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Abstract
We consider the following combinatorial problem: given an n x rn {0, l}-matrix /V/, fiud a

minimum cardinality set ,S of mergings between neighboring rows or columns that yields au
all-zeros matrix. Here, merging means performing a component-wise AND operation. We prove
that this NP-hard minimization problem is factor-2-approximable by relating it to the vERTEX
coVER problem on bipartite graphs.

1 Introduction
The combinatorial problem that we study in this paper comes from the area of statistical
database security. For the benefit of a reader, we first present the problem from the database
security point of view, and we then provide a formal mathematical definition of it.

Statistical database security is concerned with protecting confidentiality of individual data
values that are used for statistical purposes. With ttre recent expansion of computer ancl in
particular networking technologies, huge volumes of personal data are regularly collected by
cornpanies, hospitals, government departments and various organizations. These include medi-
cal, criminal, shopping and taxation records, to mention just a few. At the same time, public is
becoming increasingly concerned about confidentiality of such personal data. Statistical database
security focuses on protecting the confidentiality, while at the same time making data available
for statistical research.

For the purpose of this study, a database can be seen as a multidimensional matrix v'irere
each dimension corresponds to a particular attribute (property) of the records stored in the
database. For exarnple, a two dimensional database 111 might have attributes "Age" and "Years
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of service", in addition to a confidential attribute "Salary". The element rnii of ,Lf in r<-'w i
and colurnn j contains the number of all employees who are ti years old and who have j years
of service in the company. We refer to elements of ,4,1 which are equal to 0 as hoies, those that
are equal to 1 as single elemen,fs and those that are greater than 1 as multi;elemenfs. A range
query is defined as a contiguous submatrix of M. Each range query provides not only the total
number of records contained in the elements of the corresponding contiguous submatrix, but
also the sum of "Salary" (confidential attribute), in all such elements. The database M is said
to be comprom'ised If there exists a linear combination of range queries that contains precisely
one record, in which case the value of the confidential attribute in that record can be learned by
an unauthorized party. Our goal is to prevent a database compromise, wirile at the same time
allow as many range queries as possible. The problem is further complicated by the so-called
supplementary knowledge that assists intruders in compromising the database 110].

If all the elernents in an rn-dimensional database contain at least one record, that is, if the
database contains no holes, then the fraction of queries that can be answered without exact
disclosure of any individual value is bounded from below by (2* -I)12* [9]. The minimum is
achieved in the case where there is precisely one record for each combination of attribute values,
that is, when a database matrix contains only ones (or single elements). A precise formula for
the usability of one-dimensional databases with arbitrary elements in the database matrix is
given in [3], and databases with holes were considered in [11]. In this paper we explore merging
neighboring rows or columns in order to eliminate all elements that contain holes. Once we have
arrived at a database without holes, we know from [9] that we can keep the data secure while
achieving very high usability by allowing only "even" range queries, that is, those queries that
are represented by contiguous sub-matrices with even number of single elements. Clearly. our
goal in the preprocessing is to minimize the number of row or column mergings necessary for
eliminating all holes in the matrix.

How does a matrix in our example Iook like after this preprocessing ? Rows will now carry
interval labels [21,i2]. This means that the corresponding matrix errtries report all employees
of age between i1 and i2 /ears. Similarly, columns will carry interval labels [1 ,j2]. Range
queries of the form: "How many people are employed that are aged between i, and it ?" can
onIybeexactIyanswerediftherearenumbersit1iz<...<
lh,iz], liz -r L,is], . . . , liur * I,i2] are interval labels of consecutive rows in the preprocessed
rnatrix. (Similar comments apply to the columns.) Other range queries can only be answered
approximatelv.

In this paper, we restrict the problem to two dimensions and we ask the following question:
What'is tlt,e mi,n'irnum nunxber of nei,ghborin,g rows and columns that we haue to merge 'in order
to el'im'inate all elements that conta'in holes? We now present the mathematical formulation of
the problem. Note that in our formulation, zeros in the database matrix are represented by 1

while positive integers are represented by 0, to be consistent with l7l.

Minimr:m Matrix Row,/Coh:mn Merging MRCM:

Instence: n x rn {0,1}-matrix ,4.1

Solution: A set S of nergings between neighboring rows
or columns such that the resulting natrix contains
aLl zeros. Here , nerging rnearrs perforning a

. component-trise logical AND.
Measure: Cardinality lSl of the set ^9.

This problem was shown to be NP-hard and fixed-parameter tractable [7].r In this paper
we shorn' that MRCM is factor-2-approximable, this way improving on the 3-approximability of
MRCM as shown in [7] by using a different approach.

lRefel to [2,6, 8] Ibr the basic notions of approximability, parameterized and classical complexity, respectively.
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This means that, given an instance ,44 of MR.C\{, ,ffe can find in polynomial time a solution
,9 (i.e., a set of merging operations) such that lsllls"orl ( 2, where S,,,, i; a minimum solution of
tlte instance Il[ (i.e., minimal in terms of cardinality of the solution). Notice that, since MRCM
is NP-hard, it is not expected that we can find a (deterministic) polynomial-time algorithm that
optimally solves any given instance.

2 Approximation algorithm
A given database matrix h[ e {O,I}nxn can be interpreted as the "adjacency', matrix of a
bipartite undirected graph B1a. In 8114, we have row vertices rt,...tr, and column vertices
c!,...,c-,whererrandcTarecorDectedbyanedgeif andonlyif Mli,j):1. Letusassociate
{ru,r,+t} to the operation R1\,f(i,z * 1) of merging rows i and z * 1, and similarly {ca,ci,r1} totheoperationCM(z,z+1) of mergingcolumnsiandi*1. Let,4(,S) denotetheseiof vertices
of B1y associated to a set ,9 of merging operations. Then, we can show:
Lemma 1: Let M be an instance of MRCM and let ^9 be a solution to this instance. Then, A(,S)
is a vertex cover set of By with lA(S)l S2lsl.
Proof: To show that,4(S) is a vertex cover of Bp1 we only need to show that all ones in ttr,/
are contained in the set A(5) of rows and columns. Indeed, if there were a one outside of these
rows and columns, then that one would remain one even after all merging operations from ,g are
performed and thus ,9 would not be a solution of M. Thus every eclge in By is adjacent to a
vertex in,4(^9) and,4(S) is a vertex cover of By. To see that 1,4(S)l < 2lSl, recall that each of
themergingoperationsfrom,Sisassociatedrvithasetof twovertices fromB7,1 . As,4(S) isthe
union of all lSl such sets, it clearly has the cardinality at most 2l,gl. n

Interestingly' the converse of Lemma 1 is not true in general: A vertex cover of 814 does not
necessarily give a solution for X4RCM. For example,lf By is a complete bipartite graph, the
set of all the row vertices is a vertex cover of 811; on the other hand, M is the all-ones matrix
and as suclr does not have a solution at all. More generally, if By contains a vertex in, say,
the row-partition which is adjacent to all the vertices in the column-partition, then the column-
partition is a vertex cover of B1a while the intuitivelv "equivalent" merging of all columns is not
a solution to the corresponding MRCM-instance M. However, in all the other cases a vertex
cover of Bxa cdn be converted to a solution of MRCM as we shall see in what follows.

The algorithmic significance of Lemma 1 is that vERTEX covEri can be solved in polynomial
time on bipartite graphs by maximum matching technique and we shall use this fact to construct
a factor-2-approxination algorithm for MRCM.

Before we call present an algorithm, we need to introduce some auxiliary notation. Let luI
be an (n x m) {0, 1}-matrix and Iet V" be a minimal vertex cover of the associated bipartite
graph By. We select a row vertex and a column vertex in By that are not in V* and we denote
them as rs and cc, respectively. if V* contains all the row vertlces or all the column vertices,
we set R: n and C : trt..

lVe are now ready to propose an algorithm based on Lemma 1. The algorithm has 3 parts.
In Part 0 w-e check whether the rnatrix ,4./ contains only ones, in which case the instance is not
solvable aud we are done. In Part 1 we process all the lines (rows and columns) of the matrix Lf
which contain only ones. Note that we are building the set S of mergings and at the same time
we are performing the actual mergings in the matrix 11,1. Part 2 deals u'ith a matrix that has
no lines completelv filled with ones. In this part we only build the set ,9 but we do not perform
any actual mergings in the matrix M.

For the sake of simplicity, throughout the algorithm we use integers (i.e., i) to denote the
indices of the rows and columns in &1. We shall later be much urore precise and we shall denote
a row obtained by merging rows r; and rrlr by ri,.i+t. In general, r7...* would denote a row
obtained by merging rov/s rj,T'j+l,...,16. Then merging rows rj...A and r7...", where I : k+l
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gives the row rj...s. \Aihen merging, we add I,IR(k,l) to the set S. Also, when comparing indices
j...kandl...sinPart2of thealgorithmwesaythat j...k<l...sif andonlvif k<1.

Given: {0, 1}-matrix il.y'.

/ /Part 0.
If IVI contains only ones, the instance is not solvable v abort.

/ /Part t.
Initialize solution S :: A.
VJhile

there is :n all-ones line rl

whose neighboring line j contains a zero
do

S :: ,S U {rnerge-1ines(2, i)} ;

merge lines i. and j Ln M;
/ /nov t};.ere is no line completely filled with ones
If M cottains only zeros, then return S.

/ /Part 2.
Solve vsnrEx covER on By, yielding a ninimum solution 7*.
Determine integers R,C from By (as described in the nain text).
For each r4 € V* do

iti
else ^9 :: ,9 U {nerge-rows(i - 1, i)};

For each c; € V* do
it i,

else ,9 :: S U {nerge-colurons(i - l, z)};
return ,S

To show the correctness of Part 1, observe that whenever a line completely filled with ones
lras two neighboring lines which contain a zere, then it does not matter which of the two Iines
we choose for merging, as the resulting matrices are the same in both cases. Thus that this kind
of nondeterminism in the algorithm can be arbitrarilv- fixed.

We illustrate the above algorithm with the following example.

As 11,1 does not contain only ones the algorithm proceeds to Part 1. Rou'2 contains onlv
ones and as such it is merged with a neighboring row, say row 3. Thus we have a new matrix

and a set S: {RN,I(2,3)}. After processing column 2 we get, for example, a matrix

12s4
I /01 1 o\

M6:iliisi,J

123/+
I /01 1 o\
zs lo 1o 1l
z \t r o o)
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12341
I /o I o\2slooll
z \t o o)

and S : {RM(2, 3), CM(l, 2)}.
Now there are no more liues that contain only ones and we proceed to Part 2 of the al-

gorithm. We have a bipartite graph B,x1 where V6- : {rr, rz1,r4,ct2,c3tca} and Evn :
{(rr,cs), (rzs,cq),(r+,ctz)}, and a minimum vertex cover V* : {rr, r41ca\.Then 16: r2e &r}d
there are two possibilities for cc; we select, for example, cc : c4. We now process all the vertices
in V*.

11: As 7 <23 we have 5:: SU {RM(I,2)}.
14: As 4 > 23 we have ,S :: ,9 U {RM(3,4)}.
ca: As 3 < 4 we have S:: ^9U {CM(3,4)}.
The algorithm returns

S : {RM(l,2), RM(2,3), RM(3,4), CM(1,2), CM(3,4)}.

Alternatively, as solution to the vERTEX covER instance By, we could have obtained V* :
{rt,rrz,ra}. Then, we select rR: r'q ald cg: ca (in fact, arbitrary in the column case). As
the reader can verify,

^9 
: {RM(1,2), RNI(2,3), RM(3,4), CX,I(1,2)}

would then have been found, which is indeed optimal.

3 Main result
In this section we first prove that the above algorithm yields a feasible solution to MRCN,I and
then that it is a factor-2-approximation algorithm.
Lemma 2: Let M be an instance of MRCM. Let ^9 be obtained by the algorithm above. Then,
^9 is a feasible solution to this instance.

Proof: We mav assume that A,[ contains at least one zero a^s otherwise MRCI\4 has no so]utions.
Part 1 of the algorithm deals with ail-ones lines. After Part 1 of the algorithm, M will either
cotltain only zeros, in which case ,S is indeed a solution and our proof is complete, or ,4,1 will
cotrtain some ones but no all-ones lines. We thus need to show that, for such a matrix LI, Paft
2 of the algorithm vields a solution 5.

In order to prove this we introduce a partial ordering on the set of (n x m) {0,1}-matrices
as follows. We say that Il,It < N[" if and only if X't'li, j]: l implies A,["[i, j]: l for all z e [1,r2]
ancl all j € [1,m] . Note that if A,I' < I[" and if S is a solution of the MRCt\4-instance L,1",
tlrerr ^9 is also a solution to X,It .

Consider now a matrix l'lf and two neighboring lines i, and j in I\[. \\te introduce sorre
ftrrther ttotations. Let Mi be a matrix obtained from ,4,l by deleting line i. Let h,Iii be a matrix
obtained from,4.1 by merging lines i and j. Then ll,Iii <,44 and L,tij < I[j.

We are now ready to cornplete our proof. Recall that I/ is a set of rows and columns of
,4,1 that contain all the oues in ,4,1. Thus deletiug all the rows and columns in 7 yields an
all-zeros matrix. From the above discussion it follou's that is u'e replace each deletion with a
unique merging then the resulting matrix would also contain only zeros. If I/ does not contain
all tlre ro\rs or all the columns of Bp1 then the ro\/ rR and the colurnn cc guarantee that no
two deletions are associated with the same merging. In the case where I/ contains all the rorvs
(or all the columns, respectively) of III , we have only n -L (*- 1, respectively) mergings and

L
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?r (??2, respectively) deletions, but it is easy to see that the resulting matrix still contains orrl;r
zeros, as the origirral matrix has no all-ones lines. Note tirat n ) 2,'m ) 2 and thus n, - 1 > 1

andm-1>l,becauseamatrixwithasingleroworasinglecolumnwouldbecompletely
processed in Part 0 or Part 1 of the algorithm as it either contaius a line completely filled with
ones or it is an all-zeros matrix. This cornpletes the proof. tr

Theorem: The sketched algorithm is a factor-2-approximation algorithm.
Proof: The first part of the algorithm deals with all-ones lines and optimally treats them, since
a line completely filled with ones can never be converted into an all-zeros line only by using
merges of "orthogonal lirres," e.g., an all-ones row cannot be converted into an all-zeros row by
using column-mergings only.

Moreover, merging with an all-ones line has exactly the same effect as deleting that line;
thus, it does not matter which neighbor we merge it with. So we now assume that an instance
/1'1 has no lines completely filled with ones.

Let S* be a minimal solution of this MRCM-instance Il'[. Tlien,.4(S.) is a solution of the
VERTEX coVER instance Bp1. An optimal solution V* to By surely satisfies

lv-l<l-4(s.)l <21,9.1

according to Lemma 1. Conversely, Lemma 2 shows that the set of merging operations ,9 obtained
from V* by the algorithm is indeed a feasible solution to the instance M. It is easily observed
that

lsl < lv.l.
Altogether, we can see that lSl < 2lS.l. n

4 Conclusion
In this paper we have considered arr NP-hard problem called MRCN{ that arises in the area of
statistical database security. We presented an algorithm for solving this problem and we showed
that it is a factor-2-approximation algorithm.

Tlris approach is different from the tvpical local rat'io approach for covering problems, see

[4]. Rather, we use a related problem, namely vERTEX covoR, to solve MRCIU. It would be
interesting to see if the local ratio approach (or the likewise successful integer linear program-
rrring approach) can be used to obtain similar or maybe better approximation ratios for I\{RC\,{.
Alternatively, it might be worthwhile looking into other kinds of reductions between approxi-
mtrtion problems not only from the point of view of proving hardness results but also from an
algorithmic perspective.
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