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Abstract.  Tracer diffusion by way of vacancies is investigated in B2 intermetallics 

AB by means of a kinetic equation approach. The model used is one with four inter 

sub-lattice frequencies where each sub-lattice is treated as a random alloy. 

Coupling is achieved between the two types of cycles, i .e . ,  with the vacancy 

starting on one sub-lattice and finishing on either sub-lattice and with a vacancy 

starting on the other sub-lattice and finishing on either sub-lattice. An expression 

for the tracer correlation factor is derived in terms of atom vacancy exchange 

frequencies and atomic concentrations.  Results from this expression are compared 

with Monte Carlo calculations and also results  from a previous Manning-type 

random alloy approach to the problem. 

 

Introduction 

       Intermetallic compounds form when two unlike metals diffuse into one 

another with individual elements taking up preferred positions within the crystal 

structure. Unlike conventional alloys that have no definite atomic formula, these 

compounds have a definite stoichiometry with a limited composition range. 

Recently, there has been considerable interest in the study of diffusion kinetics in 

intermetallic compounds because of their applications in modern technology: some 

of these compounds offer low density, a high strength at elevated temperatures and 

a high corrosion resistance.   
       Since an extensive review on diffusion kinetics calculations in intermetallics 

has been provided very recently [1], in the following we will  give only a very brief 

coverage and then only of tracer diffusion. It  was recognized very early in the 

literature on diffusion in intermetall ics that a vacancy moving on a sequence of 

jumps in random directions, as in a pure metal , would soon leave a trail of 

extensive disorder in its wake. To avoid this difficulty,  a vacancy must inevitably 

be confined to an ever-smaller set  of lower energy penalty jump sequences as the 

overall order increases.  At the limit  of perfect order, we have the six-jump-cycle 

(6JC) mechanism [2]. In this mechanism, starting from a fully ordered 

configuration for a stoichiometric AB alloy taking the B2 structure the vacancy 

progressively disorders the structure in its first three effective  jumps. In its  

following three effective jumps the vacancy progressively re-orders the lattice 

resulting in the fully ordered configuration once again.  By the end of the 

sequence of six (effective) vacancy jumps, tracer diffusion has occurred. 

Punctuating this sequence are of course numerous jump reversals caused by many 

of the antistructural  atoms formed during the sequence returning immediately to 

their original sites. Belova and Murch [3] have shown in computer simulations that 

the 6JC mechanism certainly operates at high levels of order and at the 

stoichiometric composition. With the pure 6JC mechanism, tracer diffusion at non-
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stoichiometric compositions does not allow for the participation of anti-structural 

atoms produced by non-stoichiometry.  Furthermore,  there is  no means for 

switching between the two types of cycles, that is a 6JC with the vacancy starting 

and finishing on one sub-latt ice and a 6JC with a vacancy starting and finishing on 

the other sub-lat tice.  Belova and Murch [4-6] extended the idea of the 6JC to non-

stoichiometric compositions using an analogue of the five-frequency model for 

impurity diffusion via vacancy jumps. They derived expressions for tracer 

correlation factors and tracer diffusivities and verified the expressions by Monte 

Carlo computer simulation of the well-known Ising alloy model.   

       The Ising model itself has been used on a number of occasions to provide 

analytical expressions for the tracer diffusion coefficients in intermetallics [7-9].   

Such calculations do not include the 6JC mechanism explicitly but attempt to 

imply it  at high levels of order. In general, when compared with results of Monte 

Carlo computer simulations these calculations do quite well at low levels of order 

but tend to fail at high levels of order when the 6JC operates.  The Ising model 

describes the jump frequencies in terms of (specified) atomic interactions.  A 

different  model, which directly specifies the frequencies for a limited number of 

types of jumps, has also been introduced [10-14].  In its form for the B2 structure 

there are four atom-vacancy exchange frequencies for the various inter-sublattice 

jumps (intra-sublattice jumps can be ignored for this particular structure if the 

intermetallic being addressed exhibits primarily antistructural disorder). These 

calculations use an extension of Manning’s diffusion kinetics formalism for the 

random alloy. Similar to the calculations for the Ising model, the calculations are 

in good agreement with computer simulations at low levels of order but there are 

considerable deviations at high levels of order. Avenues for improvement are 

limited. In the present paper we adopt the four frequency model but use a different 

approach that is based on kinetic equations. This approach has an advantage in its 

transparency which will allow for systematic improvement in due course.   

 
The Tracer Correlation Factor 
 We consider a B2 type AB intermetallic compound where 1 constitutes the 

home sub-lattice of atoms of B kind and 2 is the home sub-lattice of atoms of A 

kind.  Let B1  and A1  respectively denote the regular and antistructural atoms on 

sublattice-1 and A2 ,  B2  respectively denote the regular and antistructural atoms on 

sublattice-2. If  the atom-vacancy exchange frequencies depend only on the type of 

atom jumping and the sub-lat tice, there will be four frequencies with two different 

types of vacancies;  V1  = vacancy on sublattice-1 only and V2  = vacancy on 

sublattice-2 only. The four exchange frequencies are 21
AA WW

1

→≡ ,  the atom-vacancy 

exchange frequency when an A atom is on sublattice-1 and vacancy on sublattice-

2. Likewise,  we define 21
BB WW

1

→≡ ,  12
AA WW

2

→≡ ,  12
BB WW

2

→≡ .  In the case of tracer 

diffusion, in addition there will formally be two further frequencies 21
TT WW

1

→≡  and 

12
TT WW

2

→≡  for T1  = tracer on sublattice-1 only and T2  = tracer on sublattice-2 only,  

respectively.  For very dilute vacancy and tracer components,  the species 

compositions for the four-component system can be written as [10,11]:  

 AAA C2CC
21
=+  

 BBB C2CC
21
=+  

        1,2i,1CC
ii BA ==+  

         1CC BA =+                             (1) 
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Here CA is the fraction of sites occupied by A atoms, etc. For a stoichiometric B2 

structure CA is equal to CB .  The compositions and the frequencies are related 

through detailed balance expressed as:  

         B,A,Tj,WCCWCC
112221 jjVjjV == .                                                        (2) 

 Following Belova and Murch [15],  the phenomenological coefficients for 

tracer can be expressed as: 

 
212211 TTTTTTTT L2LLL ++=                           (3) 

where the Onsager relation ( )
1221 TTTT LL =  has been used. We can now apply the usual  

definit ion (see Allnatt and Lidiard [16]) to express the sL
'  as a sum of 

uncorrelated L
(0 )

 and correlated L
(1 )

 parts  as:   

 ( ) ( ) 2,1j,i,LLL 1

TT

0

TTTT jijiji
=+=                          (4) 

The uncorrelated parts can be expressed as: 

 ( ) jk;Tk6/NZSWCCL B
2

TTVij
0

TT jjKji
≠δ=                          (5) 

where N is the number of sites per unit volume, Z is the coordination number,  S is 

the nearest-neighbour (n-n) jump distance and kB  and T have their usual meanings. 

From the equilibrium condition (Eq. 2) it  can be seen that:   

 
( ) ( ) ( )0

TT

0

TT

0

TT L5.0LL
2211
==                             (6) 

The correlated parts  can be expressed as:  

 ( ) )S,S(
S

S.S
WW

KT3

NZS
L

S
0Vj,Vi2

0
TT

2
1

TT jiji
∑ φ
















−=                                  (7) 

where,  for example: 

 ( ) )0;S,:tS;,(ψdtS:S 000

0

T:VTV0:VV 122121
=−−= ∫ ∑

∞

tllll

l

φ                        (8) 

Here ψ  is the conditional probability of finding at time t the vacancy at site l  on 

sublattice-1 and the   tracer   at   i ts nearest neighbour(n-n) site ( )S−l  on the 

sublattice-2, when initially the vacancy was at any site 0l  on sublattice-2 and 

tracer at its n-n site ( )00 S−l  on sublattice-1. We have used the symmetry available 

and have considered any site 0l  and its n-n site, say ( )1,1,1
2

a
S0 = ,  where a is the 

cubic lattice parameter. The function φ  depends only on the initial  and final  jump 

vectors S0  and S respectively. The correlated parts of the phenomenological  

coefficients depend not only on the φ s but also their product with the angle 

between initial and final  jump vectors. Chaturvedi and Allnatt [17,18] have shown 

that it  is much more convenient for such problems to work in Fourier space than in 

real  space. We therefore define the Fourier transform:  

 ( ) ( )∑ −=
r

0

iK.r

0 S:rφeS:Kφ~                            (9) 

and the inverse transform as: 

 ( ) ( )∫





= 0

iK.r3

3

0 S:Kφ~Ked
2π

a
Sr,φ                          (10) 
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The integrations are over the Brillouin zones in the cubic lattice. We can then 

write: 

 ( ) ∫∑ 






=







)S:(Kφ~CosKzCosKySinKxKd

2π

a
8iS:Sφ

S

S.S
0:VjVi

3

3

0:VjVi2

0

S

 

                            = ijU                                                            (11) 

We have used here, for convenience, the shorthand notation 
2

a
KK xx ≡ ,  etc. Using 

Eq.11 in Eq.7 we obtain the tracer correlation factor with the usual definit ion  

( ( )0

TT

TT

T
L

L
f = ) as 

    ijUWW
WCC

1
1f

ji

112

TT

ji,TTV

T ∑








−=                                  (12) 

 

The Kinetic Equation 
 In order to calculate ijU , we use the kinetic equation approach for the 

probability function ( )rTV −ll,
21

ψ ,  which is the probability of finding at t ime t the 

vacancy at site l  on sublattice-1 and the tracer at  site ( l -r) on sublattice-2, when 

the system was in a given initial state.  By using the arguments of gain and loss in 

the probability during the time interval dt, the kinetic equation for ( )rTV −ll,
21

ψ  can 

be written as  

 
( )

( ) ( ) ( )[ ]r,ψWr,ψWrθ
dt

r,dψ

212121

21

TVTTVT

TV −−−=
−

llll
ll

 

    ( ) ( ) ( )[ ]r'r,,ψWr,,r'ψWr'θ
22121121 ATVAATVA

rr'

−−−−−+∑
≠

llllll  

    ( ) ( )[ ]∑
≠

−−−−−+
rr'

BTVBBTVB )r'r,,(ψWr,,r'ψWr'θ
22121121

llllll  

                                                                                       (13) 

Here θ(r) is a step-function which is unity when r====s and zero otherwise. Eq.13 can 

be put into closed form by a suitable approximation to the three-site probabil ity 

functions. In the lowest order of approximation, in the presence of vacancy and 

tracer we can neglect fluctuations in the occupancy variables for the atoms. That 

is, for example,  we can simply write that:  

 ( ) ( )llllll ,r',r'ψC,r',r'ψ
121112 TVAATV −−=−−                         (14) 

We then make the following operations in Eq.13. Add and subtract terms with 

r'r = ,  integrate with respect to t ,  sum over l  and then take the Fourier transform 

on both sides. This then yields: 

 ( ) ( )1

TV

113

3

T

(0)

TV Kφ~KKθKd
2π

a
W(K)φ

12121
+







= ∫  

   [ ] ( ) ( )Kφ~KKθKd
2π

a
WW

2122 TV

113

3

TV −






−+ ∫  

   ( ) ( ) ( )Kφ~ZWKφ~KθW
212121 TVVTVV −+                                     

                                                                                                     (15)  
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Here, we have defined:  

 ( )0tr;,ψe(K)φ
2121 TV

-iK.r

r

(0)

TV =−= ∑∑ ll

l

      

 ( ) ( ) -ik.S

S

-ik.r

r

erθeKθ ∑∑ ==  

 21,i,WCWCW
iiii BBAAVi =+=                        (16) 

where ViW  is the vacancy escape jump rate from the i
t h

 sub-lattice. Similarly, the 

kinetic equation for the probability function ( )r,ψ
21TV −ll  can be obtained, which in 

fact  results from Eq.15 with the interchange of 1 and 2.  Adding the two equations, 

we obtain:  

 ( )[ ] ( )[ ]KφW(K)φW`KθZ TV2VTVV 121
+−  

 = [ ](K)φ(K)φ (0)

TV

(0)

TV 1221
+  

 [ ] ( ) ( )'TV

''3

3

TV1 KφKKθKd
2π

a
WW

121
−







−+ ∫  

 [ ] ( ) )K'(φK'KθK'd
2π

a
WW

212 TV

3

3

TV2 −






−+ ∫  

 ( ) )K(φKKθK'd
2π

a
W '

TV

'3

3

T 121
+







+ ∫  

 ( ) )K(φKKθK'd
2π

a
W '

TV

'3

3

T 212
+







+ ∫         

                                                                                                              (17) 

Eq. 17 is an integral equation in terms of two unknown φ functions. Chaturvedi 

and Allnatt [17,18] have shown that  instead of solving the integral equation it  is 

much more convenient to solve directly for the U functions defined through Eq. 

11, as the integrands in K and K
’
 can be decoupled using the symmetry properties 

of the Brillouin integrals.  For example,  we can write  

 
( )[ ]

( ) ( )'TV

'zyx133

6

KφKKθ
KθZ

CosKCosKKSin
KKdd

2π

a
8i

1
±

−








∫∫ 1UJm=     

                                                                                                              (18) 

in which we have defined J as 

 
[ ]

( )[ ]∫





=
KθZ

CosKCosKSinK
Kd

2π

a
8J

2

zyx3

3

m
                        (19) 

 We note that the numerical values of J  with either plus or minus sign in Eq.19 are 

the same and are equal to 0.15793. Thus, using Eqs.11 and 18 in Eq.17, we finally 

obtain two linear equations corresponding to the initial configurations when the 

vacancy is on sublattice-1 with the tracer on sublattice-2 and the vacancy on 

sublattice-2 with the tracer on sublattice-1, respectively.  This then yields: 

 JCCUbUb T2V1211112 =+  

         JCCUbUb T1V2221122 =+                           (20) 

where 

 ( ) 1,2i;JW2J1Wb
1TiVii =+−=                                                              (21) 

  In order to determine all the U i j  functions we can make use of the expression for 

the tracer correlation factor derived by Bakker [8] using a straightforward method 

of inspecting al l cosines between the first tracer jump and consecutive ones. This 

expression is: 
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+
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



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



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


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
+
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+
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+

+
=

∑

∑

=
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=

++

K

K

                        (22) 

 

where nTi  = CVkCTiWTi  ,  x i
2
 and x i

1
 are the vector-jumps of tracer T of the type 2 

and 1 respectively.  After mapping the expressions for the average cosines between 

the first vector-vector and all consecutive ones in Eq.22 with their expressions in 

terms of pT and qT (average cosines between the first vector-jump and the second 

one) and with Eq.12 we soon have the following expressions for U i j :  

2
1TTT

1TTT
11

w)pq1(

npq
U

−
−= ,           

2
2TTT

2TTT
22

w)pq1(

npq
U

−
−= ,   

2T1TTT

2TT
12

ww)pq1(

nq
U

−
= ,       

2T1TTT

1TT
21

ww)pq1(

np
U

−
=                        (23) 

Eq. 23 shows that there is no reciprocity relat ion U1 2  = U2 1  for this case. Eqns 23 

can be solved together with Eqn 20 to give expressions for qT and pT:  

2
1T2T2

2
2T

T
JwWb

JW
q

−
= ,    

2
2T1T1

2
1T

T
JwWb

JW
p

−
=                         (24) 

and then finally for fT (Eqn 22): 

 
G

)WW)J1()WW(J))(WW(JWW)J1((
f 2V2T

2
2T

2
1T

2
2T

2
1T1V1T

T

−−−−+−
=                (25) 

where 

)}W2W(WW)W2W(WW){J1(J

WWWW)J1()WW(J2G

2
1T

2
2T2V2T

2
2T

2
1T1V1T

2V1V2T1T
222

2T
2
1T

2

−+−−+

−−−=
                          (26) 

 

Results and Discussion  
 In order to test the results  of our expressions Monte Carlo simulations for 

the four frequency model have been carried out at and near the stoichiometric 

composition using methods described in [10,11]. The equilibrium composition of A 

atoms was varied from 0.45 to 0.5. The simulation results were controlled by first  

taking all the jump frequencies to be equal, which results in fB  and fA being equal 

to f0  = 0.72722. Then we varied the ratio of jump frequencies of antistructural and 

structural atoms. For example, we took WA1= WB 2  = 1 and WA2  = WB 1  = α for 

different  values of α .  Results of these simulations for the tracer correlat ion factor 

for A are presented in Figures 1 a-d and for B in Figures 2 a-d together with those 

calculated using Eqs 25-26 (solid lines).  The correlation factors decrease with a 

decrease in the value of α and become of the order of 10
-2

 when α = 0.01. 

Comparison has been made with the results for the same model but  using Manning 

type considerations [10,11]. These are presented as dashed lines in the same 

figures. 

 In general there is reasonable agreement with the present approach with 

results  of the Monte Carlo simulations for values of α greater than about 0.5. It  

can also be seen that  the results using the Manning-type approach gives 

considerably better agreement. Our results for the tracer correlation factor become 
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negative as the frequency ratio is changed from 0.4 to 0.3 showing that the random 

alloy model is overestimating the tracer correlation effects when the formation of 

antistructural  atoms is restricted. This is probably not the influence of the 6JC 

mechanism which has been shown to be important at a much lower value of α [19]. 

The value of the present approach is that  it  is relatively transparent to understand 

and to improve and allows the incorporation of other methods for calculating 

correlation factors. 
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Fig 1.  Tracer correlation factors fA as a function of composition CA .  a) – α = 0.9; 

b) – α = 0.7; c) – α = 0.5;  d) – α = 0.35. Symbols: Monte Carlo results;  Solid 

lines: Eqs 25,26; Dashed lines: refs 10,11.  
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Figure 2. Tracer correlation factors fB  as a function of composition CA .  a) – α = 

0.9; b) – α = 0.7;  c) – α = 0.5; d) – α = 0.35. Symbols:  Monte Carlo results; Solid 

lines: Eqs 25,26; Dashed lines: refs. 10,11. 

 

Concluding Remarks 

       Tracer diffusion by way of vacancies was investigated in B2 intermetall ics 

AB by means of a kinetic equation approach. The model used was one making use 

of four inter sub-latt ice frequencies where each sub-lattice is  treated as a random 

alloy. Coupling was achieved between the two types of cycles, i .e . ,  with the 

vacancy starting on one sub-lat tice and finishing on either sub-lattice and with a 

vacancy starting on the other sub-lattice and finishing on either sub-lattice. An 

expression for the tracer correlation factor was derived in terms of atomic jump 

frequencies and atomic concentrations. Results from this expression were 

compared with Monte Carlo calculations and also results from a Manning random 

alloy type approach to the problem. 
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