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ABSTRACT 

Important in the application of Markov chain Monte 
Carlo (MCMC) methods is the determination that a 
search run has converged. Given that such searches 
typically take place in high-dimensional spaces, there 
are many pitfalls and difficulties in making such as- 
sessments. In the present paper, we discuss the use 
of phase randomisation as tool in the MCMC context, 
provide some details of its distributional properties for 
time series which enable its use as a convergence diag- 
nostic, and contrast its performance with a selection of 
other widely used diagnostics. Some brief comments on 
analytical results, obtained via Edgeworth expansion, 
are also made. 

1. INTRODUCTION 

MCMC methods support the application of Bayesian 
statistical methods through permitting complex distri- 
butions to be evaluated (specifically, by handling theo- 
retically intractable integrals of high-dimensional prob- 
ability density functions). Given the numerical and ge- 
ometrical complexity of MCMC methods, assessment 
of convergence is a non-trivial task. Diagnostics for 
convergence are required in practical settings, and thus 
need to be accessible, accurate and fast. 

In the theory of time series resampling, the method 
of phase randomisation has been used to generate so- 
called surrogate time series with the same first- and 
second-order properties as the original: see Theiler et 
al. (1992) and Timmer (1998), as well as Davison and 
Hinkley (1997) who use the term phase scrambling, 
and Braun and Kulperger (1997) who use the term 
Fourier bootstrap. In essence, one takes the discrete 
Fourier transform of a time series, replaces the phase 
with a new phase randomly chosen from the interval 
(0,27r), and back-transforms to obtain a new time se- 
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ries. Second-order properties are maintained by virtue 
of retaining the original amplitudes at their original lo- 
cations in the original spectral estimate. If the original 
time series has an asymmetric marginal distribution 
then appropriate adjustments can be made in accor- 
dance with the so-called rescaling methods of Davison 
and Hinkley (1997), otherwise the standard algorithm 
suffices. 

The algorithms as are follows. Denote the origi- 
nal series (of length n)  as the array z[t] with ranks rt 
among the original unordered series. 

Standard Algorithm 

1. Compute the Discrete Fourier Transform ~ [ t ]  = 
DFT ( ~ [ t ] ) .  

2. Randomise the phases; that is, randomly choose 
4[t] from the uniform distribution of (0,27r), and 
put z'[t] = z[t]  exp (i4[t]). 

3. Symmetrise the phases such that Re(z"[ t ] )  = 
Re (z '[t]  + z '[n + 1 - t ] )  /2  and also Irn (z"[t])  = 
Irn (z '[t]  - z '[n + 1 - t]) /2. 

4. Invert, putting z'[t] = DFT-l  ( ~ " [ t ] ) .  

5. The resulting series z'[t] is the surrogate. 

Rescaling Algorithm 

1. Let yt = a-' { r t / ( n  + l)}, where is the empiri- 
cal distribution function of the original unordered 
series. 

2. Apply the Standard Algorithm to y l ,  . . . , y,, giv- 
ing Y;, . . . , Y,' (see above). 

3. Set the surrogate series to be X ;  = where 
ri is the rank of yt' among Y;, . . . ,Y;. 
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One can use surrogate time series to test a null hy- 
pothesis that the original series arises from a linear, 
stochastic, Gaussian stationary process. (Note that 
the rejection of this hypothesis covers a wide range of 
alternatives.) If a statistic from the original series is 
denoted as Vo and the corresponding statistic from the 
j ' th  surrogate is denoted as V,, with E (V,) = ,U\! and 
var(VJ) = gc, then one may use as the test statistic 
IVo - , U V ~  /o", and calibrate against a Normal distri- 
bution, if appropriate. Timmer (1998) has illustrated 
this using the correlation dimension as the underly- 
ing statistic in the context of cyclostationary processes, 
demonstrating power to reject the null hypothesis in 
the presence of non-stationarity. 

BS 
GS 
TS 
RW 
BN 
GN 
TN 

2. PHASE RANDOMISATION AND 
STATIONARITY 

unimodal near zero 
unimodal, tails near zero 
unimodal, tails near zero 

multimodal non-zero 
unimodal, tail non-zero 

multimodal, tails non-zero 
multimodal non-zero 

Second order properties, and some marginal shape prop- 
erties, are known to be preserved under phase ran- 
domisation, the latter if the scaling method is used. 
We examine here the effect of phase randomisation on 
higher order moments and cumulants of a time series, in 
particular, to determine if conditions on linearity and 
stationarity are related to preservation of higher order 
properties under phase randomisation. In particular, 
for a time series { X t }  with marginal mean p, we treat 
higher central moments, of the form E { ( X t ) } ' ;  higher 
order cumulants, of the form E {Hi,, ( X t + k + j  - ,U)}; 
and higher order cross cumulants, of the lagged prod- 
uct form E {(Xt - ,u)~ (Xt+k - ,U)'}. In each of these 
forms, T = 3 ,4 , .  . ., k = 1 , 2 , .  . ., and standard esti- 
mates were used in simulations. 

Numerical experiments were based on some classical 
linear and non-linear time series models, including lin- 
ear autoregression (AR), random walk (RW) , bilinear 
stationary (BS), bilinear non-stationary (BN), GARCH 
stationary (GS), GARCH non-stationary (GN), thresh- 
old autoregression stationary (TS) and threshold au- 
toregression non-stationary (TN). See Tong (1990) for a 
detailed discussion on the form and properties of these 
models. 

Timeplots obtained from the numerical experiments 
showed broad agreement with the original data sets, 
and can be qualitatively compared as in the following 
table (using the rescaling method). 

I Model ( 1  AR I RW I BS 1 BN 1 
I Note 11 same I more svmm. I same I same I 
I 

Model 
Note 

I I I I I 

GS GN .TS TN 
larger vals. same same same 

When comparing the stationary with non-stationary 

models, it was sometimes possible to distinguish be- 
tween them on the basis of higher order moments: the 
standard method produced zero values for odd mo- 
ments; however, the rescaling method produced small 
values for the third moment for stationary series yet the 
same value as in the original series for non-stationary 
models. Thus, third order moments appear to have a 
reasonably good discriminatory ability for stationarity, 
and hence for convergence of MCMC procedures. 

The behaviour of the higher order cumulants of the 
surrogates can be summarised according to the follow- 
ing table. The non-stationary models are shown in the 
last three rows of the table. 

I Model 11 Original I Standard 1 Rescaling 1 
small I odd near zero I all zero I 

In addition, the distribution of higher order cumu- 
lants can be revealing in questions of stationarity, as 
the following table indicates. Modes refer to the num- 
ber of modes of the empirical density function of the 
cumulants of surrogate series. (The standard method 
showed the same results as the rescaling method for all 
models.) 

I Model I Rescaling I Mode I 
1 I odd, even unimodal svmm. I near zero 1 AR 

To summarise the results of these tables, we can 
comment as follows. In the case of the standard al- 
gorithm (i) higher order moments and cumulants are 
preserved for linear, Gaussian, stationary processes; (ii) 
higher moments are preserved for non-linear stationary 
processes, but not so for some higher order cumulants; 
(iii) second and cross-cumulants are not preserved for 
moderate and large lags if the process is linear non- 
stationary; and (iv) higher cumulants are not preserved 
for non-linear non-stationary processes. In the case of 
the rescaling algorithm (i) the method is inappropri- 
ate for linear, Gaussian, stationary processes as second 
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order cumulants are not preserved; (ii) higher order cu- 
mulants are not preserved for non-linear stationary pro- 
cesses; (iii) higher order cumulants and cross-cumulants 
are not preserved for linear non-stationary processes; 
(iv) higher cumulants are substantially different from 
the originals for non-linear non-stationary models; and 
(v) smoothing densities of higher order cumulants are 
multimodal, or at  least unimodal with heavy tails, for 
non-stationary processes, while remaining unimodal for 
stationary processes. 

It is on the above basis that convergence (i.e., sta- 
tionarity) can be concluded from a run of an MCMC 
algorithm. Nur et aZ. (2001) give further details of the 
above methodology. In that paper, the methods were 
applied to some well-known data sets, and was found to 
reject convergence where some other less dynamically- 
driven methods concluded convergence of chains. 

3. PHASE RANDOMISATION AS AN 
MCMC CONVERGENCE DIAGNOSTIC: AN 

EXAMPLE 

There is a variety of tests for convergence of MCMC 
algorithms. Raftery and Lewis (1996) reduce the out- 
put of a chain to a two-state Markov chain and ap- 
ply analytically explicit results to the modified output. 
Clearly, this is a form of discretisation and there is the 
possibility that important information about the origi- 
nal process may be lost. Heidelberger and Welch (1983) 
adopt a spectral analysis approach, as does Geweke 
(1992). These and other algorithms are available in 
the software package CODA (Best et al., 1995). 

We briefly describe an analysis of a widely-used 
‘benchmark’ data set, and compare the relative perfor- 
mance of the existing methods with the present method. 

The example concerns mortality rates in 12 hospi- 
tals performing cardiac surgery on babies: see Spiegel- 
halter et al. (1994). The authors proposed a ran- 
dom effects model for the number of deaths, r j ,  in 
hospital j, with true unknown mortality probability 
p j ,  as follows: r j  - Binomial ( p j ,  nj) ( j  = 1,. . . ,12), 
logpj = b j ,  bj - N ( ~ , T ) ,  T = l/a2, p - N (0,10-6), 
T - r (lov3, The analysis was restricted to a 
short run of 200 epochs. The timeplot of the MCMC 
run appeared to be similar to a bilinear stationary time 
series, based on the simulations we described in the 
previous section. Smoothing densities of the higher or- 
der cumulant estimates were plainly unimodal around 
zero, and standard quantile plots ascertained Normal- 
ity of the surrogates’ cumulants (supported strongly by 
the Shapiro-Wilks test). We can thus conclude that the 
MCMC algorithm has converged. This is supported by 
the diag assessment in BUGS, by Raftery and Lewis’ 

test, and by Heidelberger and Welch’s test. However, 
Geweke’s test fails for this example because of the very 
short run, although it passes if a considerably longer 
run is used. 

A detailed discussion of this analysis, along those of 
two other data sets, is given by D Nur, KL Mengersen 
and RC Wolff in an as yet unpublished manuscript. It 
indicates that phase randomisation performs at least 
as well as other existing methods in the assessment of 
MCMC convergence and, moreover, it is more infor- 
mative about higher order statistical structures which 
in turn can classify stationarity and linearity. Their 
work also suggests that higher order cumulants from 
surrogate time series appear to be asymptotically Nor- 
mally distributed, thus providing a route to robust for- 
mal testing of convergence (stationarity) hypotheses, 
and calibration thereof. There also appears to be ev- 
idence that the Metropolis-Hastings algorithm results 
in a Markov chain which is geometrically ergodic to the 
average when the target density is log-concave in the 
tails. 

4. THEORETICAL ISSUES FOR PHASE 
RANDOMISATION 

To give the above methodology a firm theoretical basis, 
it is required to prove that third (and higher order) 
cumulants of a stochastic process can be bootstrapped 
with accuracy o Results of Gotze and Hipp 
(1983) can be employed to verify this. 

Let { ~ t }  be independent and identically distributed 
(iid) random variables. Generalising the Wold Decom- 
position Theorem for stationary processes, we write 
X t  = ~ + C b j ~ t - j + C C b k j & t - j ~ t  --k+..., andclearly 
X t  is non-linear if any of the higher order coefficients 
are non-zero. 

We consider the formal Edgeworth expansion of or- 
der s - 2 of the third cumulant of X t  , as follows. Define 
Y j k t  = XtXt-jXt-k - okj, where O k j  is the theoretical 
third cumulant of X t .  Let Yt denote the matrix form of 
Y j k t .  Gotze and Hipp (1994) obtain valid formal Edge- 
worth expansions for sums of weakly dependent ran- 
dom vectors, with error of approximation o (n - (8 -2 ) /2 )  
if the moments of order s+ l  are bounded, a conditional 
Cramer condition holds, and the random vectors can be 
approximated by other random vectors which satisy a 
strong mixing condition and a Markov-type condition. 
We extend their result, as follows. 

Assume the following. 

( A l )  Let { E t }  be an iid sequence such that E ( E t )  = 0, 
E ( E : )  = 1, E (E;q(‘+l)) < 00, for some s 2 3, 
9 2 1 .  
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(A2) For linear processes, E:"=, I b, I 5 c exp (-am), 
a > 0,  for all m sufficiently large. 

(A3) Let f denote a strongly contracting and con- 
tinuous differentiable function, and let E t  have 
density satisfying E I f  ( ~ 1 , .  . . , E ~ ) I  < CO, f being 
positive and continuous. 

(A4) I? = limn+oo (n-'12 E,"=, ut) exists and is posi- 
tive definite. Denote the quantity under the limit 
as S,. 

Suppose that If(.)[ 5 M (1 + 1 ~ 1 ~ ~ )  for every vector 
z. If the assumptions as set out in Gotze and Hipp 
(1994) hold, then there exists 6 > 0 not depending on 
f and M ,  and, for any lc > 0, the exists a constant 
C = C ( M )  > 0 not depending on f ,  such that 

where q!~ is a functional of signed measures relating 
to the determinant of r, the term o( . )  depends on f 
through M only, and w is a supremum operator on a 
Lipschitz condition for f constraining y to be less than 
n-k in norm. 

for X t ,  and the required Edgeworth expansion can be 
obtained. 

In an as yet unpublished manuscript in preparation 
by D Nur, RC Wolff and KL Mengersen, the conditions 
for this theorem are being confirmed. 

Under conditions (Al )  through (A4), the result holds 
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