defined by means of Equation 9. Finally, using the symmetry properties 

of Brillouin zone integrals we derive two linear equations for the U’s in terms of the static 

correlation functions, which in random alloy model can be trivially evaluated for a given initial 

state. Thus the equation that results from the addition of Equations 14a and 14b for the two initial 

configurations, i.e., when vacancy is on sublattice-1 and a B atom at its nearest neighbour site on 

sublattice-2 and when vacancy on sublattice-2 with a B atom on sublattice-1, finally yields:  

 
221 ABV112211 CCCJUbUb =+                (16a) 

112 ABV122221 CCCJUbUb =+                (16b) 

Here 
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For the bcc lattice, the value of J turns out to be 0.15793. 
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Similarly, the equation that results from the subtraction of Equation 14b from Equation 14a finally 

yields: 

221 ABV211112 CCCJUdUd =−               (19a) 

112 ABV221122 CCCJUdUd −=−               (19b) 

where 

( ) ( )JWWJ1Wd llVl l
−+−=   ; l=1,2                (20) 

By solving Equations 16a, 16b, 19a and 19b, the U-functions can be obtained as 
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By using the detailed balance condition (Equation 3), it can be shown from Equations 21c and 21d 

that U21=U12. This gives LAB=LBA showing that our formalism satisfies the Onsager reciprocity 

theorem. The final expressions for the collective correlation factors AAf  and )(A

ABf  can be written as: 
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The expressions for BBf  and )(B

ABf  can be obtained from AAf  and )(A

ABf  respectively by interchanging 

A and B. 

 

Results and Discussion 

 The Monte Carlo computer simulations were carried out for the ‘random alloy’ sub-lattice 

model at and near the stoichiometric composition. The four jump frequencies were chosen as 

1WW
21 BA ==  and αWW

12 BA == , where α  is a parameter. The equilibrium composition of A-

atoms, i.e., CA was varied from 0.45 to 0.5. The collective correlation factors ( ) ( )B

AB

A

ABBBAA fandfff ,,  

were obtained as a function of CA for different values of α  =0.1, 0.08 and 0.06. 

The theoretical results of collective correlation factors are compared with Monte Carlo 

simulation data as a function of CA for fixed values of α  =0.1, 0.08 and 0.06 in Figures 1, 2 and 3 

respectively. The results are in reasonably good agreement with the simulation data when the ratio 

of jump frequencies of structured and antistructured atoms is of the order of 10
-1
. We note  
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Figure 1. Collective correlation factors (B)

AB

(A)

ABBBAA, f,f,ff  as functions of A-atom concentration CA 

for 0.1α = . Solid lines - calculated values,  * * * - simulation results. 

 
Figure 2.  Collective correlation factors (B)

AB

(A)

ABBBAA, f,f,ff  as a function of A-atom concentration CA 

for 0.08α = . Solid lines - calculated values,  * * * - simulation results. 
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Figure 3. Collective correlation factors (B)

AB

(A)

ABBBAA, f,f,ff  as functions of the A-atom concentration 

CA for 0.06α = . Solid lines - calculated values,  * * * - simulation results. 

 

that at the stoichiometric composition the results of fAA and fBB are equivalent. As CA decreases the 

agreement of fAA with the simulation results becomes better but this is not so for fBB. This is due to 

the fact that as B atoms concentration increases, the vacancy can escape via a network of B atoms 

[8, 20]. The agreement of our results with computer simulation is much better for the cross 

correlation factors (B)

AB

(A)

AB f,f  than for BBAA, ff . The results are in reasonably good agreement up 

to 0.08α = . 
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